ON SOLVING THE EQUATION Aut $(X)=G$

HARIHARAN K. IYER

Abstract

Given a finite group G, are there at most a finite number of finite groups X such that $\operatorname{Aut}(X) \approx G$? If so, how does one determine all of them?

The first question has an affirmative answer. In this paper we consider the second question when G is a finite nonabelian simple group or a natural extension of it, a dihedral group, a dicyclic group or a quasidihedral group.

1. Introduction. G. A. Miller, in 1900, considered the problem of finding all finite groups having S_{3} as their group of automorphisms. He proved that $C_{2} \times C_{2}$ and S_{3} are the only such groups. He also determined all finite groups having S_{4} as their group of automorphisms. The reader is referred to [10]. De Vries and De Miranda [13] have investigated groups, finite and infinite, with a small number of automorphisms. Heineken and Liebeck [6] and Hallett and Hirsch [4] have worked on similar problems. Finite groups with abelian automorphism groups have been studied by B. E. Earnley [2]. Baer [14] proved in 1955 that a torsion group whose automorphism group is finite must itself be finite. Alperin [15] in 1961 characterized finitely generated groups with finite automorphism groups. Recently D. J. S. Robinson [16] has studied the consequences for a group of the finiteness of its automorphism group.

In (3.1) we prove that given a finite group G there are at most a finite number of finite groups X such that $\operatorname{Aut}(X) \approx G$. It is to be expected that the problem of finding all these groups in any given instance would be difficult in general. However, a knowledge of Schur multipliers of various groups and some results concerning the group of central automorphisms of a group combined with elementary group theoretical arguments enables one to solve the above problem in certain instances.
2.1. Terminology. All groups mentioned in this paper are finite. Suppose G is a group. The following notation will be used:
$|G|=$ The order of the group G.
$|G|_{p}=$ The order of a Sylow p-subgroup of G.
$\pi=$ The set of all primes.
$\pi(G)=\{p \in \pi|p||G|\}$.
$(m, n)=$ The greatest common divisor of the integers m and n.

[^0]Copyright © 1979 Rocky Mountain Mathematical Consortium

Aut $(G)=$ The automorphism group of G.
$\operatorname{Inn}(G)=$ The inner automorphism group of G.

$$
\begin{aligned}
A_{c}(G) & =C_{\mathrm{Aut}(G)}(\operatorname{Inn} G)=\text { The group of central automorphisms of } \\
& G . \\
C_{n} & =\text { The cyclic group of order } n . \\
Q & =\text { The quaternion group of order } 8 .
\end{aligned}
$$

A PN-group (Purely Nonabelian) is a group having no nontrivial abelian direct factors.
2.2. Covering groups of a group G. For an arbitrary group G, we let $C(G)$ be the set of all ordered pairs (L, λ) such that L is a group and $\lambda: L \rightarrow G$ is an epimorphsim with $\operatorname{Ker} \lambda \subseteq L^{\prime} \cap Z(L)$. If in addition, $|\operatorname{Ker} \lambda|=\left|H^{2}\left(G, C^{\times}\right)\right|$(where C^{\times}is the multiplicative group of non-zero complex numbers) then we say that L is a covering group of G and λ is the associated epimorphism, or for short, (L, λ) is a covering group of G.

The Schur multiplier $M(G)$ of a group G is an abelian group uniquely determined by G such that whenever (L, λ) is a covering group of G, $\operatorname{Ker} \lambda \approx M(G)$.

Two elements (L, λ) and (M, μ) of $C(G)$ are said to be equivalent if there exists an isomorphism $\alpha: L \rightarrow M$ of L onto M such that $\mu^{\circ} \alpha=\lambda$ and we write $(L, \lambda) \sim(M, \mu)$. Clearly \sim is an equivalence relation on $C(G)$.

If the covering groups of G are all equivalent, then we say that G has a unique covering group and any one of these will be denoted by \hat{G}. We say that G is centrally closed if $C(G)$ has precisely one \sim equivalence class for which, of course, $\left(G, 1_{G}\right)$ is a representative.

Proposition 2.3. If G has a unique covering group (\hat{G}, α) then for every $\tau \in \operatorname{Aut}(G)$ there exists $\hat{\tau} \in \operatorname{Aut}(\hat{G})$ such that $\alpha{ }^{\circ} \hat{\tau}=\tau{ }^{\circ} \alpha$.

Proof. See Corollary 2.1, [5].
Proposition 2.4. Let G be a group such that $\left|G / G^{\prime}\right|$ and $|M(G)|$ are relatively prime. Then G has a unique covering group and any covering group of G is centrally closed.

Proof. See Theorem (3), [5].
Proposition 2.5. Suppose A is an abelian group and $Z($ Aut $A)=Z$.
(a) If $|\mathrm{Z}|=1$, then A is an elementary abelian 2-group.
(b) If $\mathrm{Z} \approx C_{2}$, then $\pi(A) \subseteq\{2,3\}$. The Sylow 3-subgroup of A has exponent at most 3 and the Sylow 2-subgroup of A has exponent at most 4.
(c) If $Z \approx C_{4}$, then $\pi(A) \subseteq\{2,5\}$. If $5 \in \pi(A)$, then the exponent of the Sylow 5-subgroup of A is 5 and that of the Sylow 2-subgroup of A is at most 2. If $5 \notin \pi(A)$ then the Sylow 2-subgroup of A has exponent at most 4.

Proof. (a) and (b) are trivial and we proceed to prove (c). Clearly the only primes that may divide $|A|$ are 2,3 and 5 . Thus $\pi(A) \subseteq\{2,3$, $5\}$. Let A_{p} denote the Sylow p-subgroup of A for any prime p.

If $5 \in \pi(A)$, then $Z\left(\operatorname{Aut}\left(A_{5}\right)\right)$ is at least of order 4 . Hence $3 \notin \pi(A)$ and $Z\left(\operatorname{Aut}\left(A_{2}\right)\right)$ must be trivial. So $\exp \left(A_{2}\right) \leqq 2$.

If $5 \notin \pi(A)$, suppose $3 \in \pi(A)$. If $\exp \left(A_{3}\right)>3$, then $Z\left(\right.$ Aut $\left.\left(A_{3}\right)\right)$ has order greater than 4 . Hence $\exp \left(A_{3}\right)=3$. Then $Z\left(\operatorname{Aut}\left(A_{3}\right)\right) \approx C_{2}$. Since $Z($ Aut $A) \approx Z\left(\right.$ Aut $\left.A_{2}\right) \times Z\left(\right.$ Aut $\left.A_{3}\right)$ and since C_{4} is indecomposable, we conclude $3 \notin \pi(A)$. Thus A is a 2 -group. If $\exp (A) \geqq 8$, then $Z($ Aut $(A))$ would contain a subgroup isomorphic to $C_{2} \times C_{2}$. So $\exp (A) \leqq 4$.

This proves the result.
Proposition 2.6. If X is a finite group and $\operatorname{Aut}(X) \approx S_{3}$, then $X \approx C_{2} \times C_{2}$ or S_{3}, while if Aut $(X) \approx S_{4}$ then $X \approx Q, A_{4}, A_{4} \times C_{2}$, $\mathrm{SL}(2,3)$ or S_{4}.

Proof. See page 39, [10].
Proposition 2.7. Suppose Aut $(X) \approx C_{n}$ for some n. Then
(a) $n=1$ and $X \approx\{1\}$ or C_{2}
(b) $n=2$ and $X \approx C_{3}, C_{4}$ or C_{6} or
(c) $n=p^{\alpha-1}(p-1)$ for some odd prime p and $X \approx C_{p^{\alpha}}$.

Proof. See Theorem IV, [10].
Proposition 2.8. If $Z(G)=1$, then $A_{c}(G)=1$.
Proof. This is a well-known result.
Proposition 2.9. If $p^{2}| | G \mid$ for some prime p, then $p|\mid$ Aut $(G)|$.
Proof. See [7].
Theorem 2.10. If G is a finite group whose order is divisible by $p^{\left(h^{2-h+6) / 2}\right.}$ for some prime p, then p^{h} divides the order of Aut (G).

Proof. See Theorem 4.7, [9].
Proposition 2.11. Let $\beta: N \rightarrow N$ be defined by $\beta(H)=$ $\left(h^{2}+h+6\right) / 2$. Then for any finite group $G,|\operatorname{Aut}(G)|_{p}=p^{h}$ implies that $|G|_{p}<p^{\beta(h)}$.

