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ON SOLVING THE EQUATION Aut(X) = G 
HARIHARAN K. IYER 

ABSTRACT. Given a finite group G, are there at most a finite 

number of finite groups X such that Aut (X) « G? If so, how does 

one determine all of them? 

The first question has an affirmative answer. In this paper we 

consider the second question when G is a finite nonabelian simple 

group or a natural extension of it, a dihedral group, a dicyclic group 

or a quasidihedral group. 

1. Introduction. G. A. Miller, in 1900, considered the problem of 
finding all finite groups having S3 as their group of automorphisms. He 
proved that C2 X C2 and S3 are the only such groups. He also deter
mined all finite groups having S4 as their group of automorphisms. The 
reader is referred to [10]. De Vries and De Miranda [13] have in
vestigated groups, finite and infinite, with a small number of auto
morphisms. Heineken and Liebeck [6] and Hallett and Hirsch [4] have 
worked on similar problems. Finite groups with abelian automorphism 
groups have been studied by B. E. Earnley [2]. Baer [14] proved in 
1955 that a torsion group whose automorphism group is finite must it
self be finite. Alperin [15] in 1961 characterized finitely generated 
groups with finite automorphism groups. Recently D. J. S. Robinson 
[16] has studied the consequences for a group of the finiteness of its 
automorphism group. 

In (3.1) we prove that given a finite group G there are at most a fi
nite number of finite groups X such that Aut (X) œ G. It is to be ex
pected that the problem of finding all these groups in any given in
stance would be difficult in general. However, a knowledge of Schur 
multipliers of various groups and some results concerning the group of 
central automorphisms of a group combined with elementary group 
theoretical arguments enables one to solve the above problem in certain 
instances. 

2.1. Terminology. All groups mentioned in this paper are finite. 
Suppose G is a group. The following notation will be used: 

\G\ — The order of the group G. 
\G\p = The order of a Sylow p-subgroup of G. 

77 = The set of all primes. 
*(G) = {p G *|p| \G\). 

(m, n) — The greatest common divisor of the integers m and n. 
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Aut (G) = The automorphism group of G. 
Inn (G) = The inner automorphism group of G. 

AC(G) = CAut(G) (Inn G) = The group of central automorphisms of 
G. 

Cn — The cyclic group of order n. 
Ç = The quaternion group of order 8. 

A PN-group (Purely Nonabelian) is a group having no nontrivial abe-
lian direct factors. 

2.2. Covering groups of a group G. For an arbitrary group G, we let 
C(G) be the set of all ordered pairs (L, À) such that L is a group and 
\: L^> G is an epimorphsim with Ker X Q U H Z(L). If in addition, 
|KerX| = \IP(G, Cx)| (where Cx is the multiplicative group of non-zero 
complex numbers) then we say that L is a covering group of G and X is 
the associated epimorphism, or for short, (L, À) is a covering group of 
G. 

The Schur multiplier M(G) of a group G is an abelian group uniquely 
determined by G such that whenever (L, X) is a covering group of G, 
Ker X^M(G). 

Two elements (L, X) and (M, /x) of C(G) are said to be equivalent if 
there exists an isomorphism a:L—*M of L onto M such that /x ° a = X 
and we write (L, X) ~ (M, ji). Clearly ~ is an equivalence relation on 
C(G). 

If the covering groups of G are all equivalent, then we say that G 
has a unique covering group and any one of these will be denoted by 
Ù. We say that G is centrally closed if C(G) has precisely one ~ -
equivalence class for which, of course, (G, 1G) is a representative. 

PROPOSITION 2.3. If G has a unique covering group (Ù, a) then for 
every r G Aut (G) there exists r E Aut (Ù) such that a ° r = r ° a. 

PROOF. See Corollary 2.1, [5]. 

PROPOSITION 2.4. Let G be a group such that |G/G'| and \M(G)\ are 
relatively prime. Then G has a unique covering group and any covering 
group of G is centrally closed. 

PROOF. See Theorem (3), [5]. 

PROPOSITION 2.5. Suppose A is an abelian group and Z(Aut A) = Z. 
(a) If \Z\ — 1, then A is an elementary abelian 2-group. 
(b) If Z « C2, then <n(A) C {2, 3}. 77ie Syhw 3-subgroup of A has 

exponent at most 3 and the Sylow 2-subgroup of A has exponent at 
most 4. 
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(c) If Z œ C4, then 77(A) C {2, 5}. If 5 G 77(A), then the exponent of 
the Sylow 5-subgroup of A is 5 and that of the Sylow 2-suhgroup of A 
is at most 2. If 5 £jî 77(A) then the Sylow 2-suhgroup of A has exponent 
at most 4. 

PROOF, (a) and (b) are trivial and we proceed to prove (c). Clearly 
the only primes that may divide \A\ are 2, 3 and 5. Thus 77(A) C (2, 3, 
5}. Let Ap denote the Sylow p-subgroup of A for any prime p. 

If 5 G 77(A), then Z(Aut (A5)) is at least of order 4. Hence 3 $ 77(A) 
and Z(Aut (A2)) must be trivial. So exp (A2) ^ 2. 

If 5 $ 77(A), suppose 3 G 77(A). If exp (A3) > 3, then Z(Aut (A3)) has 
order greater than 4. Hence exp (A3) = 3. Then Z(Aut (A3)) œ C2. Since 
Z(Aut A) « Z(Aut A2) X Z(Aut A3) and since C4 is indecomposable, we 
conclude 3 $ 77(A). Thus A is a 2-group. If exp (A) ^ 8, then Z(Aut (A)) 
would contain a subgroup isomorphic to C2 X C2. So exp (A) ^ 4. 

This proves the result. 

PROPOSITION 2.6. If X is a finite group and Aut (X) « S3, fhen 
X « C2 X C2 or S3, while if Aut (X) « S4 fnen X « Ç, A4, A4 X C2, 
SL(2, 3) or S4. 

PROOF. See page 39, [10]. 

PROPOSITION 2.7. Suppose Aut (X) « Cn for some n. Then 
(a) n = 1 and X « {1} or C2 

(b) n = 2 and X œ C3, C4 or C6 or 
(c) n = pa~\p — 1) /or some odd prime p and X « Cp«. 

