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GROWTH OF DERIVATIVES AND THE MODULUS 
OF CONTINUITY OF ANALYTIC FUNCTIONS 

ELGIN H. JOHNSTON* 

1. Introduction. Let G be a bounded complex domain and let /(£) 
be analytic on G and continuous on G. The modulus of continuity of 
/(£) on G is a function <o(ô, /, G) defined for 8 ^ 0 by 

(1) a)/«) = «(8, / ,G) sup 1/fo)-/&)!• 

If 

aft) ^ Co-, 

for some 0 < a ^ 1 and some constant C > 0, then /(£) satisfies a Lip­
schitz condition of order a on G. 

If G — D — A(0, 1) is the open unit disk, a classical theorem of 
Hardy and Littlewood [1] shows that /(£) satisfies a Lipschitz condition 
of order a on D if and only if 

If (ÖI ë c( i - i^i)«-1 

for all J G D . The positive constant C is independent of £. By con-
formal mapping, the Hardy-Littlewood theorem can be generalized to 
the case in which G is replaced by a bounded, simply connected do­
main G with analytic boundary. In particular, if 

d(l 8G) = d> = inf £ - z| 
ze3G 

denotes the distance from a point £ G G to 3 G, then the following re­
sult holds [4]. 

THEOREM 1. Let G be a bounded, simply connected domain with ana­
lytic boundary. A function /(£) analytic on G and continuous on G sat­
isfies a Lipschitz condition of order a on G if and only if 

| f (|)| S C{d,}«-\ 

for all £<EG. 
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672 E. H. JOHNSON 

As the following well known result shows, Theorem 1 readily gener­
alizes in the necessary direction. 

THEOREM 2. Let G be a bounded complex domain and let /(£) have 
modulus of continuity cô S) = <o(ô, /, G). Then 

If (öl ^ ^ - > 

for all £ GG. 

In this paper we show that Theorem 1 also generalizes in the suf­
ficient direction, and hence show that Theorem 1 actually holds with 
much weaker conditions on 8G. For example, we show the result holds 
if G is a domain with minimally smooth boundary [5]. This general­
ization of Theorem 1 will follow from a more general theorem in 
which we relate the modulus of continuity of a function /(£) on G to 
the smoothness of 3 G and the growth of |/'(£)|. 

2. Definitions and the Main Result. Before stating our main result, 
we require some definitions classifying the smoothness of the boundary 
of a domain. These definitions and the following results involve positive 
constants, denoted by "C"; subsequent appearance of "C" will denote 
possibly different positive constants. 

DEFINITION 1. A function w(x), defined for x i= 0, is a modulus of 
continuity if co is increasing, subadditive and limJ.̂ 0+co(x) = 0. 

Note that co(ô, / , G), the modulus of continuity of /(£) on G defined 
in (1), need not be a modulus of continuity in the sense of Definition 1; 
in particular, w(8, /, G) need not be subadditive. 

The next two definitions concern the smoothness of the boundary of 
a domain G. In special cases, these definitions coincide with the defini­
tions of special Lipschitz domains and domains with minimally smooth 
boundary [5]. 

DEFINITION 2. Let À be a modulus of continuity. A domain G is a À-
domain if there is a function $ : R —> R and a positive constant M such 
that 

G = {* + «/: !/><*>(*)}, 

and 

(2) \<Kx) - # 0 1 S AAflx - Al 

for all x, x' G R. The smallest M for which (2) holds is the bound for G. 
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A À-domain as described above is in the standard position. Any rotation 
of a À-domain is also a À-domain. 

DEFINITION 3. A bounded, simply conncected domain G is the local 
À-domain if there exist positive constants e and M and a sequence 
{ Ui : i — 1, 2, • • •} of open sets such that: 

(i) For each z G 3 G, there is a Ui with A(z, e) Q Uv 

(ii) For each (7i5 there is a À-domain Gf with bound not exceeding M 
such that 

u, n G, = Ut n G. 

