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P. COLELLA AND H.O.CORDES 

0. Introduction. Let R^+1 = {x = (x0, ..., xn):x0 > 0}, and 3R^+1 = 
{x0 = 0}. Consider unbounded differential Operators L of £) = L2(R^+1) 
given by an expression (a) = J^\a\èNaaDa o yer R++1 and a set (b) of 
boundary expressions (bj) = Siai^ivA",«^' ^J < N, j = 1, ...,m. Lis 
defined by (tf), in domL = {ue^N: (b)u = 0}, with the L2-Sobolev 
space .£# = £W (R!J-+1). General assumptions: a(JhCS(R%+1) b^ae 
CS(9R!L+1), with the two C*-function algebras over R^+1 and its bound
ary generated by À(x) — (1 + x2)~1/2 and Sj(x) = xyA(x), j = 0,..., n, 
respectively. 

Examples are the operators âd and zJ„, formed with the Laplace operator 
(a) = J , and the Dirichlet and Neumann condition, (b) = 1, and (b) = 
9/3*0, respectively, z^ and z)„ are known to be negative self-adjoint opera
tors of «£), so that all operators of (0.1), below, are well defined bounded 
operators of .£>. 

4, = (i - àdyv\ An = (i - 4)-1/2, ^ = AA, 
Sw = Z)0/lw, Syi4/ = DjAd, SnJ = DjAn, j= 1, ...,/i. 

The C*-algebras generated by (taking operator norm closure in £(«£)) 
of the finitely generated algebra of the operators) (0.1), (or (0.1) together 
with the multiplication operators a(M): $ -> £), defined by (a(M)u)(x) = 
a(x)u(x), x G R%H, for a e CS(R%+1)) will be denoted by 9(# and 3(, respec
tively. We shall refer to 2( as of the C*-algebra of the elliptic boundary 
problem in the half space R%H. We believe this distinctive notation justi
fied, because the algebra 2( proves to be of interest for a variety of reasons, 
listed below. First, cf. [10], 5( contains (Fredholm) inverses Lrl of L 
generated by a general (Lopatinski—Shapiro type) variable coefficient 
boundary condition (b) and a suitable elliptic constant coefficient (a). 
Moreover we then even have PLa = DaL~l e8(, for all \a\ è N = order 
of L. Second, we shall make available good criteria for A G SI to be 
Fredhom. Third, 8( may be of interest as a type-1 C*-algebra with a finite 
ideal chain 

(0.2) « =><£=><£, 

where ® and G denote the commutator ideal of 2( and the compact ideal 
of $, respectively. In fact we get 
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(0.3) œ/8t s C{Ji\ (£/K = C(B», g(f))), 

with the compact ideal &(rj) of another Hilbert space rj, where the two 
spaces Jt and Bn will be explicitly characterized. Moreover, U&U* = 
S(ïj) ® 8(0 w i t n t n e algebra 2fg of singular integral operators over the 
boundary 3R++1, and a certain unitary operator U. 

For a more detailed discussion of the second point we refer to [4] or [10]. 
The two main results were announced in [4] and in a lecture at the CIME 
conference at Stresa/Italy in September 1968. (C.f. also [5]). Let us note 
that these results imply general criteria for normal solvability of boundary 
problems (a), (b), with variable coefficients in both (a) and (b), for a non-
compact domain differomorphic to a half-space (c.f. [10]). Clearly (a) 
will have to be elliptic (and md-elliptic (c.f. [6])), and from the work of 
Aronszajn [1] it follows that (b) must be Lopatinski-Shapiro. The results 
may be new, however, since a non-compact domain, with non-compact 
boundary is involved. 

Finally let us invite a comparison between our results here and the 
singular elliptic theory of [12]. [13], which is much simpler in its structure. 
Clearly the two types of problems treated reflect the old alternative 'limit 
circle case' and 'limit point case' of Herman Weyl. The large class of 
intermediate cases here may be too difficult for an explicit discussion. 

The algebra 2( mainly consists of pseudo-differential operators (ab
breviated '^do's'). However, there also occurs another kind of singular 
integral operator-with singularity at the boundary dWp'1 only, and related 
to a Wiener-Hopf (or Mellin) convolution (c.f. [7]). 

1. Preparations. We denote by R^+1 the set {x = (>>, x)eR x Rw: 
y > 0}. The Hilbert space on which our C*-algebra of ^do's will act is 
L2(R^+1) = §. We will also have occasion to study various operators on 
several other Hilbert spaces, which we denote as follows: L2(R+) = rj, 
L2(R«) = f, L2(RW+1) = S. For any Hilbert space H, we will denote by 
K(H), or, when there is no risk of confusion, by S, the norm closed two-
sided ideal of compact operators on H. 

The Laplacian A on ® is related to the operators âd and ân on $, the 
Laplacian with Dirichlet and Neumann boundary conditions, respectively, 
by means of even or odd reflections at y = 0. To describe this relationship 
let the two isometries 2s0, Ee : § -> S be defined by 

(E0 u) (y, x) = 2-1'2 ufo x), y ^ 0, = - 2"^2 u(-y, x), y < 0, 

(Ee u) (y, x) = 2-1'2 u(y, x), y ^ 0, = 2~i/2 u(-y, x), y < 0. 

The adjoints E*, Ef : S -> <£) are partial isometries, explicitly given by 

(1.2) E?v = 2i/2v0jR«+i, E*v = 2i'2 v,|R«+i, 
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where 

v0(y9 x) = ì/2(v(y9 x) - v ( - ^ , x)) 

vty, x) = l/2(v(>>, x) + v ( - * x)), v G ß. 

The isometries £0, Ee satisfy £*£0 = £*£, = 1. It is readily seen that 

(1.4) EeEfv = v„ £0£*v = v0 

The unbounded operator K = 1 - A of S, with domain dom(A:) = 
Q°(RM+1), is known to be essentially self-adjoint. We denote its closure by 
K. Similarly, let Hd9 Hn = 1 - â on «£), with 

d o m ( ^ ) = {w£Cg°(R^+1): " = 0 at y = 0}, 

dom(Hn) = {weCg°(R?-+1): 9 ^ = 0 at j ; = 0}, 

and we denote the closures by Hd and //„. Clearly, Hd ^ 1, //„ ^ 1. 

PROPOSITION 1.1. Hd and Hn are both self-adjoint; we have 

(1.6) Hd = £ * * £ „ JJ, = £**£. . 