PROOF. See Theorem IV, [10]. 

PROPOSITION 2.8. If Z(G) = 1, tfien AC(G) = 1. 

PROOF. This is a well-known result. 

PROPOSITION 2.9. If p2 | \G\ for some prime p, then p | |Aut (G)|. 

PROOF. See [7]. 

THEOREM 2.10. If G is a finite group whose order is divisible by 
p(Ä2-/i+6)/2 j o r some prime p, then ph divides the order of Aut (G). 

PROOF. See Theorem 4.7, [9]. 

PROPOSITION 2.11. Let ß : N -+ N be defined by ß(H) = 
(h2 + h + 6)/2. Then /or ant/ /infte group G, |Aut (G)|p = ph implies 
that \G\p < pW\ 

PROOF. This is a direct consequence of (2.10). 



656 H. K. IYER 

THEOREM 2.12. If G is a FN-group, then \AC(G)\ = |Hom (G/Gf, Z(G)|. 
In particular, if G is a PN-group, then G has a nontrivial central auto
morphism iff (|G/G'|, |Z(G)|) > 1. 

PROOF. See Theorem 1 and Corollary 1, [1], 

PROPOSITION 2.13. If A, B are abelian p-groups for some prime p, then 
|Hom(A,B)| ë m i n ( | A | , |B|). 

PROOF. See Lemma 2.3, [9]. 

PROPOSITION 2.14. If G is a p-group of class 2 for some prime p, then 
\G\ divides |Aut(G)|. 

PROOF. See [3]. 

PROPOSITION 2.15. Suppose G is a finite group and H is a character
istic subgroup of G with CG(H) = 1. Let 6 : G —• Aut H be defined by 
W » ) = ghg-1 where g G G, h G H. Then Aut (G) - NAut{H)($(G)). 

PROOF. 0 is clearly a monomorphism. The map a : Aut (G) —* Aut (H) 
defined by a{f) = f\H, where / G Aut (G), is a group homomorphism. 
Suppose K = Ker a. Clearly K H Inn (G) = 1. So K Q AC(G). However, 
since Z(G) = 1, AC(G) = 1 and so K = 1. Thus a is a monomorphism. 
It is easily verified that a(Aut (G)) = NAut(H)(0(G)). Hence the result. 

PROPOSITION 2.16. Suppose A is a characteristic subgroup of G con
tained in Z(G) and that ( |G/G'|, \A\) = 1. Let T J : G — • # be an epi-
morphism with Ker TJ = A. Then there exists a monomorphsim 
Q : Aut G — Aut (H) such that 17 ° a = 0(a) ° -q for a G Aut (G). 

PROOF. Define 6 : Aut G — Aut (H) by 0(a)(rf(g)) = i?(a(g)) for 
a G Aut G, g ^ G. Clearly 0 is a well-defined homomorphism and 
rj° a = ö(a) ° 17. 

Suppose a G Ker 0. Then 0(a) (17(g)) = 17(g) for every g G G. Thus 
^Mg)) = Vie) f ° r all g G G and so g_1a(g) G Ker 17 = A for every 
g G G. 

Define r : G —* A by r(g) = g_1«(g) for g G E. Clearly T is a group 
homomorphism. Since A is abelian, KerT D G'. But (|G/G'|, \A\) = 1, 
so Ker T = G. Hence a(g) = g for ail g G G. So Ker 0 — \ and the re
sult follows. 

PROPOSITION 2.17. Let H be a finite group and A be a cyclic group of 
order 2. Then Aut (H X A) - Aut (if) f// |H/H' | and |Z(fl)| are foofh 
odd. 

PROOF. Elementary. 
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PROPOSITION 2.18. Suppose G is a group and x, y E Inn (G) such that 
the order of y is pa for some prime p and yx = yk for some integer k. If 
k ^ 1 (modp) then there exists g E G such that g induces y by con
jugation and the order of g is pa. 

PROOF. See Theorem VI, [10]. 

PROPOSITION 2.19. Let A be an abelian p-group with a basis con
sisting of ni generators of order p%, 1 ̂  i ^ k. Then Aut (A) has an ele
mentary abelian p-subgroup of rank (nx + n2 + • • • + nk)(n2 + 
n3 + * * ' + nk)-

PROOF. See Satz 113, [12]. 

PROPOSITION 2.20. If G is a group, x is a nonidentity element of G and 
S is a generating subset of G such that if y E S then x E (y), then 
there does not exist a group X such that X/Z(X) œ G. 

PROOF. See (3.2.10), [11]. 

THEOREM 2.21. (GASCHUTZ). Suppose A is an abelian normal subgroup 
of G with exp (A) = k and U is a subgroup of G such that (|G : U\,k) 
= 1 then A has a complement in G if it has a complement in U. 

PROOF. See I, 17.4, [8]. 

PROPOSITION 2.22. Suppose A is an abelian group. Then Aut (A) is 
abelian when A is cyclic and is nonabelian when A is noncyclic. 

PROOF. See Theorem III, [10]. 

THEOREM 3.1. If G is a given finite group then there are at most 
finitely many finite groups X such that Aut (X) ~ G. 

PROOF. Let 

770 = {p E 7T\p\ |G|) , ^ = TT(G) and 

TT2 = {p Œ 7T|(p - 1)| |G |} . 

For each p E 7T1, let \G\p — php. By (2.11) there exists a function 
ß:N-^N such that \G\p = ph implies that |X|p < pß{h). 

Suppose p E 7T0 and that p\ |X|. By (2.9) it follows that p2\ |X|. 
Moreover p\ |InnX|. Hence p \ |Z(X)|. Therefore there is a subgroup Y 
of X and a cyclic subgroup Cp of X such that X = Y X Cp. Hence 
(p - 1) | \G\. SO 77(X) n 770 Ç 7T2. 

Now 

IXI= n IXIP= ( n IXI„) • ( n w , ) 
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= ( n P) ( n IXI,)) 

^ ( np) • (n\x\g) 

< ( n p) • ( I l q**J ) = 11(G), say. 

Thus |X| < jLt(G), a positive integer completely determined by the 
group G. Hence the theorem follows. 

NOTE. The author wishes to thank Professor F. I. Gross for the above 
proof. 