Proof. This is a direct consequence of (2.10).

Theorem 2.12. If G is a PN-group, then $\left|A_{c}(G)\right|=\mid \operatorname{Hom}\left(G / G^{\prime}, Z(G) \mid\right.$. In particular, if G is a PN-group, then G has a nontrivial central automorphism iff $\left(\left|G / G^{\prime}\right|,|Z(G)|\right)>1$.

Proof. See Theorem 1 and Corollary 1, [1].
Proposition 2.13. If A, B are abelian p-groups for some prime p, then $|\operatorname{Hom}(A, B)| \geqq \min (|A|,|B|)$.

Proof. See Lemma 2.3, [9].
Proposition 2.14. If G is a p-group of class 2 for some prime p, then $|G|$ divides \mid Aut (G)|.

Proof. See [3].
Proposition 2.15. Suppose G is a finite group and H is a characteristic subgroup of G with $C_{G}(H)=1$. Let $\theta: G \rightarrow$ Aut H be defined by $\theta(g)(h)=g h g^{-1}$ where $g \in G, h \in H$. Then Aut $(G) \simeq N_{\operatorname{Aut}(H)}(\theta(G))$.

Proof. θ is clearly a monomorphism. The map $\alpha: \operatorname{Aut}(G) \rightarrow \operatorname{Aut}(H)$ defined by $\alpha(f)=\left.f\right|_{H}$, where $f \in \operatorname{Aut}(G)$, is a group homomorphism. Suppose $K=\operatorname{Ker} \alpha$. Clearly $K \cap \operatorname{Inn}(G)=1$. So $K \subseteq A_{c}(G)$. However, since $Z(G)=1, A_{c}(G)=1$ and so $K=1$. Thus α is a monomorphism. It is easily verified that $\alpha(\operatorname{Aut}(G))=N_{\operatorname{Aut}(H)}(\theta(G))$. Hence the result.

Proposition 2.16. Suppose A is a characteristic subgroup of G contained in $Z(G)$ and that $\left(\left|G / G^{\prime}\right|,|A|\right)=1$. Let $\eta: G \rightarrow H$ be an epimorphism with Ker $\eta=A$. Then there exists a monomorphsim $\theta:$ Aut $G \rightarrow$ Aut (H) such that $\eta^{\circ} \alpha=\theta(\alpha){ }^{\circ} \eta$ for $\alpha \in \operatorname{Aut}(G)$.

Proof. Define $\theta:$ Aut $G \rightarrow$ Aut (H) by $\theta(\alpha)(\eta(g))=\eta(\alpha(g))$ for $\alpha \in$ Aut $G, g \in G$. Clearly θ is a well-defined homomorphism and $\eta \circ \alpha=\theta(\alpha) \circ \eta$.

Suppose $\alpha \in \operatorname{Ker} \theta$. Then $\theta(\alpha)(\eta(g))=\eta(g)$ for every $g \in G$. Thus $\eta(\alpha(g))=\eta(g)$ for all $g \in G$ and so $g^{-1} \alpha(g) \in \operatorname{Ker} \eta=A$ for every $g \in G$.

Define $\tau: G \rightarrow A$ by $\tau(g)=g^{-1} \alpha(g)$ for $g \in E$. Clearly τ is a group homomorphism. Since A is abelian, $\operatorname{Ker} \tau \supseteq G^{\prime}$. But $\left(\left|G / G^{\prime}\right|,|A|\right)=1$, so $\operatorname{Ker} \tau=G$. Hence $\alpha(g)=g$ for all $g \in G$. So $\operatorname{Ker} \theta=1$ and the result follows.

Proposition 2.17. Let H be a finite group and A be a cyclic group of order 2. Then Aut $(H \times A) \simeq \operatorname{Aut}(H)$ iff $\left|H / H^{\prime}\right|$ and $|Z(H)|$ are both odd.

Proof. Elementary.

$$
\begin{equation*}
\operatorname{AUT}(X)=G \tag{657}
\end{equation*}
$$

Proposition 2.18. Suppose G is a group and $x, y \in \operatorname{Inn}(G)$ such that the order of y is p^{α} for some prime p and $y^{x}=y^{k}$ for some integer k. If $k \neq 1(\bmod p)$ then there exists $g \in G$ such that g induces y by con-

Proof. See Theorem VI, [10].
Proposition 2.19. Let A be an abelian p-group with a basis consisting of n_{i} generators of order $p^{i}, 1 \leqq i \leqq k$. Then Aut (A) has an elementary abelian p-subgroup of rank $\left(n_{1}+n_{2}+\cdots+n_{k}\right)\left(n_{2}+\right.$ $\left.n_{3}+\cdots+n_{k}\right)$.

Proof. See Satz 113, [12].
Proposition 2.20. If G is a group, x is a nonidentity element of G and S is a generating subset of G such that if $y \in S$ then $x \in\langle y\rangle$, then there does not exist a group X such that $X / Z(X) \approx G$.

Proof. See (3.2.10), [11].
Theorem 2.21. (Gaschutz). Suppose A is an abelian normal subgroup of G with $\exp (A)=k$ and U is a subgroup of G such that $(|G: U|, k)$ $=1$ then A has a complement in G if it has a complement in U.

Proof. See I, 17.4, [8].
Proposition 2.22. Suppose A is an abelian group. Then Aut (A) is abelian when A is cyclic and is nonabelian when A is noncyclic.

Proof. See Theorem III, [10].
Theorem 3.1. If G is a given finite group then there are at most finitely many finite groups X such that $\operatorname{Aut}(X) \simeq G$.

Proof. Let

$$
\begin{aligned}
\pi_{0} & =\{p \in \pi|p||G|\}, \pi_{1}=\pi(G) \text { and } \\
\pi_{2} & =\{p \in \pi|(p-1)||G|\}
\end{aligned}
$$

For each $p \in \pi_{1}$, let $|G|_{p}=p^{h_{\text {p }}}$. By (2.11) there exists a function $\beta: N \rightarrow N$ such that $|G|_{p}=p^{h}$ implies that $|X|_{p}<p^{\beta(h)}$.

Suppose $p \in \pi_{0}$ and that $p \| X \mid$. By (2.9) it follows that $p^{2} \bigcap|X|$. Moreover $p \nmid|\operatorname{Inn} X|$. Hence $p||Z(X)|$. Therefore there is a subgroup Y of X and a cyclic subgroup C_{p} of X such that $X=Y \times C_{p}$. Hence $(p-1)\left||G|\right.$. So $\pi(X) \cap \pi_{0} \subseteq \pi_{2}$.

$$
\begin{aligned}
& \text { Now } \\
& |X|=\prod_{p \in \pi(X)}|X|_{p}=\left(\prod_{p \in \pi(X) \cap \pi_{0}}|X|_{p}\right) \cdot\left(\prod_{q \in \pi(X) \cap \pi_{1}}|X|_{q}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(\prod_{p \in \pi(X) \cap \pi_{0}} p\right) \cdot\left(\prod_{q \in \pi(X) \cap \pi_{1}}|X|_{q}\right)\right) \\
& \leqq\left(\prod_{p \in \pi_{2}} p\right) \cdot\left(\prod_{q \in \pi_{1}}|X|_{q}\right) \\
& <\left(\prod_{p \in \pi_{2}} p\right) \cdot\left(\prod_{q \in \pi_{1}} q^{\beta\left(h_{q}\right)}\right)=\mu(G), \text { say. }
\end{aligned}
$$

Thus $|X|<\mu(G)$, a positive integer completely determined by the group G. Hence the theorem follows.

Note. The author wishes to thank Professor F. I. Gross for the above proof.

Definition 3.2. A finite group G is said to have property (P) if $|G|>1$ and whenever $1 \neq N \leqslant G$, we have $C_{G}(N)=1$.

Proposition 3.3. A finite group G has property (P) if and only if G has a unique minimal normal subgroup N which is nonabelian.

Proof. Elementary.
Definition 3.4. If G is a group with property (P), then its unique minimal normal subgroup is denoted by $P(G)$.

Clearly $P(G)$ is characteristically simple and so $P(G) \approx$ $M_{1} \times M_{2} \times \cdots \times M_{k}$ where $M_{1}, M_{2}, \cdots, M_{k}$ are all isomorphic to a nonabelian simple group M.