Moreover, for any bounded continuous function f\ [1, oo] -> R, we get 

(1.7) / ( / / , ) = E*f(K)E09f(Hn) = E*f(K)Et. 

PROOF. The essential point is that the Fourier transform of Rn+l defines 
a unitary operator F: Ü! -• ® which 'diagonalizes' AT and leaves the spaces 
of even and odd functions invariant each. In details, we find that FKF~l 

is the (unbounded) multiplication operator induced by the function 
À~2(x) = 1 + x2 = 1 4- y2 + x2. This gives an explicit construction of the 
spectral family P(ju) of K: FP^F'1 is the multiplication operator induced 
by (XfAA~2(x))> w ^ h t n e characteristic function xE of the interval (— oo, ju]. 
Then since F leaves i m ^ and i m ^ invariant, it becomes evident that 
also P(ju) leaves these spaces invariant. (It is natural to use the notation 
'even' and 'odd' function for the functions of im/^ and imZ^, respec
tively.) In other words, the self-adjoint operator K is reduced by each of 
these two spaces. 

Define 

(1.8) Ke = K\(domK f] imEe), K0 =^|(domA: f| im£0), 

then Ke and K0 define self-adjoint operators of the Hilbert spaces $îe = 
im Ee and fò0 = im E09 with spectral families Pe(/u) = P(ju) ®e and P0(fi) = 
P{[i) S0. However, Ee acts as a unitary operator £) -• &e9 for example, and 
E*\$te is its inverse. Moreover, we get H'n = EfKEe = (Ef\®e)KeEe9 

trivially, which shows that Hn is self-adjoint (in §), and that its spectral 
family is given by Qn(/u) = EfP(ju)Ee. This implies the proposition for 
Hn9 if we can show that Hn = Hn. But by a simple calculation, E*KEe a 
Hn Œ Hn. (Note that for u e domHJ we need not have Eeu e dornig 
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because it may not be C°° at y = 0. However, since u satisfies the Neu
mann condition, Eeu at least has continuous first derivatives and piece-
wiese continuous second derivatives, which implies Eeu e domÄ', by a 
calculation). Also the fact that Ee is unitary from £) to §:e then implies that 
Hn' = Hn. A similar argument will settle the proposition for H0. 

For d — 1,2,..., and a function a e L°°(Rd) we define the multiplication 
operator a(M), and the (formal) Fourier multiplier a(D) as bounded opera
tors of L2(R<9 by 

(1.9) (a(M)u)(z) = a(z)u(z), a(D) = F~la(M)F, 

with the Fourier transform F of W. Tt is known that a(D) may be re
presented as a singular convolution operator. In particular, for Aa(z) = 
(1 4- z2)_a/2, Sj(z) = Zjk(z), the operators Àa(D), Sj(D) possess the explicit 
representations 

{HD)u)(z) = (2TL)-^ f Gdta(z - z')u{z') dz\ a > 0, 
(1.10) 

(sj(D)u) (z) = (2TT)-<*/2 lim J kd Az - zf)u(z') dz\ 

where the kernels GdiCC and kdJ may be expressed in terms of modified 
Hankel functions ([8], formula (1.3), (1.4), or [2], [16]), Gd>a are known as 
Bessel potentials. They are C°°-functions over Rd — {0}, and satisfy (with 
some c > 0, and for all e > 0, in fact, e = 0 with exceptions) 

(111) Gd%a{z) = 0{e-«*\ kdJ(z) = 0(e-^l as \z\ - oo, 

Gd>a(z) = 0(|z|-*+«+«|), as \z\ -, 0. 

Actually, (1.11) and (1.12) below remain correct when differentiated. Then 
kd>j, j = 1, ..., d are kernels of Cauchy-type singular integral operators. 
In particular, 

(1.12) kdJ(z) = klj(z) + 0(\z\-^\ as \z\ -+ 0. 

where Kdt ;- is homogeneous of degree = d in z, and has its integral over 
the unit sphere = 0, so that the Cauchy principal value in (1.10) exists 
for almost all z. Also, the Gdt(X are L^R^) so that the convolution integral 
in (1.10) exists for almost all z, assuming u e Iß(Rd). 

For d = n + \ we also use the notation a(M) = a(M0, M), a{D) = 
a(D0, D). In particular we will have functions depending only on part of 
the variables and the corresponding operators, like tf(M0), 6(D), etc. Note 
that fl(Af0) may either act on L2(R) or on L2(RW+1) = S, etc. 

We distinguish the operators A = X(D) = K~V2, and Sj = Sj(D) = 
DjA, 7 = 0,. . . , N9 acting on S, where Dj = — id/dxj. (We get K = 
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F_1(l + M2)F = (1 4- Z)2), as mentioned in the proof of proposition 1.1). 
Now, let us apply proposition 1.1, to obtain 

Ht11 = Ad = EfAE09 H-v* = An = E*AE„ 

(1.13) Sd = DQAd = E*SoE„ Sn = D0An = E?S0Ee9 

SdJ = DjAd = E*SjE09 SHJ = DjAn = E*SjE„ 

j = 1, . . . ,« . 

(In (1.13) we have used the fact that E$D0u = D0Efu, but E*D;u = 
DjEfu, for appropriate functions w, and similarly for E*.) 

From (1.13) and (1.10) one derives integral representations for the 
operators Ad9 An, Sd9 Sn, Sdj9 Sd>n9 using (1.1), (1.2), (1.3). These are con
veniently written as 

Ad = A- - A+9 An = A- + A+9 Sd = S-- S+9 
(1.14) 

Sn = S- + 5+, 5rffy = Sy,- — £/,+, iSWfy = Syf_ + *Sy>+, 

with 

(1.15) U ± H)(J>, x) = J R W + I Gw+U (j; ± y , x - x > ( j / , x') rfx' J / 

and similar formulas for S±9 S Jr±9 involving the kernels kn+1J. 
For « = 0 w e will denote A± = Q±, S± = P±. We note the explicit 

integral representations 

(1.16) 
(P±u) (y) = i/rc f Kx{y ± y')sgn(y ± y')u(y') dy\ 

J R + 

(Q±u) (y) = i\% f K0(y ± y')u(y') dy\ 
JR+ 

with the modified Hankel functions ([15], [17]). 
Next, we wish to review some facts about C*-algebras. Let SI be a C*-

algebra, and let (£ be the closed, self-adjoint, two-sided ideal generated by 
the commutators of S(. Then SI/© = SP is a commutative C*-algebra, 
and is isometrically isomorphic to the algebra C{Ji) of continuous functions 
on the compact Hausdorff space .#(80, the set of all *-homomorphisms 
m: SP -> C, with the relative w*-topology. We define the symbol of A e 
%9 aA: Jt($) -+ C, by aA(m) = m(A~)9 A~ = A + S G 3T/g. The induced 
map G : % -+ C{Jï) is tf*-homomorphism of the two algebras. 