DEFINITION 3.2. A finite group G is said to have property (P) if 
\G\ > 1 and whenever 1 ¥* N < G, we have CG(N) = 1. 

PROPOSITION 3.3. A finite group G has property (P) if and only if G 
has a unique minimal normal subgroup N which is nonabelian. 

PROOF. Elementary. 

DEFINITION 3.4. If G is a group with property (P), then its unique 
minimal normal subgroup is denoted by P(G). 

Clearly P(G) is characteristically simple and so P(G) œ 
M1 X M2 X • * * X Mk where Mv M2, • • -, Mk are all isomorphic to a 
nonabelian simple group M. 

PROPOSITION 3.5. Let G have property (P). Suppose 
P(G) = N = M1 X M2 x • * * X Mk where for each i, M{œ M, a non
abelian simple group. Let 0 : G —• Aut (N) be the homomorphism defined 
by 0(g)(x) = gxg'1 for g G G and x G 2V. Then 

(a) Inn (N) ^ 0(G) ^ Aut (N) 
(b) 0(G) has property (P) and P(0(G)) = 6(P(G)). 
(c) 6(G) acts transitively on the set {0(M1)y 0(M2), • -, 0(Mk)} by con

jugation. 

PROOF. Clearly 0 is a monomorphism and 0(N) = Inn (N). Now (a) 
and (b) follow. G acts on (M1? M2, • •-, Mk} transitively by con
jugation. Hence (c) follows. 

PROPOSITION 3.6. Let N = Mxx M2 x • • • X Mkwhere Mv M2, 
Mk are all isomorphic to a nonabelian simple group M. Let 
0 : N—» Aut AT be the monomorphism defined by 0(x)(y) = xyx'1 for x, 
y G N. Suppose G is a finite group such that Inn (N) ^ G ^ Aut (N). 
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Then G has property (P) if and only if G acts transitively on {d(Mx)9 

9(M2), • -, 0(Mk)} by conjugation. 

PROOF. Suppose G has property (P). G acts on {0(M^)9 0(M2), • •-, 
0(Mk)} by conjugation. If the action is not transitive, let {0(Mi ), 0(Mi ), 
• • -, 0(Mif)} be an orbit where 1 ^ i1 < i2 < • • • < ir ^ n and r < k. 
Let K = x£ = 1 0(Mis). Clearly then CG(fl) > 1 which contradicts the fact 
that 1 ¥= R <l G. SÔ G acts transitively on {»(MJ, 0(M2), • • -, 0(Mk)}. 

Conversely, suppose G acts transitively on (Ô(M1), 0(M2), • • -, 0(Mfc)}. 
Then 0(N) must be a minimal normal subgroup of G. Let R be any 
nontrivial normal subgroup of G. Then R Pi 0(N) = 1 or 0(N). If 
ß PI 0(N) = 1 then R C CG(0(N)) and so A^N) # 1. This is a con
tradiction since Z(N) = 1. Thus R D 0(N). So 6(N) = Inn (2V) is the 
unique minimal normal subgroup of G and is nonabelian. So G has 
property (P), by (3.3). 

THEOREM 3.7. Suppose G has property (P) and X is a finite group 
such that Aut (X) ~ G. 77ien one of the following holds: 

(a) X is an elementary abelian 2-group of order at least 8 and 
G ~ GL(n, 2) for some n ^ 3. 

(b) (X, 0X) G C(N) for some nontrivial normal subgroup N of G. 
(c) X ~ R X C2 where (R, 0R) G C(N) /or some nontrivial normal sub

group N of G. Moreover |Z(R)|, |Ä/Ä'| are both odd. 

PROOF. If X is abelian, then by (2.5) it is an elementary abelian 2-
group. Clearly then |X| ^ 8 and G ~ GL(n, 2) for some n ^ 3. 

Suppose X is nonabelian. Let X =z Y X A where Y is a PAT-group and 
A is abelian. Since AC(X) is trivial, it follows from Remak-Krull-Schmidt 
theorem that Y and A are characteristic in X. So Aut (X) ^ Aut (Y) x 
Aut (A). Hence Aut (Y) = G and Aut (A) = 1, giving A ^ 1 or C2. 
Now Y/Z(Y) is isomorphic to a normal subgroup N of G. If Y' Ij) Z(Y), 
then (|Y/Y'|, |Z(Y)|) > 1. So AC(Y) > 1 by (2.12). This is impossible and 
so Y' D Z(Y). Let 0: Y - ^ N be an epimorphism with Ker0 = Z(Y). 
Hence (Y, 0) G C(N). Hence X = Y or Y X C2, with Aut (Y) - G. How
ever Aut(Y X C2) is isomorphic to G iff |Z(Y)|, |Y/Y'| are both odd, by 
(2.17). Hence the result follows. 

REMARK 3.8. Given a group G with property (P), the above result 
provides a "criterion for actually determining all groups X with 
Aut (X) ^ G, by examining a finite number of possibilities, viz by exam-
ning the set of groups (X | (X, 0X) G C(N), for some N <l G, N =t 1). 

PROPOSITION 3.9. Le£ G be a finite group such that |G/G'| and \M(G)\ 
are relatively prime. Let (Ù, 0) be the unique covering group of G. Let B 
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be a finite group such that (Ù, 17) G C(B). Suppose Ker rj, Ker 6 are char
acteristic in Ù and Ker TJ Q Ker 0. Then Aut (B) ~ Aut (G). 

PROOF. Let X: B —• G be the homomorphism such that X ° TJ = 0. 
Thus Ker À = TJ (Ker 0). By (2.16) there exist monomorphisms 
rx : Aut (Ù) -» Aut (G), T2 : Aut (Ù) -> Aut (B) and T3 : Aut (B) — Aut (G), 
such that for a G Aut (G), ß G Aut (B) we have 0° a = r^a) ° 0, TJ ° a 
— T2(a) ° TJ and X° ß = r3(ß) ° À. But by (2.3) TX is also surjective. 
Hence Aut (G) ~ Aut (£). 

COROLLARY 3.10. Let G be a nonabelian simple group and Ù its 
unique covering group. Then Aut (Ù) ̂  Aut (G). 

THEOREM 3.11. Let G be a nonabelian simple group and Aut(X) ~ G. 
Then one of the following holds. 