M is called a bound for G. If À(x) = Cx" (some 0 < a ^ 1), then G is a 
local Lip(a)-domain. 

Definition 3 describes what might be called a cusp-condition on 8G. 
In [2], Lorentz shows that if co is a modulus of continuity as defined 

in Definition 1, then there is a concave modulus of continuity À with 

X(x) ̂  <o(z) ^ 2\(x), 

for all x = 0. In the remainder of this paper all moduli of continuity 
will be assumed concave unless otherwise stated. This assumption will 
also hold for those moduli of continuity implicit in Definitions 2 and 3. 

We recall that if X(x) (x ^ 0) is concave, then À(x) is continuous for 
x = 0, has a right hand derivative D+X(x) at each x = 0 (with, possibly, 
D+A(0) = +oo), and a left hand derivative D~X(x) at each x > 0. For 
0 = x < y, we have 

D+À(x) ^ D-À(t/) ^ D+X(y). 

Thus À'(x) exists and is continuous for all but at most countably many x. 
If E is the set on which X'(x) is not continuous, then \'(x) has jump dis­
continuities at each x E E. 

We now state our main result. 

THEOREM 3. Let G be a local X-domain and let /x be a modulus of 
continuity. Suppose /(£) is analytic on G, continuous on G, and 

for each i- £ G. Then there is an TJ > 0 such that 

(3) ois,f,G)^cS: -a^L-dt, 

for all 8 = T) (In this case, co(8, f G) is not necessarily a modulus of 
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continuity as defined in Definition 1; thus w(5, /, G) is not assumed to 
be concave.) In (3), dt is Lehesgue measure. 

Of course Theorem 3 is of interest only when fi(t) X\t)/t is integrable 
on [0,5]; that is, when the right side of (3) is finite. In Section 4 we 
give some consequences of Theorem 3 for special choices of fi and À. 

3. Proof of Theorem 3. The proof of Theorem 3 depends on the fol­
lowing lemma. 

LEMMA 4. Let G be a local X-domain with bound M. Let z0, zx E 3G 
with \z0 — zx\ < c/4. Let Ui be an open set (see Definition 3) with 
A(20, c) Q U{, and let Gi be the X-domain associated with U{. Suppose 
Gi is rotated through angle 0(0 = 0) from standard position. There is a 
positive constant c — c(X, M, c) > 0 such that for è E G with 
|£ — zx\ < c/4 and arg(£ — zt) — 0 + IT/2, we have 

(4) c A- i (A_z iL) ^ = g | Z l - | | . 

PROOF. Since rotation of G does not affect the result, we assume Gx 

is in standard position; that is, 0 — 0. The right-hand inequality in (4) is 
clear. To establish the left inequality, we first show d(£, 3G) = 
d(£, dGJ. Let z ŒdG with \z - £| = d(i 3G), Then 

l*o - A = l*o - *il + l*i - *l < */2. 
Thus, 

z G ^ n G = u{ n Gj. 

It follows that d(|, 8G) ^ d(£, BGj). The opposite inequality is proved in 
a similar way. Lemma 4 now follows from Lemma 5. 

LEMMA 5. Let G be a X-domain with bound M and in standard posi­
tion. Let 7] > 0 be given. There exists a constant c = c(X, M, TJ) > 0 
such that if z E 3G and £ E G itón Re(z) = Re(£) and |s — £| ^ TJ, 

PROOF. Since G is in standard position, we can assume z — 0 and 
| = ia with Tj ̂  a > 0. Let T denote the graph of y = MA(|x|) and let / 
denote the line through (X-\a/M),a) with slope MD+X{X-\a/M)}. 
Since X(x) (x = 0) is concave, we have 
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d > dia D > dit f) - ^P+MA-X(a/M)} X-\a/M) 
dt = d(t, 1) = d(fc /) _ [ 1 + { M D + X ( X - 1 ( f l / M ) ) } 2 ] i / 2 

> / MD+X{X-'(»/M)} \ . . i / j a . ^ 
\ [1 + (MD+X^-^n/M))}2]172 / V M / 

We now prove Theorem 3. 