LEMMA 1.2. Let Sf, 9tl9 ST2 be C*-algebras9 S(i, 8I2
 c 81, 8Ï generated by 

S(i a«d Sf2- 7%e« -#(3f) w homeomorphic to a closed subspace of the Cartesian 
product ^(Sti) x ^#(St2). Moreover, a corresponding homeomorphism c: 
.#(20 -* JH^.\) x ,#(S(2) can be constructed such that oA(c~l(mi9 ra2)) = 
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0Ai(mù'<7A2(
m2)foraH(mh m<i) e c(Jf(W)), and A = AXA2, Aj e 3(y, and the 

symbols a, aj ofty, 2(y. 

PROOF. Denote the commutator ideals by (£, ©y, respectively, and ob
serve that G£y c (£. Thus we have canonical homomorphisms 7zry:2(7 -• 
2T, defined by 7Cj(Aj + gy) = 4y + (5. We define 

( 1 . 1 7 ) C = 7ZT* X 7T*, 

with the dual maps TT| : Jf($L) -> ~#(2(y), given by ^ ( m ) = m ° %., The 
map £ clearly is continuous, and we need only show it is injective. 
If 7cJ(m)Ä] = rf(fh)Ä] for all Ä] e SfJ, 7 = 1 , 2, then (m — m) 
(n^A1 + (£) = TT(W - m) 04' + e) = 0, whenever all ^ e %x U 8t2. 
Since operators of this form IIA1 span the algebra 2(, by hypothesis, we get 
m = m. 

In the later application we will tend to identify Jl($) with its image 
tMÇj&ï) c ^(8ti) x y/(8r2), because then 8(, 2(y will have a fixed analy
tical meaning. Then we may write the main formula of the lemma in the 
form 

(1.17) aA{mu m2) = ^ ( w j ) • a%(m2), (ml9 m2) e J/($t\ 

whenever A = ^ j ^ , ^y G 8(/-
Later, we will be looking at the topological tensor product of (^'-alge

bras, so we also summarize some facts about them. For details cf. [3]. 
For two Hilbert spaces «£)1? ^ the algebraic tensor product is a pre-Hilbert 
space under the inner product (fl ® / 2 , g1 ® g2) = (Z1, g1) • (/2, g2), 
extended to $i ® ^ by linearity. Completing under the induced Hilbert 
norm we get the topological tensor product $i (x) ̂  which is a Hilbert 
space. For C*-algebras 2(y on §y the algebraic tensor product 211 ® 8(2 
is a *-subalgebra of S ^ ® &) with 041 ® 4̂2) (/1 ® / 2 ) = C41/1) ® 
(A2f2). We define the topological tensor product $lx ® 9(2 as the closure 
of S(i ® 9(2 in £(§! (x) §2). We mention without proof the following two 
lemmas (cf. [3]). 

LEMMA 1.3. If %2 is commutative and Sl̂  has commutator ideal (£($1), 
then the commutator ideal of ìli (x) 3[2 equals (£($1) ® 2(2» ^ r̂f we have 

(1.18) ^(Mj (g) a2) = -^(«l) x -^(«2). 

LEMMA 1.4. Le/ 5(§i) ^ ^ c t o of continuous operators of finite rank 
over $1, then, for any C*-algebra %2 on ß2 we nave 3K$i) ® 8(2 de>W£ in 
e(&) ® «2. 

2. The case « = 0. The results of this section are essentially contained 
in [7]; we will summarized these results here, and make the connections 
to information concerning the algebras of ^»do's on Rf 1 we wish to study. 
Let C be the C*-algebra on r) generated by the ideal (S(ïj) of compact 
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operators and three commutative C*-algebras 9JÎ, SB, and Q: $ is the alge
bra of multiplications a(M), with a G C([0, oo]), a bounded continuous 
function over [0, oo), with limit at + oo ; 953 is generated by the identity 
and the operators Ee^K(f>Ee with K^u = <p * u = \<p{y — y')u(y')dy\ u G 
L2(R), where cp is an even L1(R)-function; and Jt is generated by the iden
tity and the two operators (K±u) (y) = ^uiy^dyK/ ± yf), where the 
Cauchy principal value is to be taken in defining the integral for K-. 

The operators of Q already are in 'diagonal form', as multiplication 
operators. The other two algebras are explicitly diagonalizable via clas
sical integral transforms. With the Fourier cosine transform Fc\ f) -> rj 
(defined as Fc = E*FEe\ and the Mellin transform M: t) -+ L2(R), 

/» OO 

(2.1) (Mu)(t) = (FUu)(t) = (4TT)-1 / 2 | W ( ^ " ( 1 + / 7 ) dy, 
Jo 

where 

(2.2) (£/«/)(/) = 2i/Vi/(c20. t/: ^ -> £2(R)> 

we get 

/V2ÖF* = {fl(A/) e S(rj): a e C([0, oo])} 

MWM* = {a(M) e £(L2(R)) : a e C ( [ - oo, + oo])} 

so that 3 , 2B and 3R are isometrically isomorphic to C([0, oo]), C([0, oo]), 
and C([—oo, + oo]), respectively. Repeated application of Lemma 1.2 
yields an injective map c : .//(O) -+ Q where 

(2.4) Q = {(j, £, 0 G [0, oo] x [0, oo] x [ - oo, + oo]}. 

Moreover, if c is used to identify M — ^//(O) with its image we have 

(2 5) a*w)(y> £> 0 = *(*)> ^//*(^ & 0 = A/2TT p(£), y> even, 

0K+(y> £> 0 = ^ sech (7T//2), aK_(y, ?, 0 = - «&" tanh Out/2) 

where 

## = EfK9Ee, and £ = Fc<p 

THEOREM 2.1. (cf. [7]). c(J/(&)) equals the union 

{y = 0, £ = oo, f G [ - oo, oo]} U {̂  e [0, oo], £ = oo, f = ± oo} 

U {y = oo,fe[0, oo], f = ±00} U {y = oo, £ = 0,f G [-oo, oo].} 

It is convenient to rearrange the space Ji into a hexagon, as in fig. 2.1. 