(a) X is an elementary abelian 2-group of order greater than 4 and 
G ~ GL(n, 2) for some n ^ 3. 

(b) X ^ X0 or Xj X C2 where X0 is a factor group of G by a central 
subgroup and X1 is a factor group of G by a central subgroup contain
ing the Sylow 2-subgroup of Z(G). 

PROOF. Immediate consequence of Theorem 3.7, and Proposition 
2.17. We point out that the converse holds also. 

PROPOSITION 3.12. Let G be a nonabelian simple group and 
|M(G)| > 1. Let Ù be its unique covering group. Suppose X is a finite 
group such that Aut (X) ~ C. Then X — S X T where \S\ = 1 or 2 and 
T is a p-group of class at most 2 for some prime p. 

PROOF. If X is abelian, then the result follows from the in-
decomposability of Ù. Suppose X is nonabelian. Then X/Z(X) is isomor
phic to Ù or to subgroup of Ù contained in Z(Ù). If X/Z(X) ~ Ô, then 
by (2.4), Z(X) = 1 and so X ~ Ù. But then Z(G) = 1, a contradiction. 
Thus X/Z(X) is isomorphic to a central subgroup of Ù and so X is nil-
potent of class-2. Once again, since Ù is indecomposable, X = S X T 
with |S| = 2 and T a p-group of class-2 for some prime p. 

REMARKS 4.1. The following facts are well known: 
(a) M(Sn) ~ C2 for n i= 4. S6 has a unique covering group S6 while 

Sn has two covering groups Tn and Tn* when n â 4, n ¥= 6. 
(b) M(An) ~ C2 torn ^ 4, n ¥= 6, 7. M(A6) ~ M(A7) - C6. 
(c) A4 has SL(2, 3) as its unique covering group. 
(d) GL(m, 2) ~ An(n ^ 3) iff m = 4 and n = 8. 
(e) GL(m, 2) ^ Sw(n ^ 3) iff m = 2 and n = 3. 
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THEOREM 4.2. Suppose X is a finite group such that Aut (X) ~ An for 
some n E N. Then one of the following holds: 

(a) X ~ C2 and Aut (X) ~A1~A2~ {1}. 
(b) X - C2 X C2 X C2X C2 and Aut (X) - A8. 

PROOF, (a) is trivial. So we may assume n i^ 3. Since A3 ~ C3, it fol
lows from (2.7) that there is no group X such that Aut (X) ~ A3. 

Suppose n = 4 and X is abelian. Then by (2.5) X is an elementary 
abelian 2-group, which is impossible by (4.1)(d). Thus X is nonabelian. 
If X/Z(X) ~ A4 then AC(X) = 1. Let X = Y x A where Y is a PN-group 
and A is abelian. Then Inn(Y) — Aut (Y) — A4. Also AC(Y) = 1. So 
Y D Z(Y) and by (4.1) Y - A4 or SL(2, 3). In either case Aut (Y) ^ A 4 . 
So X/Z(X) must be isomorphic to C2 X C2. Then X is nilpotent of class 
2 and the indecomposability of A4 implies that X is a 2-group. Then by 
(2.14) it follows that |X| = 4 which is impossible. 

Suppose n ^ 5. If X is abelian it must be an elementary abelian 2-
group. So by (4.1)(d) we obtain that X ~ C2 X C2 X C2 X C2 and 
Aut(X) ~ GL(4, 2) ~ A8. If X is nonabelian, Theorem 3.11 says that X 
is isomorphic to An, An or An X C2. This is impossible since everyone 
of these groups have Sn as their group of automorphisms when n ¥= 6 
and Aut (S6) as their automorphism group when n = 6. 

Hence the theorem is proved. 

PROPOSITION 4.3. Let n i^ 5 and R a covering group of Sn. Then 
Aut (R) ^ Sn X C2 if n ¥=6. If n = 6, Aut (R) has a subgroup X of in
dex 2 where X ^ S 6 X C2. 

PROOF. Let a : fi —» Sn be the epimorphism x —• xZ(R)(x E fi). Define 
0 : Aut (fi) — Aut (SJ by 0(f){a(x)) = «(/*(*)) for x E fi and / E Aut (fi). 
Clearly 6 is a homomorphism. When n = 5, n ¥* 6, 
Aut (Sn) ^ Inn (Sw) ^ Sn and since Inn (R) ~ Sn, we conclude that 0 is 
an epimorphism. The same conclusion holds when n = 6 in view of 
(2.3) and (4.1)(a). Let K = Ker0. It is easily seen that K = Ac(R). 
Clearly fi is a PN-group and so |Ac(fi)| = |Hom (fi/fir, Z(fi))|. Since 
Z(fi) ~ C2 and |fi/fi'| = 2, it follows that K ^ C2. We also observe 
that K PI Inn (R) = 1, so that Aut (R) ^ K X Inn (fi). A consideration 
of orders shows that Aut (fi) = K X Inn (fi) when n # 6 and when 
n = 6, K X Inn (fi) has index 2 in Aut (fi). The result now follows. 

THEOREM 4.4. Suppose Aut (X) ~ Sn for some n E A/ and some /fnite 
group X. Then one of the following holds. 

(a) n = 1 and X cz 1 or C2. 
(b) n = 2 and X ^ C3, C4 or C6. 
(c) n = 3 and X ^ C2 X C2 or S3. 
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(d) n = 4 and X ~ Ç>, A4, A4 X C2, SL(2, 3) or S4. 
(e) n - 7 and X ~ B0, ^ X C2 or S7 u^ere (B0, T/0) G C(A7) and 

(ß15 TJJ G C(A7) u;tth IKerryJ = 1 or 3. 
(f) n ^ 5, n ^ 6, 7 and X ~ An, An X C2, Ân or Sn. 

Moreover each of the above possibilities for X does give a group where 
automorphism group is actually Sn for appropriate n. 

PROOF. The case n = 1 and n = 2 are trivial. 
The case n = 3 and n = 4 have been discussed by G. A. Miller. See 

(2.6). 
Suppose n i^ 5. Then Sn has property (P). Now the result follows 

from theorem (3.7), Proposition (4.3), Proposition (2.17) and the fact 
that Aut (S6) <£ S6. 