PROOF. Let z0, z1 G 8G with 

^-^-^^{i'^v m )}-
where M is a bound for G. We will prove our result by writing 

(5) IM)-.fco)|= | X - f ( ö * I« 
where ~é is an appropriate path of integration, and then estimating the 
integral in (5). 

Let Ui be an open set (see Definition 3) wih A(z0, c) Ç U{. Assume 
the associated À-domain Gx is the standard position; we can then as­
sume Re(*0) < Re^j). Select w0, wx G G with Re(z0) = Re(u;0), Re(^) 
= Re(w1) and 

K - zo\ = MX(\zo - zi\) = \wi - zil 

Let y0 be the graph of y = MX(x) (x ^ 0) translated so its vertex is at 
w0, and let y1 be the graph of y = MÀ(|x|) (x ^ 0) translated so its ver­
tex is at wv Let w2 be the intersection of y0 and y r We take -ê to be 
the path from z0 to w0, along y0 to w2, along y1 to w1 and from w1 to 
zx (see Figure 1). 

For any £ E ~ê, we have 

ta - | | ^ |*o - *il + K ~ *o + M*(l*o - *il) < </2-

ThustT C Gi H t/« = G fi ^ and 

^ = d(€, 3G,), 

for any ^ G^ . 

We can now write 

(6) l/(̂ o)-/(̂ )l̂  X ™ 1*1 

yo y 0 y i 
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FIGURE I. 

The path C is indicated by arrows. 

and proceed to estimate these four integrals. 
For the first, 

Since Re(£) = Re(z0) and \z0 — £| < c/4 for £ E [z0, w0]9 Lemma 4 gives 

^ - ( J ^ J L ) . 
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Since ju,(x) is concave, IJL(X)/X is non-increasing. Hence, 

J-;; if «H m * ^ s: «££:%$ w 

Set 5 = X_1(f|^0 — IÜ0 | /M) and recall w0 was chosen so that 

Then 

The same argument gives this bound for the fourth integral in (6). 
For the second (or third) integral in (6), we have 

£7 if ©I w =g £w; - ^ m 
Yo Yo a Ç 

Let r o be Y0 translated so its vertex is at z0. Then for £ E Y0> 

dt g d(fc r0), 
giving 

Since Yo i s concave and is a vertical translate of T0, d(£, T0) increases 
as £ moves along Y0 away from w0. Thus, 

d(fc r0) ^ dK, r0), 

for £ E Yo- By Lemma 4, 

dK, r0) s cx-i ( K - *o\ ) = c|Zo _ Zi|. 
Thus, 

(8) J«T2 If (ÖI l#l ^ C M f i ~ * f • AYO), 
Yo ° \z0 ~ Zl\ 

where i(y0) is the length of Y0 fr°m ^o t 0 "V We n a v e 

(9) /(Yo) S X"0""1' (1 + W ) l / 2 d* ^ C\(|z0 - zj). 
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Since ix(t)/t is decreasing, 

do) X8 Kt)?{t) * a ^s
m • 

Combining (7), (8), (9) and (10) shows 

for \z0 — zx\ ^ T/; that is, for 8 = TJ, 

(11) HS,f^G)^cS: -"Of®-*. 

where w(8, /, 8G) is the modulus of continuity of / o n 8G. The integral 
on the right in (11) is a positive, non-decreasing, subadditive function of 
8 i^ 0. It follows from a theorem of Rubel, Taylor and Shields [3], that 

for 8 ^ Tj. 

4. Consequences and Examples. Several interesting corollaries arise 
as special cases of Theorem 3. 

COROLLARY 6. //, in addition to the hypotheses of Theorem 3, we 
have 

da) ,wfM + MLa>1, 
»-0 I A(t) ju(t) J 

then there is an ij > 0 such that 

8 

for 8 = % Furthermore, /x(f) \(t)/t is a modulus of continuity. 