Proposition 3.5. Let G have property (P). Suppose $P(G)=N=M_{1} \times M_{2} \times \cdots \times M_{k}$ where for each $i, M_{i} \approx M$, a nonabelian simple group. Let $\theta: G \rightarrow$ Aut (N) be the homomorphism defined by $\theta(g)(x)=\operatorname{gxg}^{-1}$ for $g \in G$ and $x \in N$. Then
(a) $\operatorname{Inn}(N) \leqq \theta(G) \leqq \operatorname{Aut}(N)$
(b) $\theta(G)$ has property (P) and $P(\theta(G))=\theta(P(G))$.
(c) $\theta(G)$ acts transitively on the set $\left\{\theta\left(M_{1}\right), \theta\left(M_{2}\right), \cdots, \theta\left(M_{k}\right)\right\}$ by conjugation.

Proof. Clearly θ is a monomorphism and $\theta(N)=\operatorname{Inn}(N)$. Now (a) and (b) follow. G acts on $\left\{\mathrm{M}_{1}, M_{2}, \cdots, M_{k}\right\}$ transitively by conjugation. Hence (c) follows.

Proposition 3.6. Let $N=M_{1} \times M_{2} \times \cdots \times M_{k}$ where M_{1}, M_{2}, \cdots, M_{k} are all isomorphic to a nonabelian simple group M. Let $\theta: N \rightarrow$ Aut N be the monomorphism defined by $\theta(x)(y)=x y x^{-1}$ for x, $y \in N$. Suppose G is a finite group such that $\operatorname{Inn}(N) \leqq G \leqq \operatorname{Aut}(N)$.

Then G has property (P) if and only if G acts transitively on $\left\{\theta\left(M_{1}\right)\right.$, $\left.\theta\left(M_{2}\right), \cdots, \theta\left(M_{k}\right)\right\}$ by conjugation.

Proof. Suppose G has property $(P) . G$ acts on $\left\{\theta\left(M_{1}\right), \theta\left(M_{2}\right), \cdots\right.$, $\left.\theta\left(M_{k}\right)\right\}$ by conjugation. If the action is not transitive, let $\left\{\theta\left(M_{i_{1}}\right), \theta\left(M_{i_{2}}\right)\right.$, $\left.\cdots, \theta\left(M_{i}\right)\right\}$ be an orbit where $1 \leqq i_{1}<i_{2}<\cdots<i_{r} \leqq n$ and $r<k$. Let $R=\times_{s=1}^{r} \theta\left(M_{i_{s}}\right)$. Clearly then $C_{G}(R)>1$ which contradicts the fact that $1 \neq R \leqslant G$. So G acts transitively on $\left\{\theta\left(M_{1}\right), \theta\left(M_{2}\right), \cdots, \theta\left(M_{k}\right)\right\}$.

Conversely, suppose G acts transitively on $\left\{\theta\left(M_{1}\right), \theta\left(M_{2}\right), \cdots, \theta\left(M_{k}\right)\right\}$. Then $\theta(N)$ must be a minimal normal subgroup of G. Let R be any nontrivial normal subgroup of G. Then $R \cap \theta(N)=1$ or $\theta(N)$. If $R \cap \theta(N)=1$ then $R \subseteq C_{G}(\theta(N))$ and so $A_{C}(N) \neq 1$. This is a contradiction since $Z(N)=1$. Thus $R \supseteq \theta(N)$. So $\theta(N)=\operatorname{Inn}(N)$ is the unique minimal normal subgroup of G and is nonabelian. So G has property (P), by (3.3).

Theorem 3.7. Suppose G has property (P) and X is a finite group such that Aut $(X) \simeq G$. Then one of the following holds:
(a) X is an elementary abelian 2-group of order at least 8 and $G \simeq G L(n, 2)$ for some $n \geqq 3$.
(b) $\left(X, \theta_{x}\right) \in C(N)$ for some nontrivial normal subgroup N of G.
(c) $X \simeq R \times C_{2}$ where $\left(R, \theta_{R}\right) \in C(N)$ for some nontrivial normal subgroup N of G. Moreover $|Z(R)|,\left|R / R^{\prime}\right|$ are both odd.

Proof. If X is abelian, then by (2.5) it is an elementary abelian 2group. Clearly then $|X| \geqq 8$ and $G \simeq G L(n, 2)$ for some $n \geqq 3$.

Suppose X is nonabelian. Let $X=Y \times A$ where Y is a $P N$-group and A is abelian. Since $A_{c}(X)$ is trivial, it follows from Remak-Krull-Schmidt theorem that Y and A are characteristic in X. So $\operatorname{Aut}(X) \simeq \operatorname{Aut}(Y) \times$ Aut (A). Hence $\operatorname{Aut}(Y)=G$ and $\operatorname{Aut}(A)=1$, giving $A \simeq 1$ or C_{2}.
Now $Y / Z(Y)$ is isomorphic to a normal subgroup N of G. If $Y^{\prime} \boxplus Z(Y)$, then $\left(\left|Y / Y^{\prime}\right|,|Z(Y)|\right)>1$. So $A_{c}(Y)>1$ by (2.12). This is impossible and so $Y^{\prime} \supseteq Z(Y)$. Let $\theta: Y \rightarrow N$ be an epimorphism with $\operatorname{Ker} \theta=Z(Y)$. Hence $(Y, \theta) \in C(N)$. Hence $X=Y$ or $Y \times C_{2}$, with Aut $(Y) \simeq G$. However Aut $\left(Y \times C_{2}\right)$ is isomorphic to G iff $|Z(Y)|,\left|Y / Y^{\prime}\right|$ are both odd, by (2.17). Hence the result follows.

Remark 3.8. Given a group G with property (P), the above result provides a criterion for actually determining all groups X with Aut $(X) \simeq G$, by examining a finite number of possibilities, viz by examning the set of groups $\left\{X \mid\left(X, \theta_{X}\right) \in C(N)\right.$, for some $\left.N \leqslant G, N \neq 1\right\}$.

Proposition 3.9. Let G be a finite group such that $\left|G / G^{\prime}\right|$ and $|M(G)|$ are relatively prime. Let (\hat{G}, θ) be the unique covering group of G. Let B
be a finite group such that $(\hat{G}, \eta) \in C(B)$. Suppose $\operatorname{Ker} \eta, \operatorname{Ker} \theta$ are characteristic in \hat{G} and $\operatorname{Ker} \eta \subseteq \operatorname{Ker} \theta$. Then $\operatorname{Aut}(B) \simeq \operatorname{Aut}(G)$.

Proof. Let $\lambda: B \rightarrow G$ be the homomorphism such that $\lambda \circ \eta=\theta$. Thus $\operatorname{Ker} \lambda=\eta(\operatorname{Ker} \theta)$. By (2.16) there exist monomorphisms $\tau_{1}: \operatorname{Aut}(\hat{G}) \rightarrow \operatorname{Aut}(G), \tau_{2}: \operatorname{Aut}(\hat{G}) \rightarrow \operatorname{Aut}(B)$ and $\tau_{3}: \operatorname{Aut}(B) \rightarrow \operatorname{Aut}(G)$, such that for $\alpha \in \operatorname{Aut}(\hat{G}), \beta \in \operatorname{Aut}(B)$ we have $\theta^{\circ} \alpha=\tau_{1}(\alpha) \circ \theta, \eta \circ \alpha$ $=\tau_{2}(\alpha) \circ \eta$ and $\lambda \circ \beta=\tau_{3}(\beta) \circ \lambda$. But by (2.3) τ_{1} is also surjective. Hence $\operatorname{Aut}(G) \simeq \operatorname{Aut}(B)$.
Corollary 3.10. Let G be a nonabelian simple group and \hat{G} its unique covering group. Then $\operatorname{Aut}(\hat{G}) \simeq \operatorname{Aut}(G)$.

Theorem 3.11. Let G be a nonabelian simple group and $A u t(X) \simeq G$. Then one of the following holds.
(a) X is an elementary abelian 2-group of order greater than 4 and $G \simeq G L(n, 2)$ for some $n \geqq 3$.
(b) $X \simeq X_{0}$ or $X_{1} \times C_{2}$ where X_{0} is a factor group of \hat{G} by a central subgroup and X_{1} is a factor group of \hat{G} by a central subgroup containing the Sylow 2-subgroup of $Z(\hat{G})$.

Proof. Immediate consequence of Theorem 3.7, and Proposition 2.17. We point out that the converse holds also.