5.1. Dihedral, Dicyclic and Quasidihedral groups. The dihedral group 
D(2n) of order 2n is the group (x, y | x2 = yn — 1, yx = t/_1>. Clearly 
D(2) ~ C2 and D(4) - C2 X C2 and D(2n) is nonabelian when n ^ 3. 

The dicyclic group DC(4n) of order 4n is the group {x, y\x* — 
y2n = 1, x2 = t/w, t/* = y-1). Clearly DC(4) ^ C4, DC(8) ^ Ç and 
DC(4n) is nonabelian when n i^ 2. 

The quasidihedral group Ç>D(8n) of order 8n is the group (*, y\x2 — 
y4n = 1, t/* = t/2""1). ÇD(8) — C4 X C2 while Ç>D(8n) is nonabelian 
when n i? 2. 

5.2. Some Properties of the dihedral groups. The following facts 
about the dihedral groups D(2n), n ^ 3, are well known. 

(a) Suppose n is odd. Then Z(D(2n)) = 1. The only noncyclic normal 
subgroup of D(2n) is itself. D(2n) is indecomposable. The 2-rank of 
D(2n) is 1. M(D(2n)) is trivial. 

(b) Suppose (n, 4) = 2. Then Z(D(2n)) ~ C2. The only proper non-
cyclic normal subgroups of D(2n) are isomorphic to D(n) and their cen-
tralizer in D(2n) is Z(D(2n)). D(2n) is decomposable and we have 
D(2n) ^ D(n) x C2. The 2-rank of D(2n) is 1. M(D(2n)) ~ C2 and D(2n) 
has two covering groups isomorphic to D(4n) and DC(4n) respectively. 

(c) Suppose 4 | n. Then Z(D(2n)) ~ C2 If X is a noncyclic proper nor
mal subgroup of D(2n) then X ~ D(n) and the centralizer of X in D(2n) 
is Z(D(2n)). D(2n) is indecomposable and has 2-rank 2. M(D(2n)) ~ C2 

and it has three covering groups isomorphic to D(4n), DC(4n) and 
QD(4n) respectively. 

(d) If n ^ 3, |Aut (£>(2n))| = ruj>(n) where <£ is the Euler phi-function. 

5.3. Dicyclic groups. The following properties of the dicyclic groups 
DC(4n) (n ^ 3) are easily verified. 
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(a) Z(DC(4n)) ^ C2. It is indecomposable. When n is odd, DC(4n) has 
no noncyclic proper normal subgroups. If n is even and X is a proper 
normal subgroup of DC(4n) then X ~ DC(2n) and the centralizer of X 
in DC(4n) is Z(DC(4n)). The dicyclic groups have 2-rank 1. 

(b) |Aut (DC(4n))| = 2n<f>(2n) when n ^ 3, while Aut Q ~ S4. 

5.4. Quasidihedral groups. The following properties of the quasi-
dihedral groups QD(Sn) are easily verified to be true for n ^ 3. 

(a) Suppose n is odd. Then Z(QD(8n)) ^ C4. We have the decomposi
tion QD(8n) ~ D(2n) X C4. If X is a proper normal subgroup of 
QD(Sn) which is noncyclic then X ~ D(2n), D(4n) or DC(4n) and the 
centralizer of X in QD(Sn) is Z(QD(8n). The 2-rank of QD(Sn) is 2. 

(b) Suppose n is even. Then Z(Ç>D(8n)) ~ C2. QD(8n) is in
decomposable. If X is a noncyclic proper normal subgroup of QD(Sn) 
then X is isomorphic to D(4n) or DC(4n) and is centralizer in QD(8n) is 
Z(QD(Sn)). QD(8n) has 2-rank 2. 

(c) |Aut(ÇD(8n))| = 2n <J>(4n) for n ^ 2. 

LEMMA 5.5. Suppose p is a prime and m, n G N. Then 

(a) GL(m, p) - D(2n) <^> (m, n, p) = (2, 3, 2) or (1, 1, 3). 
(b) Gi(m, p) ~ DC(4n) <^> (m, n, p) = (1, 1, 5). 
(c) GL(m, p) ^ QD(Sn) for any m, n, p. 

PROOF. These facts can be easily verified. 

LEMMA 5.6. Suppose X is a PN-group and X/Z(X) ~ D(2n), n ^ 3. 
Then Z(X) is a 2-group. If AC(X) — 1, fhen n is odd and Z(X) is trivial. 
If AC(X) ~ C2, fhen n is odd and X ~ DC(4n). 

Moreover AC(X) cannot be isomorphic to C4. 

PROOF. Let n = 2ro • m, m odd. Let Z(X) C K ç H Ç X be sub
groups of X such that |X : H| = 2 and |K : Z(X)| = m. Let 
- : X —* X/Z(X) be the canonical epimorphism. Let x G X — H. Let p 
be a prime dividing m and t/p G K such that (yp) is a Sylow p-sub-
group of K. Since X — D(2n) we have y~x = i/p"1. By (2.18) there exists 
gp G K such that gp = yp and o(gp) = o(yp). Let g = ü ^ ^ g p . Then 
o(g) = m and K = (g) X Z(X). If p is an odd prime and P the Sylow p-
subgroup of Z(X), then by (2.21) P would be a direct factor of X. Since 
X is a PN-group \P\ = 1. Thus Z(X) is a 2-group. 

(a) Suppose AC(X) = 1. Since |X/X'| ^ 2, it follows from (2.12) that 
Z(X) = 1. Thus X ~ D(2n). So n must be odd. 

(b) Suppose AC(X) ~ C2. If n is even, |X/X'| ^ 4 and X/Xf has 2-rank 
at least 2. Moreover |Z(X)| > 1. This implies |AC(X)| ^ 4, a con
tradiction. Hence n is odd. If X' D Z(X) then by (5.2(a)) Z(X) = 1 
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which is not possible. So X' I}) Z(X). Hence |X/X'| ^ 4 and therefore 
|Z(X)| = 2. This implies that X' D Z(X) = 1 and |X/X'| = 4. If X/X' is 
elementary abelian, then |AC(X)| = 4 by (2.12). Therefore X/X' is cyclic. 
Hence there exists x G X — H such that x2 G Z(X) and o(x) = 4. In this 
case we have H — K and so H = (g) X (x2) — C2n. Clearly gx = g_ 1 

and hence X ~ DC(4n). But then AC(X) ~ C2X C2 when n is even and 
AC(X) ~ C2 when n is odd. Hence X ~ DC(4n) with n odd. 