It should also be mentioned that the commutator ideal of equals K(rj), 
and that the operators of S(rj) are redundant as generators of Q, as fol
lows from the fact that the C*-algebra generated by 9JÎ, 2S and S only con
tains nontrivial compact operators and is irreducible (cf. also Lemma 4.1). 
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&> /\<P 

o o 

- 0 0 

oo v o o 

Fig. 2.1 

The algebra Q contains a variety of interesting operators: SCR contains 
all 'Mellin convolutions' S^: fy -* fy, çp G ZACR+J X~1 / 2 dx), 

(2.4) 
f»oo 

and we have MS9M* = 21/22?r #T(M), with #T = Af̂ ,, which gives the 
explicit diagonalization for the elements of 9ft. S9 is called a Mellin con
volution operator because it is a convolution of the multiplicative group of 
positive reals R+, and because the Mellin transform acts as the Fourier 
transform for this group. 

Next, Q, contains all Wiener-Hopf convolutions H9 : lj -• Ij, <p e Ll(R), 

(2.5) 
/»CO 

(̂ M)(j) = Jo ?0-/M>>W, 



C*-ALGEBRA 225 

and we have (with ç>e = E*Ejp9 <p0 = E%E0(p, <p~° = E<p\R+) 

(2.6) ffHJLy, £, 0 = (2;r)1/2{^?(0 + [tanh(^//2) + i sech(^/2)] ^*(£)}. 

This fact is trivial for even <p, due to (2.5) and H* = H9 + H+, (H+u)(y) = 
$<?<p(y + y'My'W, where / /+ e g(fj) for all <p e LX (R) . On the other hand, 
let c[) be odd and let Tu(y) = ]Ru(y')dy''j{y — y') be the Hilbert transform. 
It is well known that FTF* = - i% sgn(M), sgn y = y/\y\. 

The following facts are simple calculations (for an odd (ft e Ll). 

E%TEe = #_ 4- K+, -ETTEeEfKfE, 

(2.7) = - E* TK^Ee = /(2TP3)1/2 F?<J>~°(M)FC e 323, 

-ifiE*KfE€ = EÏTReEfTK^Ee = (*L +K+) EfTK^Ee9 

(using the Hilbert inversion formula [15]). So it follows that EfK^E, = 
H\ = H^ + if J, and that (by compactness of / / J ) , 

(2.8) ( j ^ ( j , £, 0 = (27r)i/2{tanh(^/2) + i sech(ta/2)}^(£), 

which implies (2.6). 

The algebra Ö also contains the 'singular convolutions' K°± : Ij -> rj, 

/•oo 

(2.9) (*°±i0O0 = n(/) ^ ' ^ ' rf//(^ ± / ) , 
Jo 

and, 
<TK°-^y9 ^ ^ = ~ 2i arC t a n ^ t a n h ^ ^ ' 
0"*:° (.y> 5» 0 = 2 arc tan £ sech (nt/2), 

as proven in [7], Lemma 4.3. Our main interest is focused on the sub-
algebra $ of ö generated by the operators (2.9) (and K(fj)). Again $*/& 
is commutative, and naturally imbedded in C(J{(0)) ^ D/S, and the com
mutator ideal is S. So we shall identify $#/(£ with its image in C ( ^ ( 0 ) ) . 
By looking at the symbols of the generators we see that *ß#/S separates, in 
the sense of the Stone-Weierstrass theorem, precisely all the points of 

(2.11) {y = oo, £ e(0, oo), t = ±00} 

U {y = 0, £ = 00, t G ( - 00, + 00)}, 

while each of the three remaining segments in fig 2.1 collapses into a point. 
Thus it follows that Jt($*) is homeomorphic to the triangle of Fig.2.2. 

The algebra $ # still contains all Wiener-Hopf convolutions (2.5) with 
^-kernel, as follows from (2.6): The Fourier transforms of <pe, <p0 e L1 are 
continuous and 0 at 00, also % is odd, hence = 0 at 0; hence oH = 0 on 
the collapsing segments. Moreover, we claim, that another set of genera
tors of $* is given by the operators (1.16). Indeed, from the well known 



226 P. COLELLA AND H. O. CORDES 

— Ctt - K O 
t > 

Fig. 2.2 

asymptotic behaviour of the modified Hankel function K\ at 0 and oo we 
conclude that (with a constant c ^ 0) 

(2.12) cjj{y) = Kx(y) sgn y - ce'^/y e V(R), 

so that P_ — CQK^ is an L1-Wiener-Hopf convolution, hence in ^3*. 
Similarly P+ — cQK% e &(rj). Again Q- is an L1-Wiener-Hopf convolution, 
and Q+ is compact. Hence P±, Q± e ffi. The algebra generated by them 
contains Q+, a nontrivial compact operator, and is irreducible, hence con
tains fë(fj) (cf. Dixmier [14]), also by Lemma 4.1. For a point of .//($*) 
with finite t we have f = oo, hence aH(/} = 0 at all points of that segment. 
Thus GP_ = caKQ_ separates all points of it. Similarly, a calculation shows 
that—up to a multiplicative non-vanishing constant— aP_ equals 
± £ /1(f) on the segments t = ± oo, using (2.6), (2.11), and that the kernel 
of K°_ in effect has Fourier transform arc tan £. Furthermore the symbol 
of Q-is /1(f) on t = ±oo, and zero elsewhere, hence separates the points 
at t = ±oo from \t\ < oo. It follows that the symbols of P±9 Q± separate 
J/(&) so that these operators generate $*, as stated. 

It is useful to convert the triangle Jf(fê) of fig.2.2 into the shape of 
fig.2.3 where we use the transformation of f-variables £ -> f • sgn / at the 
segments with £ ^ oo, because in these coordinates we get aff(x, £, 0 = 
#T(£) on \t\ = oo, for any tp e L1, and also for the singular Wiener-Hopf-
convolution 

K- = Hexp(-\y\)/y 

Finally, let $ be the subalgebra of O with generators ffi and Q. For this 
algebra the Symbol space J/(^) is represented by fig. 2.4 The algebra $ is 
the 1-dimensional example of our algebra 3( of 0do's to be studied in 
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section 3 (n = 0). We still have the commutator ideal of p̂ equal to (£, in 
distinction from the cases n ^ 1 studied in section 3. It may be observed 
that the '^-segment' in Fig. 2.4 is entirely over the point x = 0, reflecting 
the fact that the symbol of A G $ on |/| < oo entirely is determined by the 
operator ^(MVfy(M), with any % e Co°([0, oo]), equal 1 near 0. 
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Oo 

ÖO 

— ÖO -oo 

oo 

Fig. 2.4 

We introduce the notation L = Jï(^), for later use. 