Proposition 3.12. Let G be a nonabelian simple group and $|M(G)|>1$. Let \hat{G} be its unique covering group. Suppose X is a finite group such that $\operatorname{Aut}(X) \simeq \hat{G}$. Then $X=S \times T$ where $|S|=1$ or 2 and T is a p-group of class at most 2 for some prime p.

Proof. If X is abelian, then the result follows from the indecomposability of \hat{G}. Suppose X is nonabelian. Then $X / Z(X)$ is isomorphic to \hat{G} or to subgroup of \hat{G} contained in $Z(\hat{G})$. If $X / Z(X) \simeq \hat{G}$, then by $(2.4), Z(X)=1$ and so $X \simeq \hat{G}$. But then $Z(\hat{G})=1$, a contradiction. Thus $X / Z(X)$ is isomorphic to a central subgroup of \hat{G} and so X is nilpotent of class-2. Once again, since \hat{G} is indecomposable, $X=S \times T$ with $|S| \leqq 2$ and T a p-group of class- 2 for some prime p.

Remarks 4.1. The following facts are well known:
(a) $M\left(S_{n}\right) \simeq C_{2}$ for $n \geqq 4$. S_{6} has a unique covering group \hat{S}_{6} while S_{n} has two covering groups T_{n} and $T_{n}{ }^{*}$ when $n \geqq 4, n \neq 6$.
(b) $M\left(A_{n}\right) \simeq C_{2}$ for $n \geqq 4, n \neq 6$, 7. $M\left(A_{6}\right) \simeq M\left(A_{7}\right) \simeq C_{6}$.
(c) A_{4} has $S L(2,3)$ as its unique covering group.
(d) $G L(m, 2) \simeq A_{n}(n \geqq 3)$ iff $m=4$ and $n=8$.
(e) $G L(m, 2) \simeq S_{n}(n \geqq 3)$ iff $m=2$ and $n=3$.

$$
\begin{equation*}
\operatorname{AUT}(X)=G \tag{661}
\end{equation*}
$$

Theorem 4.2. Suppose X is a finite group such that $\operatorname{Aut}(X) \simeq A_{n}$ for some $n \in N$. Then one of the following holds:
(a) $X \simeq C_{2}$ and Aut $(X) \simeq A_{1} \simeq A_{2} \simeq\{1\}$.
(b) $X \simeq C_{2} \times C_{2} \times C_{2} \times C_{2}$ and $\operatorname{Aut}(X) \simeq A_{8}$.

Proof. (a) is trivial. So we may assume $n \geqq 3$. Since $A_{3} \simeq C_{3}$, it follows from (2.7) that there is no group X such that Aut $(X) \simeq A_{3}$.

Suppose $n=4$ and X is abelian. Then by (2.5) X is an elementary abelian 2-group, which is impossible by $(4.1)(d)$. Thus X is nonabelian. If $X / Z(X) \simeq A_{4}$ then $A_{c}(X)=1$. Let $X=Y \times A$ where Y is a $P N$-group and A is abelian. Then $\operatorname{Inn}(Y) \simeq \operatorname{Aut}(Y) \simeq A_{4}$. Also $A_{c}(Y)=1$. So $Y^{\prime} \supseteq Z(Y)$ and by (4.1) $Y \simeq A_{4}$ or $S L(2,3)$. In either case Aut $(Y) \neq A_{4}$. So $X / Z(X)$ must be isomorphic to $C_{2} \times C_{2}$. Then X is nilpotent of class 2 and the indecomposability of A_{4} implies that X is a 2 -group. Then by (2.14) it follows that $|X| \leqq 4$ which is impossible.

Suppose $n \geqq 5$. If X is abelian it must be an elementary abelian 2group. So by (4.1)(d) we obtain that $X \simeq C_{2} \times C_{2} \times C_{2} \times C_{2}$ and Aut $(X) \simeq G L(4,2) \simeq A_{8}$. If X is nonabelian, Theorem 3.11 says that X is isomorphic to A_{n}, \hat{A}_{n} or $A_{n} \times C_{2}$. This is impossible since everyone of these groups have S_{n} as their group of automorphisms when $n \neq 6$ and Aut $\left(S_{6}\right)$ as their automorphism group when $n=6$.

Hence the theorem is proved.
Proposition 4.3. Let $n \geqq 5$ and R a covering group of S_{n}. Then Aut $(R) \simeq S_{n} \times C_{2}$ if $n \neq 6$. If $n=6$, Aut (R) has a subgroup X of index 2 where $X \simeq S_{6} \times C_{2}$.

Proof. Let $\alpha: R \rightarrow S_{n}$ be the epimorphism $x \rightarrow x Z(R)(x \in R)$. Define $\theta: \operatorname{Aut}(R) \rightarrow \operatorname{Aut}\left(S_{n}\right)$ by $\theta(f)(\alpha(x))=\alpha(f(x))$ for $x \in R$ and $f \in \operatorname{Aut}(R)$. Clearly θ is a homomorphism. When $n \geqq 5, n \neq 6$, Aut $\left(S_{n}\right) \simeq \operatorname{Inn}\left(S_{n}\right) \simeq S_{n}$ and since $\operatorname{Inn}(R) \simeq S_{n}$, we conclude that θ is an epimorphism. The same conclusion holds when $n=6$ in view of (2.3) and $(4.1)(\mathbf{a})$. Let $K=\operatorname{Ker} \theta$. It is easily seen that $K=A_{c}(R)$. Clearly R is a $P N$-group and so $\left|A_{c}(R)\right|=\left|\operatorname{Hom}\left(R / R^{\prime}, Z(R)\right)\right|$. Since $Z(R) \simeq C_{2}$ and $\left|R / R^{\prime}\right|=2$, it follows that $K \simeq C_{2}$. We also observe that $K \cap \operatorname{Inn}(R)=1$, so that $\operatorname{Aut}(R) \geqq K \times \operatorname{Inn}(R)$. A consideration of orders shows that $\operatorname{Aut}(R)=K \times \operatorname{Inn}(R)$ when $n \neq 6$ and when $n=6, K \times \operatorname{Inn}(R)$ has index 2 in Aut (R). The result now follows.

Theorem 4.4. Suppose $\operatorname{Aut}(X) \simeq S_{n}$ for some $n \in N$ and some finite group X. Then one of the following holds.
(a) $n=1$ and $X \simeq 1$ or C_{2}.
(b) $n=2$ and $X \simeq C_{3}, C_{4}$ or C_{6}.
(c) $n=3$ and $X \simeq C_{2} \times C_{2}$ or S_{3}.
(d) $n=4$ and $X \simeq Q, A_{4}, A_{4} \times C_{2}, S L(2,3)$ or S_{4}.
(e) $n=7$ and $X \simeq B_{0}, B_{1} \times C_{2}$ or S_{7} where $\left(B_{0}, \eta_{0}\right) \in C\left(A_{7}\right)$ and $\left(B_{1}, \eta_{1}\right) \in C\left(A_{7}\right)$ with $\left|\operatorname{Ker} \eta_{1}\right|=1$ or 3 .
(f) $n \geqq 5, n \neq 6,7$ and $X \simeq A_{n}, A_{n} \times C_{2}, \hat{A}_{n}$ or S_{n}.

Moreover each of the above possibilities for X does give a group where automorphism group is actually S_{n} for appropriate n.

Proof. The case $n=1$ and $n=2$ are trivial.
The case $n=3$ and $n=4$ have been discussed by G. A. Miller. See (2.6).

Suppose $n \geqq 5$. Then S_{n} has property (P). Now the result follows from theorem (3.7), Proposition (4.3), Proposition (2.17) and the fact that $\operatorname{Aut}\left(S_{6}\right) \neq S_{6}$.
5.1. Dihedral, Dicyclic and Quasidihedral groups. The dihedral group $D(2 n)$ of order $2 n$ is the group $\left\langle x, y \mid x^{2}=y^{n}=1, y^{x}=y^{-1}\right\rangle$. Clearly $D(2) \simeq C_{2}$ and $D(4) \simeq C_{2} \times C_{2}$ and $D(2 n)$ is nonabelian when $n \geqq 3$.

The dicyclic group $D C(4 n)$ of order $4 n$ is the group $\langle x, y| x^{4}=$ $\left.y^{2 n}=1, \quad x^{2}=y^{n}, \quad y^{x}=y^{-1}\right\rangle$. Clearly $D C(4) \simeq C_{4}, \quad D C(8) \simeq Q$ and $D C(4 n)$ is nonabelian when $n \geqq 2$.