(c) Suppose AC(X) - C4. Suppose n is odd. Then X' $ Z(X). 
X'Z(X) = H. If |X/X'| = 2 r then |Z(X)| ^ 2 r " 1 . Now 
4 = |AC(X)| ^ min(|X/X'|, |Z(X)|) ^ 2 r"1. It follows now that r = 2 or 
3. 

Suppose r = 3. Then |H/X'| = 4. Hence |Z(X)| ^ 4. But 
|Z(X)| > 4=> |AC(X)| > 4 by (2.13). Hence |Z(X)| = 4. Therefore 
X' H Z(X) = 1. If X/X' is cyclic, then Z(X) is cyclic. Moreover there 
exists x G X — H such that x2 is a generator for Z(X). Also 
H = <g> X <*2>. Clearly g* = g"1 and so X = <g, x \ gn = Xs = 1, 
g* = g"1). For i = 1, 2, 3, 4 define a, : X - * X by a^g*) = tf*2*-1^. 
It can be verified that AC(X) = (a1? a2, a3, a4} and that 
AC(X) ~ C2 X C2. Hence X/X' has 2-rank 2. However Z(X) is again 
cyclic. Hence there exists x G X — H such that x2 = 1. Also g* = g_ 1 

as before and hence X ~ D(2n) X C4 which is a contradiction. 
So r = 2. Therefore |X/X'| = 4 and |Z(x) : Z(X) H X'| = 2. Clearly 

H = (g)Z(X). Let x G X — H. Every element f of X can be expressed 
as t = x1 gj z where O ^ i ^ l , O ^ / i w - 1 and z G Z(X). It is easily 
verified that [xiigiiz1, x ^ g ^ ] G (g) , so that X' Ç (g) . Hence 
X' H Z(X) = 1 and so |Z(X)| = 2. Then X/X' must be elementary abe
lian. So x2 — 1 and thus X ~ D(2n) X C2 which is impossible. Hence n 
must be even. Clearly X/X' has 2-rank at least 2. Suppose X' Ij) Z(X). 
Then it is easily seen that |Z(X)| = 2, X' n Z(X) = 1 and 
X/X' ~ C4 X C2. Let y G H such that (t/) is the Sylow 2-subgroup of 
H so that H - (y) x <g>. Since n = 2ro • m, o(y) = 2ro. So o(y) = 2ro 
or 2ro+1, r0 ^ 1. Also since yx = y'1 for any x G X — H, it follows that 
yx = y-1 or t/_1z where Z(X) = (*). Suppose o(y) = 2ro+1. Then 
y2r° = z. Now yx — y-1 implies that y2 G X' and hënce z G Xf which is 
false. If yx = t/"1* then [x, y] = i/2* = (t^p-i+i) G ^ H e n c e if ^ > x 

t/2 E X' implying again that z G X', so r0 = 1 in which case [x, t/] = 1. 
But then X = (g, x) X (y) since 0(x) = 2 in this case. This is impos
sible as X is a /W-group. So o(y) — 2\ and H = (g) X (y) X (z). 
Since X/X' ~ C4 X C2, there exists x E X - i / such that x2 = z. How
ever y2 G X'. So yx = t/_1z implies that [x, y] = t/2z E X' and hence 
z G X'. However z $ X' and hence t/* = t/_1. Let h — gy so that 
o(fr) = 2ro • m = n and H = (h) X (z). Moreover fe* = Jr-1. Let /iV be 
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an arbitrary element of X and av o2, a3, a4 be maps defined by 
a^hV) = nV, G^WX*) = h\xxY, a3(hV) = (hzfxj and a4(ftV) = 
(hz)\xzy. It is easily verified that AC(X) = (a1? a2, a3, a4) and that 
AC(X) — C2 X C2. This is a contradiction and hence we must conclude 
that X' D Z(X). Hence by (5.2) it follows that X ~ D(4n), DC(4n) or 
ÇD(4n) if 4 | n while if 4 \ n, X ~ D(4n) or DC(4n). In every case how-
everA c(X)^C4 . 

LEMMA 5.7. Let n E N. 

(a) There is no finite group X such that X/Z(X) ~ DC(4n). 
(b) There is no /inife group X such that X/Z(X) ~ QD(8n). 

PROOF. 

(a) DC(4n) = (x,y \ x4 = y2n = 1, x2 = t/n, y* = t/"1). Let n > 1. 
Hence if z — x2, we have a generating set S = (x, y} for DC(4n) such 
that z E <x) and z E <y>. So by (2.20) the result follows. If n = 1, the 
result is trivial. 

(b) QD(Sn) = (x, t/1 x2 = y4n = 1, t/* = t/2""1). We observe that 
(xy)2 = t/2n and that {xy, y) is a generating set for QD(8n). Hence the 
result follows by (2.20). 

LEMMA 5.8. Suppose X is an abelian 2-group of order greater than 1 
and exponent at most 4. Let r = 2-rank of Aut (X). Then 

(a) r = 1=> ~ C 4 . 
(b) r = 2^> ~ C 2 X C4or C4. 

PROOF. Let X have a basis consisting of nx elements of order 2 and 
n2 elements of order 4. Then Aut (X) has an elementary abelian 2-sub-
group of order 2(ni+n2)n2 by (2.19). If r = 1, then (r^ + n2)n2 ^ 1 which 
implies that nx — 0 and n2 = 1 giving X ~ C4. If r = 2, then 
(rij + n2)n2 ^ 2 so that n1 = n2 = 1 or nx — 0, n2 = 1. So 
X - C2 X C4 or C4. 

PROPOSITION 6.1. The following list gives all finite abelian groups X 
such that Aut (X) ~ D(2n) for some n E N. 

(a) X - C3, C4 or C6 and Aut (X) ~ C2 c^ D(2). 
(b) X - C8 or C4 X C3 and Aut (X) ~CcxC2~ D(4). 
(c) X~C2xC2 and Aut (X) — D(6) — S3. 
(d) X - C2 X C4 and Aut (X) - D(8). 
(e) X~C2xC2xC3 and Aut (X) ~ D(12). 