3. The algebra of 0do's. As a first step we examine the symbol space 
structure of Sf*, the C*-algebra generated by the operators (1.13). Let F be 
the Fourier transform in the last n variables, i.e., 

(3.1) (Fu)(y, x) = (2TT)-«/2 f e~^ u(y, 5) d\. 
JR» 

F defines a unitary operator of both § and ® and, in that sense, commutes 
with Ee and E0: E€¥u = ¥Eeu, E0¥u = ¥E0u, u e & Introduce r(x) = 
(1 + x2)1/2 and then the unitary substitution operator T: £> -> § (or S -• S) 

(3.2) (7w)(j, x) = T-^(^My/T(xX x) 

which commutes with Ee, E0 in a similar sense. Define U = T¥. Then 

(3.3) UAU* = (1 + Z)J5)-1/2 ® r"2(M), 

where 1 + D2, is the operator ^ for n = 0, acting on L2(R), and with 
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respect to the tensor decomposition ® = L2(R) ® 1. Indeed, we have 
F = G* F with the 1-dimensional Furiero transform G: S -> S, acting on 
y. Also, GT = r*G, G*T = T*G*, by a calculation. It follows that 

UAU* = re*(r2(M) + MIY^GT* = G*r*(r2(M) + Mg)-i/2rc 
= T-i(M)G*(l +M§)"1/2G, 

which proves (3.3) since the right hand side is only another way of writing 
the right hand side of (3.3). 

Applying Ee or E0 we get 

UAdU* = Qd® r-!(M), UAnU* = Qn ® ^ ( M ) 

(3.5) USnU* = Pw ® 1, t/SrfJ7* = Prf ® 1, 

£«„,,•#* = ô ^ ® Myr-!(M), USdJU* = Qn® Mf-\M), 

with Pw, Pd, QH, Qd = P-± P+ , ß_ ± ß+, respectively. 

PROPOSITION 3.1 C/8(*(7* coincides with the subalgebra of 

(3.6) $* ® a,, 3 , = {fl(M) e S(f) : a e C(B»)}, 

generated by the operators (3.5), wAere Bw denotes the smallest compactifica-
tion ofRn onto which Sj, j — 1, ..., n and X all extend as continuous func
tions. Moreover, if& is the commutator ideal of W, then 

(3.7) U&U* = K(^)®3». 

Proof The first part was discussed above. Also, it is trivial that ' c ' 
holds in (3.7). By remark 4.2 we find that U&U* contains C ® À(M), C ® 
Sj(M), for all C G K(r)). Let C = P be a 1-dimensional projection. Then the 
above operators generate the algebra of all P ® a(M), a e C(BW), which 
is contained in U&U*. Then Lemma 1.4 may be used for the second 
statement. 

Prosposition 3.2. Let L = L, U L^ = Jt(y$\ with the closed't-segmenf 
L„ and the open '^-segment' L ,̂ according to fig. 2.3, ofL. The C*-algebra 
2(*/G /s isometrically isomorphic to a subalgebra of C(L x Bn). In fact, 
to the subalgebra generated by aA{\) • b(x), 1 G L, x G B", where A ® b(M) 
is any one of the tensor products in (3.5). Moreover, the symbol space 
,//(9(*) is homeomorphic to the space obtained from L x BM by collapsing 
each set 1 x Bn into a point, for all 1 G L,. ^ZSÖ /Ae symbol of a generator 
G = t/*((>4 ® b(M))U of the collection (1.13) //j£ft zs £#w#/ to the function 
induced by aA(l) • b(x) on ^#(8(*) as described by above homeomorphism. 

PROOF. By Lemma 1.3, ($* ® 3„)/(®(£>) ® S«) = CÇL x 5«); thus by 
proposition 3.1., WI& is isometrically isomorphic to a subalgebra of 
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C(L x Bn). The reminder of the proposition then is a matter of explicit 
calculations, involving Stone-Weierstrass, and the dual of the above 
injection. Note also the more direct proof of [6], Ch.V. 

REMARK: It is immediate that (/) Bn is homeomorphic to the «-ball 
{ X G R " : \X\ ^ 1}, with {|x| = 1} representing the infinite points of Bw. 
Also that M% = J/($l*) is homeomorphic to an n + 1—ball 

(3.8) J(\ = {(&, 6): fo e R, g e R», £? + | | |2 £ 1}, 

with a 1-dimensional segment Jt\ = {—1 ^ ju ^ 1} attached as a handle, 
with its endpoints ft = ±1 identified with the north and south pole 
fo = + 1 of the ball, respectively, (fig 3.1), 

Let 9( be the C*-algebra generated by S(# above, and the multiplication 
operators 

(3.9) X(M), s,{M): £ - & . / = 1, ••> * + 1, 

with the functions X, Sj in n 4- 1-dimenions, as in section 1. 
Fig. 3.1 

The operators (3.9) generate a commutative C*-algebra isometrically 
isomorphic to C(HW+1), with the compactification 

(3.10) Hnl = {x = (y, X ) G ^ : y ^ 0} 

Fig. 3.1 
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of Rf4"1. Applying Lemma 1.2 we conclude that Ji^X) is homeomorphic 
to a subspace of the product H*+1 x M%. 

THEOREM 3.3 JO^C) consists of the following union of subsets of 
H*+1 x M%\ 

.#(21) = ((H*+i - R? 1 ) x j{*) 
(3.11) _1 

U (Rp 1 x dJff\) U (3Rfx x ^ | ) U (93Rfx x Jt% 
with 

denoting the boundary of the n 4- l-ball (3.8), the boundary of R^+1 i/i 
Rn+l, the closure of i?l+1 and the boundary of dR^1 in Hw+1, respectively. 

The proof is postponed to the end of section 3. To also get an insight 
into the structure of the commutator ideal 6 of 9t we introduce the C*-
algebra 2f$, acting on L2(Rd), and generated by 

(3.12) X(D\ A(M), Sj{D\ s,{M\j = 1, ..., d. 

As discussed in [11], 8(o has commutator ideal &, and we get 

(3.13) jmdo) = 

@Bd x Bd) U (Bd x dBd) = Bd x B<* - Rrf x Rd c B* x B*, 

and 

(3.14) Ö-Ö(M) = a(x), aaiD) = a(Ç), (x, Ç)eJ/(W$). 