The quasidihedral group $Q D(8 n)$ of order $8 n$ is the group $\langle x, y| x^{2}=$ $\left.y^{4 n}=1, y^{x}=y^{2 n-1}\right\rangle . Q D(8) \simeq C_{4} \times C_{2}$ while $Q D(8 n)$ is nonabelian when $n \geqq 2$.
5.2. Some Properties of the dihedral groups. The following facts about the dihedral groups $D(2 n), n \geqq 3$, are well known.
(a) Suppose n is odd. Then $Z(D(2 n))=1$. The only noncyclic normal subgroup of $D(2 n)$ is itself. $D(2 n)$ is indecomposable. The 2 -rank of $D(2 n)$ is $1 . M(D(2 n))$ is trivial.
(b) Suppose $(n, 4)=2$. Then $Z(D(2 n)) \simeq C_{2}$. The only proper noncyclic normal subgroups of $D(2 n)$ are isomorphic to $D(n)$ and their centralizer in $D(2 n)$ is $Z(D(2 n)) . D(2 n)$ is decomposable and we have $D(2 n) \simeq D(n) \times C_{2}$. The 2-rank of $D(2 n)$ is $1 . M(D(2 n)) \simeq C_{2}$ and $D(2 n)$ has two covering groups isomorphic to $D(4 n)$ and $D C(4 n)$ respectively.
(c) Suppose $4 \mid n$. Then $Z(D(2 n)) \simeq C_{2}$ If X is a noncyclic proper normal subgroup of $D(2 n)$ then $X \simeq D(n)$ and the centralizer of X in $D(2 n)$ is $Z(D(2 n)) . D(2 n)$ is indecomposable and has 2-rank 2. $M(D(2 n)) \simeq C_{2}$ and it has three covering groups isomorphic to $D(4 n), D C(4 n)$ and $Q D(4 n)$ respectively.
(d) If $n \geqq 3$, \mid Aut $(D(2 n)) \mid=n \phi(n)$ where ϕ is the Euler phi-function.
5.3. Dicyclic groups. The following properties of the dicyclic groups $D C(4 n)(n \geqq 3)$ are easily verified.
(a) $\mathrm{Z}(D C(4 n)) \simeq C_{2}$. It is indecomposable. When n is odd, $D C(4 n)$ has no noncyclic proper normal subgroups. If n is even and X is a proper normal subgroup of $D C(4 n)$ then $X \simeq D C(2 n)$ and the centralizer of X in $D C(4 n)$ is $Z(D C(4 n))$. The dicyclic groups have 2 -rank 1 .
(b) \mid Aut $(D C(4 n)) \mid=2 n \phi(2 n)$ when $n \geqq 3$, while Aut $Q \simeq S_{4}$.
5.4. Quasidihedral groups. The following properties of the quasidihedral groups $Q D(8 n)$ are easily verified to be true for $n \geqq 3$.
(a) Suppose n is odd. Then $Z(Q D(8 n)) \simeq C_{4}$. We have the decomposition $Q D(8 n) \simeq D(2 n) \times C_{4}$. If X is a proper normal subgroup of $Q D(8 n)$ which is noncyclic then $X \simeq D(2 n), D(4 n)$ or $D C(4 n)$ and the centralizer of X in $Q D(8 n)$ is $Z(Q D(8 n)$. The 2-rank of $Q D(8 n)$ is 2 .
(b) Suppose n is even. Then $Z(Q D(8 n)) \simeq C_{2} . Q D(8 n)$ is indecomposable. If X is a noncyclic proper normal subgroup of $Q D(8 n)$ then X is isomorphic to $D(4 n)$ or $D C(4 n)$ and is centralizer in $Q D(8 n)$ is $\mathrm{Z}(Q D(8 n)) . Q D(8 n)$ has 2-rank 2.
(c) \mid Aut $(Q D(8 n)) \mid=2 n \phi(4 n)$ for $n \geqq 2$.

Lemma 5.5. Suppose p is a prime and $m, n \in N$. Then
(a) $G L(m, p) \simeq D(2 n) \Longleftrightarrow(m, n, p)=(2,3,2)$ or $(1,1,3)$.
(b) $G l(m, p) \simeq D C(4 n) \Longleftrightarrow(m, n, p)=(1,1,5)$.
(c) $G L(m, p) \neq Q D(8 n)$ for any m, n, p.

Proof. These facts can be easily verified.
Lemma 5.6. Suppose X is a $P N$-group and $X / Z(X) \simeq D(2 n), n \geqq 3$. Then $Z(X)$ is a 2-group. If $A_{c}(X)=1$, then n is odd and $Z(X)$ is trivial. If $A_{c}(X) \simeq C_{2}$, then n is odd and $X \simeq D C(4 n)$.

Moreover $A_{c}(X)$ cannot be isomorphic to C_{4}.
Proof. Let $n=2^{r_{0}} \cdot m, m$ odd. Let $Z(X) \subseteq K \subseteq H \subseteq X$ be subgroups of X such that $|X: H|=2$ and $|K: Z(X)|=m$. Let $-: X \rightarrow X / Z(X)$ be the canonical epimorphism. Let $x \in X-H$. Let p be a prime dividing m and $y_{p} \in K$ such that $\left\langle\bar{y}_{p}\right\rangle$ is a Sylow p-subgroup of \bar{K}. Since $\bar{X} \simeq D(2 n)$ we have $\bar{y}_{p} \bar{x}^{x}=\bar{y}_{p}{ }^{-1}$. By (2.18) there exists $g_{p} \in K$ such that $\bar{g}_{p}=\bar{y}_{p}$ and $o\left(g_{p}\right)=o\left(\bar{y}_{p}\right)$. Let $g=\Pi_{p \in \pi(K)} g_{p}$. Then $o(g)=m$ and $K=\langle g\rangle \times Z(X)$. If p is an odd prime and P the Sylow p subgroup of $Z(X)$, then by (2.21) P would be a direct factor of X. Since X is a $P N$-group $|P|=1$. Thus $Z(X)$ is a 2 -group.
(a) Suppose $A_{c}(X)=1$. Since $\left|X / X^{\prime}\right| \geqq 2$, it follows from (2.12) that $Z(X)=1$. Thus $X \simeq D(2 n)$. So n must be odd.
(b) Suppose $A_{c}(X) \simeq C_{2}$. If n is even, $\left|X / X^{\prime}\right| \geqq 4$ and X / X^{\prime} has 2-rank at least 2. Moreover $|Z(X)|>1$. This implies $\left|A_{c}(X)\right| \geqq 4$, a contradiction. Hence n is odd. If $X^{\prime} \supseteq Z(X)$ then by (5.2(a)) $Z(X)=1$
which is not possible. So $X^{\prime} \boxplus Z(X)$. Hence $\left|X / X^{\prime}\right| \geqq 4$ and therefore $|Z(X)|=2$. This implies that $X^{\prime} \cap Z(X)=1$ and $\left|X / X^{\prime}\right|=4$. If X / X^{\prime} is elementary abelian, then $\left|A_{c}(X)\right|=4$ by (2.12). Therefore X / X^{\prime} is cyclic. Hence there exists $x \in X-H$ such that $x^{2} \in Z(X)$ and $o(x)=4$. In this case we have $H=K$ and so $H=\langle g\rangle \times\left\langle x^{2}\right\rangle \simeq C_{2 n}$. Clearly $g^{x}=g^{-1}$ and hence $X \simeq D C(4 n)$. But then $A_{c}(X) \simeq C_{2} \times C_{2}$ when n is even and $A_{c}(X) \simeq C_{2}$ when n is odd. Hence $X \simeq D C(4 n)$ with n odd.
(c) Suppose $A_{c}(X) \simeq C_{4}$. Suppose n is odd. Then $X^{\prime} \nsubseteq Z(X)$. $X^{\prime} Z(X)=H$. If $\quad\left|X / X^{\prime}\right|=2^{r} \quad$ then $\quad|Z(X)| \geqq 2^{r-1}$. Now $4=\left|A_{c}(X)\right| \geqq \min \left(\left|X / X^{\prime}\right|,|Z(X)|\right) \geqq 2^{r-1}$. It follows now that $r=2$ or 3.