PROOF. It is easily verified that if Aut (X) ~ D(2n) and n = 1 then 
X ~ C3, C4 or C6 and that if n = 2 then X ~ C8 or C4 X C3. So let us 
suppose that n i^ 3. 

If n is odd then Z(D(2n)) = 1 and so X is an elementary abelian 2-
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group by (2.5). So Aut (X) ~ GL(m, 2) for some m G N. Hence, by (5.6) 
we must have n = 3 so that X ~ D(6). 

Suppose (n, 4) = 2. Then D(2n) ~ D(n) X C2, and Z(D(2n)) ~ C2. By 
(2.5) TT(X) Q {2, 3}. If X is a 3-group then it must be elementary abe
lian so that GL(m, 3) ^ D(2n) for some m G N. This is not possible 
since n ^ 3. If X is a 2-group then again by (2.5) exp (X) ^ 4. So by 
(5.8) X ~ C4 or C2 X C4 and it may be verified that both cases are not 
possible under our current assumptions. 

Thus X cannot be a p-group. Hence X = S X T where S is a 2-group 
with |S| > 2 and T a 3-group of order at least 3 and exponent 3. So 
Aut (X) ~ Aut (S) X Aut (T). Since Aut (T) cannot be isomorphic to D(n) 
by the first part, we must have Aut (S) ~ D(n) and Aut (T) ~ C2. It fol
lows that S~C2xC2 and T ^ C3 so that X ~ C2 X C2 X C3 and it is 
easily verified that Aut (X) ~ D(12). 

Suppose 41 n. Then D(2n) is indecomposable and Z(D(2n)) ^ C2. 
Again by (2.5) w(X) Ç (2, 3}. Clearly X cannot be a 3-group. If X is a 
2-group then by (5.8) X ~ C4 or C2 X C4. It is easily verified that 
Aut (C2 X C4) ^ D(8). If X = S X T where S is a 2-group and T a 3-
group it follows from the indecomposability of D(2n) that |S| ^ 2 and 
Aut (T) ~ D(2n). However we have already seen that this is not pos
sible. 

Hence the proposition is proved. 

PROPOSITION 6.2. The following list gives all nonabelian finite groups 
X such that Aut (X) ~ D(2n) for some n E N. 

(a) X ~ D(6) and Aut (X) ~ D(6). 
(b) X ~ C8 or C4 X C3 and Aut (X) ~CcxC2~ D(4). 
(c) X - D(12) and Aut (X) - D(12). 
(d) X ~ D(6) X C3 and Aut (X) ~ D(12). 
(e) X - D(8) and Aut (X) - D(8). 

PROOF. Clearly n > 1. If n = 2, it is easily seen that X must be a 2-
group of class 2 and hence |X| divides 4 (by (2.14)). So n > 2. 

Suppose n is odd and X is a PAf-group. Clearly X/Z(X) ~ D(2n). So 
AC(X) = 1. By (5.6) it follows that Z(X) = 1 . So X - D(2n). Hence 
|AutX| = n <£(n) = 2n. Thus </>(n) =-2 and so n = 3, 4 or 6. Since n is 
odd, n = 3. In fact, Aut (D(6)) - D(6). If X is not a PN-group then 
X = Y X A where Y is a PAf-group and A is abelian. It follows that 
Inn ( Y) ~ Aut (Y) - D(2n) and that Aut (A) = 1. Hence X ~ D(6) or 
D(6) X C2. However Aut (D(6) X C2) is isomorphic to D(12) and so 
X ~ D(6) is the only possibility satisfying the current hypothesis. 
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Suppose now that (n, 4) = 2 so that n = 2n0, n0 odd. Clearly 
X/Z(X) ~ D(2n0) or D(2n). Suppose X/Z(X) - D(2n0) and that X is a 
PAT-group. It follows from (5.6) that X ~ DC(4n0), since |AC(X)| = 2. 
Thus |Aut(X)| = 2n0 <f>(2n0) = 4n0 so that <#2no) = 2. Hence 2n03, 4, 
or 6 yielding n0 = 3 since it is odd. So X ~ DC( 12) and it is easily ver
ified that Aut(X) ~ 0(12) in this case. Suppose X = Y x A where Y is 
a PN-group and A is abelian. Then Inn (Y) ~ £)(2n0) and 
Aut(Y) ~ D(2n0) or D(2n), since Aut(X) must contain a subgroup iso
morphic to Aut(Y). If Inn (Y) — Aut (Y) =- D(2n0) then from what has 
already been established it follows that n0 = 3 and Y ~ 0(6). Moreover 
| Aut (A) | ^ 2 and so A ^ 1, C2, C3, C4 or C6. It is easily verified that 
X ~ D(6) X C2 or D(6) X C3 and in each case Aut (X) ~ D(12). Note 
that there is no PAf-group Y with Inn (Y) ~ D(2n0) and 
Aut(Y)~D(2n). 

Suppose now that n > 4 and 4 | n. Again X/Z(X) ~ D(2n) or D(n) 
and in either case |AC(X)| = 2. By (5.6) it follows that both possibilities 
cannot occur if X is a PN-group. So suppose X = Y x A where Y is a 
PN-group and A is abelian. If Inn(X) ~ D(n) then Inn (Y) ~ D(n) and 
Aut(Y)~D(n) or D(2n). Neither case can occur, as has already been 
established. If Inn (X) ~ D(2n) then Inn (Y) — Aut (Y) — D(2n) which is 
again impossible. Thus 4 | n implies n = 4. 

So suppose that Aut (X) ~ D(8). By (5.6) this is impossible if 
Inn (X) ^ D(8) when X is a PiV-group. The same conclusion can be es
tablished even if X is not a PN-group, in the usual way. Hence 
Inn (X) ~ C2 X C2 so that X is nilpotent of class 2. The in-
decomposability of D(8) implies that X is a 2-group. Hence by (2.14) |X| 
divides 8. The only possibility is therefore |X| = 8 so that X ~ D(8) or 
Ç. Since Aut (D(8)) ^ D(8) and Aut (Ç>) ̂  S4, X must be isomorphic to 
D(8) in this case. 