Before proving Corollary 6 we list some of its immediate con­
sequences. 

COROLLARY 7. Let G be a local Lip(a) domain and let ß(0 < ß ^ 1) 
be given with a + ß > 1. ///(£) is continuous on G, analytic on G and 

\f®\gcdf-\ 
for all £ E G, then /({) satisfies a Lipschitz condition of order 
a + ß-lonG. 
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COROLLARY 8. Suppose G is local Lip(l) domain and ii(t) is a modulus 
of continuity with 

lim inf ± A > o. 
t-+o ti(t) 

Then a function /(£) analytic on G and continuous on G has modulus 
of continuity 

o^(8, f G) ^ C/i(8), 

for 0 ^ 8 ^ fi if and only if 

[f(öl ̂  C Ä , 

for all £<EG. 

COROLLARY 9. The conclusion of Theorem 1 holds if G is a local 
Lip(l) domain. 

We now prove Corollary 6. 

PROOF. From (12) it follows that given a' with a > a' > 1, there ex­
ists TJ' > 0 so that 0 < t < Tj' implies 

(13) tf«) X'(D + M'W W > «' ̂ P - > - ^ ^ P - > 

for those £ for which JH'(£) and A'(f) exist. In particular, we find that 
(i(t) X(t)/t is increasing and 

lim M M 

exists. 
If 8 = fj = min(i7, T/'), then Theorem 3 implies 

<o(S,/,G)ëC lim J 8 J » * 
T-0+ T * 

g C lim f J«) *'(«) + *»'< W ) * 

5i c a ' l im r ttit)X(t) + ty'(t)\(t)-n(t)\(t) 
a' - 1 T^0+

 J T f2 
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= c / ix(8)\(8) _ H m J*(T)A(T) \ 
\ 8 r - 0 + T / 

< ja(g) A(5) 

Now ix(t) \'(t)/t is integrable on [0, 5], so (10) shows 

hm -MML = 0. 
8-*0+ 0 

Finally, /A(Ô) X(Ô)/Ô is subadditive ([6] p. 97). Thus X(t) [i(t)/t is a modu­
lus of continuity for t = 0. 

We give an example showing that in one sense Corollary 7 is best 
possible; we show that if a + ß — 1, then /(£) need not satisfy a Lip-
schitz condition of order y for any 0 < y ^ 1. Let G be a closed do­
main lying in (Im(£) > 0} U {0} with the following property: G is a 
bounded domain, and in a neighborhood of 0, 8G is the graph of 
y — |x|a, while outside of this neighborhood, 3G is smooth (say, analyt­
ic.) Then G is a local Lip(a) domain. 

We take 

M) = 

on G. Then /(£) is analytic on G (we take the branch cut in the lower 
half plane) and continuous on G. Note that /(£) does not satisfy a Lip-
schitz condition of any order ß > 0 near the origin, and that 

/'(£) = 
Hog2£ 

for £ G G. 
If £ 6 G is close to 0, we have 

dt =i dm ë IÉI"«. 

Thus, 

if(ei = |£iog2£| 

l 

|£|log2|£| 
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1 

Si Cid,)"* 

= c(d,)ß-\ 

with ß = 1 — a. Thus a + /} = 1, but /(£) satisfies no Lipschitz condi­
tion of positive order on G. 

5. Further Questions. In Theorem 6, we obtain no information about 
(o(8, /, G) if p,(t) \\t)/t is not integrable on [0, 8]. Can bounds on w(8, /, 
G) be obtained under weaker conditions? Are there examples showing 
Corollaries 6 and 7 are best possible, or are stronger results possible? In 
construction of examples, an answer to the following question would be 
useful: Let G be a bounded domain and let \(t) be a modulus of conti­
nuity. Under what conditions does there exist a function /(£) analytic on 
G, continuous on G with 

c\(t) ^ « ( i / , G )ë CX(t\ 

for some positive constants c and C independent of t? 
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