Suppose $\quad r=3$. Then $\left|H / X^{\prime}\right|=4$. Hence $|Z(X)| \geqq 4$. But $|Z(X)|>4 \Rightarrow\left|A_{c}(X)\right|>4$ by (2.13). Hence $|Z(X)|=4$. Therefore $X^{\prime} \cap Z(X)=1$. If X / X^{\prime} is cyclic, then $Z(X)$ is cyclic. Moreover there exists $x \in X-H$ such that x^{2} is a generator for $Z(X)$. Also $H=\langle g\rangle \times\left\langle x^{2}\right\rangle$. Clearly $g^{x}=g^{-1}$ and so $X=\langle g, x| g^{n}=x^{8}=1$, $\left.g^{x}=g^{-1}\right\rangle$. For $i=1,2,3,4$ define $\alpha_{i}: X \rightarrow X$ by $\alpha_{i}\left(x^{a} g^{b}\right)=x^{a(2 i-1)} g^{b}$. It can be verified that $A_{c}(X)=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ and that $A_{c}(X) \simeq C_{2} \times C_{2}$. Hence X / X^{\prime} has 2-rank 2. However $Z(X)$ is again cyclic. Hence there exists $x \in X-H$ such that $x^{2}=1$. Also $g^{x}=g^{-1}$ as before and hence $X \simeq D(2 n) \times C_{4}$ which is a contradiction.

So $r=2$. Therefore $\left|X / X^{\prime}\right|=4$ and $\left|Z(x): Z(X) \cap X^{\prime}\right|=2$. Clearly $H=\langle g\rangle Z(X)$. Let $x \in X-H$. Every element t of X can be expressed as $t=x^{i} g^{j} z$ where $0 \leqq i \leqq 1,0 \leqq j \leqq n-1$ and $z \in Z(X)$. It is easily verified that $\left[x^{i_{1}} g^{j_{1}} z_{1}, x^{i_{2}} g^{j_{2}} z_{2}\right] \in\langle g\rangle$, so that $X^{\prime} \subseteq\langle g\rangle$. Hence $X^{\prime} \cap Z(X)=1$ and so $|Z(X)|=2$. Then X / X^{\prime} must be elementary abelian. So $x^{2}=1$ and thus $X \simeq D(2 n) \times C_{2}$ which is impossible. Hence n must be even. Clearly X / X^{\prime} has 2 -rank at least 2 . Suppose $X^{\prime} \boxplus Z(X)$. Then it is easily seen that $|Z(X)|=2, \quad X^{\prime} \cap Z(X)=1 \quad$ and $X / X^{\prime} \simeq C_{4} \times C_{2}$. Let $y \in H$ such that $\langle\bar{y}\rangle$ is the Sylow 2-subgroup of \bar{H} so that $\bar{H}=\langle\bar{y}\rangle \times\langle\bar{g}\rangle$. Since $n=2^{r_{0}} \cdot m, o(\bar{y})=2^{r_{0}}$. So $o(y)=2^{r_{0}}$ or $2^{r_{0}+1}, r_{0} \geqq 1$. Also since $\bar{y}^{\bar{x}}=\bar{y}^{-1}$ for any $x \in X-H$, it follows that $y^{x}=y^{-1}$ or $y^{-1} z$ where $Z(X)=\langle z\rangle$. Suppose $o(y)=2^{r_{0}+1}$. Then $y^{2^{r_{0}}}=z$. Now $y^{x}=y^{-1}$ implies that $y^{2} \in X^{\prime}$ and hence $z \in X^{\prime}$ which is false. If $\mathrm{y}^{x}=y^{-1} z$ then $[x, y]=y^{2} z=\left(y^{2}\right)^{\left(2^{r_{0}-1}+1\right)} \in X^{\prime}$. Hence if $r_{0}>1$, $y^{2} \in X^{\prime}$ implying again that $z \in X^{\prime}$, so $r_{0}=1$ in which case $[x, y]=1$. But then $X=\langle g, x\rangle \times\langle y\rangle$ since $0(x)=2$ in this case. This is impossible as X is a $P N$-group. So $o(y)=2^{r_{0}}$, and $H=\langle g\rangle \times\langle y\rangle \times\langle z\rangle$. Since $X / X^{\prime} \simeq C_{4} \times C_{2}$, there exists $x \in X-H$ such that $x^{2}=z$. However $y^{2} \in X^{\prime}$. So $y^{x}=y^{-1} z$ implies that $[x, y]=y^{2} z \in X^{\prime}$ and hence $z \in X^{\prime}$. However $z \notin X^{\prime}$ and hence $y^{x}=y^{-1}$. Let $h=g y$ so that $o(h)=2^{r_{0}} \cdot m=n$ and $H=\langle h\rangle \times\langle z\rangle$. Moreover $h^{x}=h^{-1}$. Let $h^{i} x^{j}$ be
an arbitrary element of X and $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ be maps defined by $\sigma_{1}\left(h^{i} x^{j}\right)=h^{i} x^{j}, \quad \sigma_{2}\left(h^{i} x^{j}\right)=h^{i}(x x)^{j}, \sigma_{3}\left(h^{i} x^{j}\right)=(h z)^{i} x^{j}$ and $\sigma_{4}\left(h^{i} x^{j}\right)=$ $(h z)^{i}(x z)^{j}$. It is easily verified that $A_{c}(X)=\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$ and that $A_{c}(X) \simeq C_{2} \times C_{2}$. This is a contradiction and hence we must conclude that $X^{\prime} \supseteq Z(X)$. Hence by (5.2) it follows that $X \simeq D(4 n), D C(4 n)$ or $Q D(4 n)$ if $4 \mid n$ while if 4$\} n, X \simeq D(4 n)$ or $D C(4 n)$. In every case however $A_{c}(X) \neq C_{4}$.

Lemma 5.7. Let $n \in N$.
(a) There is no finite group X such that $X / Z(X) \simeq D C(4 n)$.
(b) There is no finite group X such that $X / Z(X) \simeq Q D(8 n)$.

Proof.

(a) $D C(4 n)=\left\langle x, y \mid x^{4}=y^{2 n}=1, \quad x^{2}=y^{n}, \quad y^{x}=y^{-1}\right\rangle$. Let $n>1$. Hence if $z=x^{2}$, we have a generating set $S=\{x, y\}$ for $D C(4 n)$ such that $z \in\langle x\rangle$ and $z \in\langle y\rangle$. So by (2.20) the result follows. If $n=1$, the result is trivial.
(b) $Q D(8 n)=\left\langle x, y \mid x^{2}=y^{4 n}=1, y^{x}=y^{2 n-1}\right\rangle$. We observe that $(x y)^{2}=y^{2 n}$ and that $\{x y, y\}$ is a generating set for $Q D(8 n)$. Hence the result follows by (2.20).

Lemma 5.8. Suppose X is an abelian 2-group of order greater than 1 and exponent at most 4 . Let $r=2-r a n k$ of Aut (X). Then
(a) $r=1 \Rightarrow \simeq C_{4}$.
(b) $r=2 \Rightarrow \simeq C_{2} \times C_{4}$ or C_{4}.

Proof. Let X have a basis consisting of n_{1} elements of order 2 and n_{2} elements of order 4. Then Aut (X) has an elementary abelian 2 -subgroup of order $2^{\left(n_{1}+n_{2}\right) n_{2}}$ by (2.19). If $r=1$, then $\left(n_{1}+n_{2}\right) n_{2} \leqq 1$ which implies that $n_{1}=0$ and $n_{2}=1$ giving $X \simeq C_{4}$. If $r=2$, then $\left(n_{1}+n_{2}\right) n_{2} \leqq 2$ so that $n_{1}=n_{2}=1$ or $n_{1}=0, n_{2}=1$. So $X \simeq C_{2} \times C_{4}$ or C_{4}.

Proposition 6.1. The following list gives all finite abelian groups X such that $\operatorname{Aut}(X) \simeq D(2 n)$ for some $n \in N$.
(a) $X \simeq C_{3}, C_{4}$ or C_{6} and $\operatorname{Aut}(X) \simeq C_{2} \simeq D(2)$.
(b) $X \simeq C_{8}$ or $C_{4} \times C_{3}$ and Aut $(X) \simeq C_{c} \times C_{2} \simeq D(4)$.
(c) $X \simeq C_{2} \times C_{2}$ and Aut $(X) \simeq D(6) \simeq S_{3}$.
(d) $X \simeq C_{2} \times C_{4}$ and $\operatorname{Aut}(X) \simeq D(8)$.
(e) $X \simeq C_{2} \times C_{2} \times C_{3}$ and Aut $(X) \simeq D(12)$.