Hence the proposition has been proved. 

THEOREM 6.3. The following list gives all finite groups X such that 
Aut (X) ~ D(2n) for some n G N. 

(a) X ~ C3, C4 or C6 and Aut (X) ~ D(2). 
(b) X - C8 or C12 and Aut (X) ~ D(4). 
(c) X ~ C2 X C2 or D(6) and Aut (X) - D(6). 
(d) X - C2 X C4 or D(8) and Aut (x) ~ D(8). 
(e) X-CzXCv D(6) X C3, DC(12) or D(12) and Aut (X) - D(12). 

PROOF. Immediate consequence of (6.1) and (6.2). 

PROPOSITION 6.4. Suppose X is a finite group such that 
Aut (X) ~ DC(4n) for some n G N. Then X ~ C5 or C10 and Aut (X) ~ 
C4 ^ DC(4). 
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PROOF. Suppose X is nonabelian. Then n ¥=1. Also Z(X) < X and 
X/Z(X) ~ DC(4m) for some m G N, by (5.3). This is impossible by (5.7). 
So X must be abelian. Suppose n > 1. Then TT(X) Ç (2, 3} by (2.5). If X 
is a 3-group then Aut (X) ~ GL(m, 3) for some m G N since exp (X) = 3 
in this case. However by (5.5) this is not possible. If X is a 2-group 
then exp (X) is at most 4 and hence by (5.8) X ~ C4 which is false. 
Hence X = S X T where S is a 2-group of order greater than 2 and T 
is a 3-group of order greater than 1. But then Aut (X) cz. 
Aut (S) X Aut (T) which is impossible since DC(4ra) is indecomposable 
for any m E N. So n = 1. Clearly then X must be cyclic and so 
X ~ C5 or C10. 

PROPOSITION 6.4. The following list gives all finite abelian groups X 
such that Aut (X) ~ QD(8n) for some n E N. 

(a) X ~ C15, C16? C20 or C30 önd Aut (X) ~C4xC2~ QD(8). 
(b) X~C2xC2xC5 and Aut (X) - Ç>D(24). 

PROOF. If n = 1 then QD(8) is abelian and so by (2.22) X must be 
cyclic. Hence it is easily proved that X c^ C15, C16, C20 or C30. So let 
us assume that n > 1. Then Z(Ç>D(8n)) ~ C2 if n is even and isomor
phic to C4 if n is odd. Suppose n is even. Then by (2.5) ir(X) C (2, 3}. 
If X is a 3-group, it is elementary abelian and hence 
Aut (X) ~ GL(m, 3) for some m E n. This is impossible by (5.5). If X is 
a 2-group then exp (X) ^ 4 and so by (5.8) X ~ C4 or C2 X C4 both of 
which are impossible. So X — S X T where S is a 2-group with \S\ = 4 
and T is a 3-group with \T\ > 1. So Aut (X) c^ Auf (S) X Aut (7) and 
this is impossible since QD(8n) is indecomposable when n > 2 and n 
even. So n is odd and hence ir(X) Q {2, 5}. If X is a 5-group then 
Aut (X)c^ Glim, 5) for some m E N, which is impossible. As before, X 
cannot be a 2-group either. Hence X — S X T where S is a 2-group 
with |S| ^ 4 and T is a 5-group with \T\ > 1. So Aut (X) -
Aut (S) X Aut (T) ^ D(2n) x C4. By (6.1) S ^ C 2 x C 2 and hence 
T ~ C5. Thus X ^ C2 X C2 X C5 and it is easily verified that 
Aut (X) ~ QD(24). 

PROPOSITION 6.5. If X is a nonabelian finite group such that 
Aut (X) — QD(8n) for some n E N then X ~ D(6) X C5 and 
Aut (X) - Ç>D(24). 

PROOF. Suppose n is odd. If n = 1 then X is nilpotent of class 2. 
Moreover if an odd prime p divides |X|, it is easily seen that X would 
have to be abelian. Hence X is a 2-group. So by (2.14), |X| ^ 8 which 
is easily seen to be impossible. So n > 1. By (5.4) and (5.7) it follows 
that X/Z(X)-D(2n) or D(4n). Suppose X/Z(X) ~ D(2n). Clearly 
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AC(X) ~ C4 and by (5.6) X cannot be a PN-group. Let X = Y xA 
where Y is a PN-group and A is abelian. Then I n n ( Y ) ~ D ( 2 n ) and 
Aut(Y) - D(2n), D(4n) or QD(Sn). Aut(Y) ~ D(2n) implies that n = 3 
by (6.2) and Y - D(6). Hence |Aut(A)| ^ 4 so that A ~ 1, C2, C3, C4, 
C5> c& C8> C io o r c i2 - Xt i s e a s i l y verified that Aut(Y x A) — ÇD(24) 
exactly when A ~ C5. Now suppose that Aut ( Y) ~ D(4n). Then by (6.2) 
Y ~ D(12), DC(12) or D(6) X C3 and hence A ~ 1, C2, C3, C4 or C6 

and n = 3. However, it is easily verified that Aut(Y X A) ^ QD(24) in 
any of these cases. Besides, Aut (Y) ~ QD(Sn) is impossible since Y is a 
PN-group and Inn(Y) — D(2n). Suppose X/Z(X) — D(4n). Again by (5.6) 
X cannot be a PiV-group. Let X — Y X A as usual. Then 
Inn ( Y) ~ Aut ( Y) ~ D(4n). By (6.2) this is not possible. 

Suppose now that n is even. By (5.4) and (5.7) it follows that 
X/Z(X) ~ D(4n). Also AC(X) - C2. By (5.6) X cannot be a PN-group. 
Let X = Y X A where Y is a PN-group and A is abelian. W e must 
have Inn (Y) — Aut (Y) — D(4n). This is impossible by (6.2). 

Thus the result has been established. 

THEOREM 6.6. The following list contains all finite groups X such that 
Aut (X) ~ QD(Sn) for some n E N. 

(a) X ~ C15, C16, C20 or C30 and Aut (X) ~ C4 X C2 ~ QD(S). 
(b) X ~ C2 X C2 X C5 or D(6) X C5 and Aut (X) - Ç>D(24). 

PROOF. Immediate consequence of (6.4) and (6.5). 
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