THEOREM 3.4. Let W = F*TF (as /AI (3.1.) (3.2)); We have g(rj) c <&,and 

(3.15) H^e^* = ttft) <§> «8, am/ S/S(£) ^ C(^r(«J), Kfö)), 

w/7A ?/?e c t e Q^#, (£) of continuous functions from Ji to (£. 
We prove Theorem 3.4 in a series of lemmas. 

LEMMA 3.5. Let a e C(H*+i), A e 81*, fAew [a(M), ^] = Û ( M ) ^ -
Aa(M) e S(f>). 

PROOF. It suffices to show this for a generator of 3(*. Let b: Rn+1 -> C 
be the even extension of a. Clearly EKa(M) = b(M)EK for K = e, o. The 
generators (1.13) are all of the form E*B Ev B = A,SJ;K,A = e, o; we get 
[a(M\ E*BEr] = £*[6(M), B]Er = £*C£ r , C e <£(£)), by [11], for example, 
which proves the lemma. 

The following is an easy consequence of the lemma. 

COROLLARY 3.6. The set of all operators of the form 
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(3.16) 2 at{M)Ei + C, af e C(H«+i), E{ e &, C G S(£), 

is dense in (£. 

The following two lemmas essentially complete the proof of Theorem 
3.4. We defer their proofs until the next section. 

LEMMA 3.7. For a e C(HW+1) let ä e C(R%+1) f] LTO(R^+1) be defined by 
ä(y9 x) = a(0, x), x = (y, x ) e R f . Then, for all Ee&, a(M)E -
ä(M)Ee<tf$). 

By Corollary 3.6 and Lemma 3.7, S is the closed linear span mod (£(«£)) 
of {ä(M)E, ä e C(Bn), E e &, which equals the closed linear span, 
mod &, of 

(3.17) {(1 ® a0(M)) • U*C ® b0(M)U: a0, b0 e C(B»), C G Kft)}, 

by Lemma 3.5 and Proposition 3.1. The following lemma says that the 
generators listed in (3.17) are equal, mod&(£) to U*(C ® (ai(D)b0(M))U9 

witha^x) = a0( — x). 

LEMMA 3.8. Let aQ G C(BW), C G g(ïj). TTie/i, 

(3.18) ( r ( l ® fl0(D))^*XC ® 1) - C ® ûb(D) G (£(£). 

Assuming Lemma 3.8, for the moment, we find that W&W* is the closed 
linear span, mod &(£)), of 

WU\C ® a1(D)*o(M))t70'* = F*(C ® «1(D)Z>0(M))F 
( 3 . 1 9 ) =C®a0(M)60(D), 

But this amounts to the first relation (3.15). Also 3f0 = 2fg contains ®(f) by 
[6]. Thus ^gWK* contains S(£) = S(lj) ® S(f), using [3], and hence also 
© => &(£)). Furthermore, the second part of (3.15) then is a consequence 
of the investigation of £(Ij) ® 8f0 in PL This proves Theorem 3.4. 

PROOF OF THEOREM 3.3. First, Ji = ^(91) does not contain the points 
(JC, £) G Hn+1 x Jt* with x G R%+\ ÇeJi\ = J?{- dJi\ since, for 
(p G C0(R++1) we get </>(M)A-(ft(M) e S(£)), as is easily confirmed. Since 
(£(£)) e g , we must get the symbol (p(x)a A-(p(x) = 0 at all points of M. 
But Ö^- is > 0 in J(\, by (3.5). For any of the above points (Jj can be 
chosen such that the above product does not vanish. Hence the point 
cannot belong to Jt. 

Next let e > 0, and H?+1 = {xeH" + 1 : y ^ ez(x)}, R?+1 = R"+1 fi 
H?+1, T = (1 4- x2)1/2, Jts = ^ r fi (H?+1 x ^T#). Then we can show that 
no (JC, £) with y > 0, $ G ̂ | is in „#, as follows. By a calculation we get 

(3.20) (p(M)U*(P+ ® l)£/p(M) = <p(M)U*(œ(MQ)P+œ(M0) ® 1) £fy(M) 
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whenever <p e C0(R?+1) and œ e Co°((0, oo]) equals 1 for y ^ e. But the 
integral operator Ü)(M0)P+CO(M0) is in S(f)), because its symbol in $ 
vanishes. Hence (3.20) is in © which implies the statement, by an argument 
as above. So we get Jtt c Jt'& with 

(3.21) Jt\ = {y è ST, \x\ = oo, £ e .#*} U {y > er, |x| < oo, Ç e dJi\}. 

We now show that Jtt — Jt'3. Let 

W£ = {Ae%: supp ^ c ^ J , 

2r0>£ = {4 e«8 + 1 : supp aA a (H»+1 x B*+1) fi -#(2(§+1) = .4T'}. 

Then 8(e and 9T0,e are both C*-algebras, and STe/© and S(ol£/£(®w+i) are 
both isomorphic to C*-subalgebras of Ce(H*+1 x J?{), the algebra of 
continuous functions on HM+1 x J(\ vanishing at y = e. because the two 
balls Bw+1 and Jt\ are homeomorphic. 

Let us observe that the above homeomorphism between the balls may 
be chosen such that the symbols in 3f and 8(g+1 of corresponding operators 
of sets of generators of 5( and S(g+1 agree, respectively. Recall, in that 
respect, that Ji\ was constructed from the product [—oo, 4-oo] x Bw by 
collapsing each of the two sets +oo x 5 w into a point. The generators 
(1.13) of W occur in pairs. In fact, these generators are derived from the 
'convolution generators' of 2(g+1 by applying Ee and E0. Comparing the 
functions 

(3.23) GA\M\ = aAn\j/l GSd\Jl\ = aSn\Jll aShd\Jt\ = aSu\ji% 

(where the symbols are taken in S(*) with 

(3-24) aA, aSoy °sp 

(with symbols of the commutative C*-algebra W generated by these 
operators), then we find that the functions obtained agree on the interior 
of their balls of definition, after the transformation of variables 

(3.25) Ç = (ft, g) - (foO + !2)1/2> 5) = (& %) = £' 

has been carried out. Note that this is the transformation also underlying 
the unitary map T, above. Since the functions (3.23) and (3.24) are gen
erators of C(J/\) and C(BW+1), by Stone-Weierstrass, it follows that the 
homeomorphism (3.25) of the interiors extends into a homeomorphism 
Ji\ «-> Bw+1, as the dual map of the corresponding isomorphism of the 
function algebras. Henceforth we consider Ji\ and Bw+1 identified, by this 
homeomorphism. Then it follows that 

(3.26) oA = oAd = aAm, as = aSd = aSn9 aSj = aSj;d = oSj,n, as y > 0. 