Proof. It is easily verified that if $\operatorname{Aut}(X) \simeq D(2 n)$ and $n=1$ then $X \simeq C_{3}, C_{4}$ or C_{6} and that if $n=2$ then $X \simeq C_{8}$ or $C_{4} \times C_{3}$. So let us suppose that $n \geqq 3$.

If n is odd then $Z(D(2 n))=1$ and so X is an elementary abelian 2-
group by (2.5). So $\operatorname{Aut}(X) \simeq G L(m, 2)$ for some $m \in N$. Hence, by (5.6) we must have $n=3$ so that $X \simeq D(6)$.

Suppose $(n, 4)=2$. Then $D(2 n) \simeq D(n) \times C_{2}$, and $Z(D(2 n)) \simeq C_{2}$. By (2.5) $\pi(X) \subseteq\{2,3\}$. If X is a 3-group then it must be elementary abelian so that $G L(m, 3) \simeq D(2 n)$ for some $m \in N$. This is not possible since $n \geqq 3$. If X is a 2 -group then again by $(2.5) \exp (X) \leqq 4$. So by (5.8) $X \simeq C_{4}$ or $C_{2} \times C_{4}$ and it may be verified that both cases are not possible under our current assumptions.

Thus X cannot be a p-group. Hence $X=S \times T$ where S is a 2 -group with $|S|>2$ and T a 3-group of order at least 3 and exponent 3. So Aut $(X) \simeq \operatorname{Aut}(S) \times \operatorname{Aut}(T)$. Since Aut (T) cannot be isomorphic to $D(n)$ by the first part, we must have Aut $(S) \simeq D(n)$ and $\operatorname{Aut}(T) \simeq C_{2}$. It follows that $S \simeq C_{2} \times C_{2}$ and $T \simeq C_{3}$ so that $X \simeq C_{2} \times C_{2} \times C_{3}$ and it is easily verified that $\operatorname{Aut}(X) \simeq D(12)$.

Suppose $4 \mid n$. Then $D(2 n)$ is indecomposable and $Z(D(2 n)) \simeq C_{2}$. Again by $(2.5) \pi(X) \subseteq\{2,3\}$. Clearly X cannot be a 3 -group. If X is a 2-group then by (5.8) $X \simeq C_{4}$ or $C_{2} \times C_{4}$. It is easily verified that Aut $\left(C_{2} \times C_{4}\right) \simeq D(8)$. If $X=S \times T$ where S is a 2 -group and T a 3group it follows from the indecomposability of $D(2 n)$ that $|S| \leqq 2$ and Aut $(T) \simeq D(2 n)$. However we have already seen that this is not possible.

Hence the proposition is proved.

Proposition 6.2. The following list gives all nonabelian finite groups X such that $\operatorname{Aut}(X) \simeq D(2 n)$ for some $n \in N$.
(a) $X \simeq D(6)$ and $\operatorname{Aut}(X) \simeq D(6)$.
(b) $X \simeq C_{8}$ or $C_{4} \times C_{3}$ and Aut $(X) \simeq C_{c} \times C_{2} \simeq D(4)$.
(c) $X \simeq D(12)$ and $\operatorname{Aut}(X) \simeq D(12)$.
(d) $X \simeq D(6) \times C_{3}$ and Aut $(X) \simeq D(12)$.
(e) $X \simeq D(8)$ and $\operatorname{Aut}(X) \simeq D(8)$.

Proof. Clearly $n>1$. If $n=2$, it is easily seen that X must be a 2 group of class 2 and hence $|X|$ divides 4 (by (2.14)). So $n>2$.

Suppose n is odd and X is a $P N$-group. Clearly $X / Z(X) \simeq D(2 n)$. So $A_{c}(X)=1$. By (5.6) it follows that $Z(X)=1$. So $X \simeq D(2 n)$. Hence \mid Aut $X \mid=n \phi(n)=2 n$. Thus $\phi(n)=2$ and so $n=3,4$ or 6 . Since n is odd, $n=3$. In fact, $\operatorname{Aut}(D(6)) \simeq D(6)$. If X is not a $P N$-group then $X=Y \times A$ where Y is a $P N$-group and A is abelian. It follows that $\operatorname{Inn}(Y) \simeq \operatorname{Aut}(Y) \simeq D(2 n)$ and that $\operatorname{Aut}(A)=1$. Hence $X \simeq D(6)$ or $D(6) \times C_{2}$. However Aut $\left(D(6) \times C_{2}\right)$ is isomorphic to $D(12)$ and so $X \simeq D(6)$ is the only possibility satisfying the current hypothesis.

Suppose now that $(n, 4)=2$ so that $n=2 n_{0}, n_{0}$ odd. Clearly $X / Z(X) \simeq D\left(2 n_{0}\right)$ or $D(2 n)$. Suppose $X / Z(X) \simeq D\left(2 n_{0}\right)$ and that X is a $P N$-group. It follows from (5.6) that $X \simeq D C\left(4 n_{0}\right)$, since $\left|A_{c}(X)\right|=2$. Thus $|\operatorname{Aut}(X)|=2 n_{0} \phi\left(2 n_{0}\right)=4 n_{0}$ so that $\phi\left(2 n_{0}\right)=2$. Hence $2 n_{0} 3,4$, or 6 yielding $n_{0}=3$ since it is odd. So $X \simeq D C(12)$ and it is easily verified that $\operatorname{Aut}(X) \simeq D(12)$ in this case. Suppose $X=Y \times A$ where Y is a $P N$-group and A is abelian. Then $\operatorname{Inn}(Y) \simeq D\left(2 n_{0}\right)$ and Aut $(Y) \simeq D\left(2 n_{0}\right)$ or $D(2 n)$, since Aut (X) must contain a subgroup isomorphic to $\operatorname{Aut}(Y)$. If $\operatorname{Inn}(Y) \simeq \operatorname{Aut}(Y) \simeq D\left(2 n_{0}\right)$ then from what has already been established it follows that $n_{0}=3$ and $Y \simeq D(6)$. Moreover $|\operatorname{Aut}(A)| \leqq 2$ and so $A \simeq 1, C_{2}, C_{3}, C_{4}$ or C_{6}. It is easily verified that $X \simeq D(6) \times C_{2}$ or $D(6) \times C_{3}$ and in each case $\operatorname{Aut}(X) \simeq D(12)$. Note that there is no $P N$-group Y with $\operatorname{Inn}(Y) \simeq D\left(2 n_{0}\right)$ and $\operatorname{Aut}(Y) \simeq D(2 n)$.

Suppose now that $n>4$ and $4 \mid n$. Again $X / Z(X) \simeq D(2 n)$ or $D(n)$ and in either case $\left|A_{c}(X)\right|=2$. By (5.6) it follows that both possibilities cannot occur if X is a $P N$-group. So suppose $X=Y \times A$ where Y is a $P N$-group and A is abelian. If $\operatorname{Inn}(X) \simeq D(n)$ then $\operatorname{Inn}(Y) \simeq D(n)$ and Aut $(Y) \simeq D(n)$ or $D(2 n)$. Neither case can occur, as has already been established. If $\operatorname{Inn}(X) \simeq D(2 n)$ then $\operatorname{Inn}(Y) \simeq \operatorname{Aut}(Y) \simeq D(2 n)$ which is again impossible. Thus $4 \mid n$ implies $n=4$.

So suppose that $\operatorname{Aut}(X) \simeq D(8)$. By (5.6) this is impossible if $\operatorname{Inn}(X) \simeq D(8)$ when X is a $P N$-group. The same conclusion can be established even if X is not a $P N$-group, in the usual way. Hence $\operatorname{Inn}(X) \simeq C_{2} \times C_{2}$ so that X is nilpotent of class 2 . The indecomposability of $D(8)$ implies that X is a 2-group. Hence by (2.14) $|X|$ divides 8 . The only possibility is therefore $|X|=8$ so that $X \simeq D(8)$ or Q. Since Aut $(D(8)) \simeq D(8)$ and $\operatorname{Aut}(Q) \simeq S_{4}, X$ must be isomorphic to $D(8)$ in this case.