In particular (3.26) holds for J(t c Jt'£. One obtains a map %\ C(Ji'£) -• 
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C(Jiïe)9 defined by restriction a -+ a\J(t which is a *-homomorphism and 
such that (3.26) holds. The map % may be interpreted as a continuous 
*-homomorphism 

(3.27) ff:«o,e/Œ(®->«,/©, 

If we can show % to be an injection, then its dual must be surjective, which 
means that JtB = Jt\> as stated. 

But the same map (3.27) may be obtained as follows. Let <p G C(Hn+1) 
be zero near y = 0 and = 1 near H*+1. Or, alternately, regard <p extended 
to Bw+1 by setting <p = 0 when y < 0. The operators 

<p(M)A<p(M), <p(M)Sj(p(M)9 <p(M)AK<p(M), <p(M)SK<p(M), 
(p(M)SKJ(p(M), k = d9 n;j = 0, ..., n, 

may be regarded as operators mapping either £)-•£) or S -> S. In that 
sense a calculation confirms that 

(3.28) (p(M)A(p(M) = (p(M)An(p(M) = <p(M)Ad<p(M) ( m °d £(£)), 

and similar congruences for the Sj etc. Note that the operators 

(3.29) (p(M)A(p(M), iP{M)Sjcp{M)J = 0, ..., n9 

generate a subalgebra of 2(g+1, mod (£(®), and a subalgebra of 3(, mod (£, 
which contain 2(0 £ and 8[£, respectively, where the cosets of finitely gen
erated elements correspond to each other by the map %. Note that, with 
the orthogonal projection P§: § -> L2(R£+1). 

inf \\A + E\\ = inf \\PÔ(A + E) + (1 - PÔ)E\\ ^ inf |U + i ^ l l 

è inf |U + C|| ^ inf \\A + CII 

for sufficiently small 5, depending on <p, for any operator A finitely gen
erated from (3.29). This shows that indeed % is injective, so that indeed 
Jlt — j£'t. Letting e -> 0, and taking closure in M we find that M contains 
all of the first and second set of the union (3.11). 

Finally let us consider the last two sets of that union. In this connection 
let us look for an operator with symbol having support in the set {(x, £) : 
Ç e Jtty which is not in (£. Consider the algebra SP = UWU* which has 
£/(££/* = £(f>) (g) STg as a subalgebra, by (3.15). From (3.5) it is clear that 
SP contains P+ ® 1, and thus also the C*-algebra generated by the opera
tors P+ ® 1 and P+ - P- ® 1. These two operators have symbol 0 on M\ 
in the algebra 8(1, but separate interior points of the interval Jt\. The 
existence of By ® 1 G SP with aBf = / on Ji\9 — 0 on Jt\ follows, where 
/ may be any continuous function over Jt\ vanishing at the boundary. 
Likewise, SP contains (7tf(M)ò(M0)£/* whenever aeCoftR*), be 
Co°([0, oo)), since ab e Cg°(Rf+1) e 3(. But, 
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Af = Ua{M)b{M0)U%Bf ® 1) = a(-T>)b(M0/T(M)) (Bf ® 1) 

is never in ©(f)) ® Sfg, unless either/ = 0 or a = 0 or &(0) = 0. Otherwise 
for every cp e Co°(Rw) the operator (<p, Afcp) = Cf e S(£)) defined by (w, Crv) 
= (w ® #>, ^/(v ® >̂)) would be compact. Indeed, the latter is not true, 
because a calculation shows that Cf = Bf • q with q e C((0, oo)) defined by 
q(y) = ( ^ öf( — D)b(y/z(M))<p) (with inner product in f). Taking symbols 
in $ it is clear that Cf is compact if and only if either/ = 0 or #(0) = 0. 
But if/ ^ 0, and a j=- 0 and b(Q) ̂  0 then <p always may be chosen such 
that q(0) = (<p, a(-D)cp) b(0) * 0. 

Suppose that some (x, £) with y = 0, |x| < oo and £ G Jtf
2 is not in Ji. 

Then a ^ 0, f ^ 0 may be chosen with supports in a sufficiently small 
neighbourhood of x and £ such that the product still vanishes on Ji 
(because Ji is closed). It follows that U*AfU e S, a contradiction if only 
6(0) # 0 is chosen. Hence Ji contains all such points. Since Ji is closed 
it therefore also contains the last two sets of the union (3.11). This com
pletes the proof of Theorem 3.3. 

4. Proof of left-over auxiliary results. PROOF OF LEMMA 3.7. We may 
restrict our attention to functions of the form a(x) = P(x)/(1 + x2)k/2

9 

with a polynomial P of degree k, since C(HM+1) is the closed linear span 
of such functions. Then a(x) — a(0, x) = s0(x)q(x), with a bounded 
function q, by a calculation. Also by Corollary 3.6 we may choose E = P^, 
Then, using Proposition 3.1, we find that it is sufficient to show compact
ness of s0(M)U:¥(P<p>(p ® \)U for any operator P(p^u = <p- (<̂ , w), <p, cjjy 

u e f). Or, equivalently, we must show that, for <p9 cjj of the form <p = 
1 in[0,/?], = 0in(/?, oo), 

(4.1) (P9j ® l)U s&M)U*(P9j ® 1) = H e <£($). 

We may write sl(y9 x) = {fiy)\\ + //2x2)-1, ß = (1 + j 2 )~ 1 / 2 , so that 

(F*3(A/)F*fi)(x) = ( ( ^ ) 2 (1 + /i2D2)-i «) (x) 

= (27ü)-^yY-n J ^,2((x - x')///K^ x ') ^x'-

Then, by a calculation, //w = (27r)~w/2CP^ ® Z)w with the integral 
operator 

(4.3) Zi/(x) = 
/» /»oo 

J R„ JO 

Again it suffices to show that Z G S(f). The interchange in integrations 
leading to (4.3) can be justified, since <p has compact support, from the 
properties of Gn2, as listed in section 1. (Note that in (4.3) we introduced 
T = r(x), z' = z-(x').) 
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Substituting <p in details we get Z to have the kernel 

z(x, x') = (ZT')1 /2 P V ( 1 + szy'z-i Gn>2{(x - x') (1 + s2)1/2) ds 

= (TTT2 1 (pr - s)G(s, x - x') ds9 
Jo 

with y = 7*(x, x') = Minier-1, r ' - 1 } , and with 

(4.5) G(s, 0 = d/ds{s*(l + s*)»'2-i GW>2(C(1 + s2)1/2) 

by a partial integration. Using the estimates (1.11) and the fact that 
(ZT')1 / 2 ^ 1/7*, one finds that for every e > 0, z = z1>£ + z2)£, with 
l*l,e(x, X ' ) l ^ ^(X)/£(X - X'), Z2)£(X, x ' ) ^ g£(x - x ' ) , | | g J L l < ^ w i th 

an/£eL2(R") f] ^(Rw) and À(x) = (1 + x2)~1/2. If z , denotes the char
acteristic function of the ball {|x| < q}, then it follows that ^(x)zj £(x, x') 
= Q(%q(x)f£(x — x')) G L2(R2w), so that the operator %q{M)Zli£ is a 
Hilbert Schmidt operator and therefore compact. On the other hand we 
get (1 — %q(M))Z -• 0 in norm convergence of f, by Schur's criterion. 
This implies compactness of Z. 

PROOF OF LEMMA 3.8. It suffices to consider the assertion for the case 
where a0is either A(x) or Sj(x),j = 1, ...,n. Also we may assume C = P^ 
again, as in the preceding proof, and with the same choice of <p, even with 
p = 1. With these simplification we are reduced to showing that K = 
Ki + K2 is compact, with 

(4.6) 
(KiU)(x) = |V/r)1/2{<p(^7r) - <p(y)} k(x - x')</>(t)u(t, x')dtdx\ 

(K2u)(x) = f((r7^)1/2 -l)<p(y)k(x - x')<J;(t)u(t, x') dtdx\ 

where k is the convolution kernel of a0(D), as in (1.11). 
Observe that K2 = P<?,<{, ® V, with an integral operator V:t -> t having 

kernel {{z'lz)l/2 — \)k(x — x'). The compactness of V may be proven 
with the method used for Z in the preceding proof. 

We turn now to Kx. Let <pa(y) = <p(ay) and write, for rj > 1, 

(4.7) Kx = (pv{M,)Kx + (1 - <puv{Md)Ki + (<Pvv(M0) - ^ ( M 0 ) ) ^ . 

We shall show that the first two operators at right of (4.7) are Hilbert 
Schmidt, and that the last one tends to zero in norm, as rj \ 1. The kernel 
of K\ is non-zero only if yz'/z > 1 as y ^ 1 (case (a)), or, yz'\z ^ 1, as 
y > 1 (case(Z>)). In case (a) we get 1 + x2 ^ >>2(1 + x'2), y < 1, or, 
0 ^ (1 - y2){\ + x'2) ^ x'2 - x2 ^ 2|x'| |x - x'|, so 

(4.8) |x - x'|-i ^ 2|x'|((l - y2)(l + x'2))~i ^ cvl(x') (1 - y2)'K 
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Similarly in case (b) we get 

(4.9) |x - x'|-i < c(l - y*)'1 A(x). 

Let 7] > 1, then <pv(Mo)Ki has kernel zero for case (a), otherwise, 

(4.10) Kl(y9 U x, x') = <pv(y)k(x - x'MtWlT)1'2. 

For arbitrary y, t, x, x we get, using /:(z) = 0(|z|_r Àr(z)), r ^ n, (cf. 
(1.10), 

(4.11) A:I(J;, t, x, x') 

= <%(j>)0 - ^)-^(OA1 / 2(xW-1 / 2(x'W(x - x')) 

for all r ^ n. This implies that Â  G L 2 (R 2 W + 2 ) . i.e., is a Schmidt kernel. 
Accordingly ç^M^Ki e S(#). 

Similarly for Z^ = (1 - <pi/v(M0))Ki the kernel is ^ 0 only in case (Z>), 
and we get its kernel estimated by 

K2(y, U x, x') 
( 4 ' 1 2 ) = 0((1 - <p1/v(y))(l - j r 2 ) " ' 0(O^(x - x')A>-1/2(x)A1/2(x')) 

which again implies Lv to be a Schmidt-operator, hence compact. 
Finally, regarding the third term in (4.7) —with kernel ^3— we note 

that £3 ^ 0 only as I/97 < y < 37, which is a small interval as rj \ 1. For 
such >> we may use either (4.8) or (4.9) for the estimate |x — x' l - 1 g 
c\y — II""1. The we may estimate, with (1.11) again, 

*3 = o(^(o(^w) - ^(JO)|* - *'h+£ u - i|-^-£l" / l). 
where also Peetre's inequality was used, and where 0 < e < 1. It then is a 
consequence of Schur's Lemma that this operator tends to zero in operator 
norm, as rj \ 1. This proves Lemma 3.8. 

LEMMA 4.1. The C*-algebra, generated by the operators (1.16) only, is 
equal to $* hence contains (S(fj). 

PROOF. We have 0 ^ 2+ e ®(lj) fi ^*- Using a resolvent integral one 
shows that $* also contains all the orthogonal projections Q onto the 
(finite dimensional) eigenspaces to eigenvalues ^ 0 of the compact self-
adjóint operator Q+. Any eigenfunction cp(y) to an eigen value À ^ 0 is 
in I), is analytic in (0, 00), and is of exponential decay in a complex neigh
bourhood of (1, 00). Therefore the Fourier cosine transform also is 
analytic. In particular this implies that <p will not vanish identically 
anywhere in (0, 00). Also, the Fourier cosine transform diagonalizes the 
operator H\ = g_ + Q+ = Qn; we get FCH\FC = X(M0). If there exists 
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a 1-dimensional nonvanishing eigenvalue it follows that $* contains 
PWt<j, arbitrarily close to any operator of rank 1, hence contains S(f)). If 
no such eigenvalue exists one will iterate the procedure starting from 
f(Qn)Qf(Qn)> with a suitable real-valued function/, to obtains projections 
in ^ of lower and lower dimension, finally of dimension 1, which will 
complete the proof of Lemma 4.1. 

REMARK 4.2. By a similar technique one proves that U&U* contains 
C ® A(M) and C <g> Sj(M) for all C e g(lj) and./ = 1, ..., n. 
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