Hence the proposition has been proved.
Theorem 6.3. The following list gives all finite groups X such that Aut $(X) \simeq D(2 n)$ for some $n \in N$.
(a) $X \simeq C_{3}, C_{4}$ or C_{6} and $\operatorname{Aut}(X) \simeq D(2)$.
(b) $X \simeq C_{8}$ or C_{12} and Aut $(X) \simeq D(4)$.
(c) $X \simeq C_{2} \times C_{2}$ or $D(6)$ and $\operatorname{Aut}(X) \simeq D(6)$.
(d) $X \simeq C_{2} \times C_{4}$ or $D(8)$ and $\operatorname{Aut}(x) \simeq D(8)$.
(e) $X \simeq C_{2} \times C_{6}, D(6) \times C_{3}, D C(12)$ or $D(12)$ and $\operatorname{Aut}(X) \simeq D(12)$.

Proof. Immediate consequence of (6.1) and (6.2).
Proposition 6.4. Suppose X is a finite group such that Aut $(X) \simeq D C(4 n)$ for some $n \in N$. Then $X \simeq C_{5}$ or C_{10} and Aut $(X) \simeq$ $C_{4} \simeq D C(4)$.

Proof. Suppose X is nonabelian. Then $n \neq 1$. Also $Z(X)<X$ and $X / Z(X) \simeq D C(4 m)$ for some $m \in N$, by (5.3). This is impossible by (5.7). So X must be abelian. Suppose $n>1$. Then $\pi(X) \subseteq\{2,3\}$ by (2.5). If X is a 3-group then $\operatorname{Aut}(X) \simeq G L(m, 3)$ for some $m \in N$ since $\exp (X)=3$ in this case. However by (5.5) this is not possible. If X is a 2 -group then $\exp (X)$ is at most 4 and hence by (5.8) $X \simeq C_{4}$ which is false. Hence $X=S \times T$ where S is a 2 -group of order greater than 2 and T is a 3-group of order greater than 1. But then Aut $(X) \simeq$ Aut $(S) \times \operatorname{Aut}(T)$ which is impossible since $D C(4 m)$ is indecomposable for any $m \in N$. So $n=1$. Clearly then X must be cyclic and so $X \simeq C_{5}$ or C_{10}.

Proposition 6.4. The following list gives all finite abelian groups X such that Aut $(X) \simeq Q D(8 n)$ for some $n \in N$.
(a) $X \simeq C_{15}, C_{16}, C_{20}$ or C_{30} and Aut $(X) \simeq C_{4} \times C_{2} \simeq Q D(8)$.
(b) $X \simeq C_{2} \times C_{2} \times C_{5}$ and Aut $(X) \simeq Q D(24)$.

Proof. If $n=1$ then $Q D(8)$ is abelian and so by (2.22) X must be cyclic. Hence it is easily proved that $X \simeq C_{15}, C_{16}, C_{20}$ or C_{30}. So let us assume that $n>1$. Then $Z(Q D(8 n)) \simeq C_{2}$ if n is even and isomorphic to C_{4} if n is odd. Suppose n is even. Then by $(2.5) \pi(X) \subseteq\{2,3\}$. If X is a 3-group, it is elementary abelian and hence Aut $(X) \simeq G L(m, 3)$ for some $m \in n$. This is impossible by (5.5). If X is a 2 -group then $\exp (X) \leqq 4$ and so by (5.8) $X \simeq C_{4}$ or $C_{2} \times C_{4}$ both of which are impossible. So $X=S \times T$ where S is a 2 -group with $|S| \geqq 4$ and T is a 3-group with $|T|>1$. So $\operatorname{Aut}(X) \simeq \operatorname{Aut}(S) \times \operatorname{Aut}(T)$ and this is impossible since $Q D(8 n)$ is indecomposable when $n>2$ and n even. So n is odd and hence $\pi(X) \subseteq\{2,5\}$. If X is a 5 -group then Aut $(X) \simeq G L(m, 5)$ for some $m \in N$, which is impossible. As before, X cannot be a 2 -group either. Hence $X=S \times T$ where S is a 2-group with $|S| \geqq 4$ and T is a 5 -group with $|T|>1$. So Aut $(X) \simeq$ Aut $(S) \times \operatorname{Aut}(T) \simeq D(2 n) \times C_{4} . \quad$ By (6.1) $\quad S \simeq C_{2} \times C_{2} \quad$ and hence $T \simeq C_{5}$. Thus $X \simeq C_{2} \times C_{2} \times C_{5}$ and it is easily verified that Aut $(X) \simeq Q D(24)$.

Proposition 6.5. If X is a nonabelian finite group such that Aut $(X) \simeq Q D(8 n)$ for some $n \in N$ then $X \simeq D(6) \times C_{5} \quad$ and $\operatorname{Aut}(X) \simeq Q D(24)$.

Proof. Suppose n is odd. If $n=1$ then X is nilpotent of class 2. Moreover if an odd prime p divides $|X|$, it is easily seen that X would have to be abelian. Hence X is a 2 -group. So by (2.14), $|X| \leqq 8$ which is easily seen to be impossible. So $n>1$. By (5.4) and (5.7) it follows that $X / Z(X) \simeq D(2 n)$ or $D(4 n)$. Suppose $X / Z(X) \simeq D(2 n)$. Clearly
$A_{c}(X) \simeq C_{4}$ and by (5.6) X cannot be a $P N$-group. Let $X=Y \times A$ where Y is a $P N$-group and A is abelian. Then $\operatorname{Inn}(Y) \simeq D(2 n)$ and Aut $(Y) \simeq D(2 n), D(4 n)$ or $Q D(8 n)$. Aut $(Y) \simeq D(2 n)$ implies that $n=3$ by (6.2) and $Y \simeq D(6)$. Hence \mid Aut $(A) \mid \leqq 4$ so that $A \simeq 1, C_{2}, C_{3}, C_{4}$, $C_{5}, C_{6}, C_{8}, C_{10}$ or C_{12}. It is easily verified that $\operatorname{Aut}(Y \times A) \simeq Q D(24)$ exactly when $A \simeq C_{5}$. Now suppose that $\operatorname{Aut}(Y) \simeq D(4 n)$. Then by (6.2) $Y \simeq D(12), D C(12)$ or $D(6) \times C_{3}$ and hence $A \simeq 1, C_{2}, C_{3}, C_{4}$ or C_{6} and $n=3$. However, it is easily verified that $\operatorname{Aut}(Y \times A) \nleftarrow Q D(24)$ in any of these cases. Besides, Aut $(Y) \simeq Q D(8 n)$ is impossible since Y is a $P N$-group and $\operatorname{Inn}(Y) \simeq D(2 n)$. Suppose $X / Z(X) \simeq D(4 n)$. Again by (5.6) X cannot be a $P N$-group. Let $X=Y \times A$ as usual. Then $\operatorname{Inn}(Y) \simeq \operatorname{Aut}(Y) \simeq D(4 n)$. By (6.2) this is not possible.

Suppose now that n is even. By (5.4) and (5.7) it follows that $X / Z(X) \simeq D(4 n)$. Also $A_{c}(X) \simeq C_{2}$. By (5.6) X cannot be a $P N$-group. Let $X=Y \times A$ where Y is a $P N$-group and A is abelian. We must have $\operatorname{Inn}(Y) \simeq \operatorname{Aut}(Y) \simeq D(4 n)$. This is impossible by (6.2).

Thus the result has been established.
Theorem 6.6. The following list contains all finite groups X such that Aut $(X) \simeq Q D(8 n)$ for some $n \in N$.
(a) $X \simeq C_{15}, C_{16}, C_{20}$ or C_{30} and Aut $(X) \simeq C_{4} \times C_{2} \simeq Q D(8)$.
(b) $X \simeq C_{2} \times C_{2} \times C_{5}$ or $D(6) \times C_{5}$ and Aut $(X) \simeq Q D(24)$.

Proof. Immediate consequence of (6.4) and (6.5).
Acknowledgements. The author wishes to thank Professors W. R. Scott and F. I. Gross for several helpful suggestions and Dr. Rolando Pomareda for many useful discussions in connection with this problem.

References

1. J. E. Adney and T. Yen, Automorphisms of a p-group, Ill. Jour. Math. 9 (1965), 137-143.
2. B. E. Earnley, On finite groups whose group of automorphisms is abelian, Ph.D. Thesis, Wayne State University, 1974.
3. R. Faudree, A note on the automorphism group of a p-group, Proc. AMC 19 (1968), 1379-1382.
4. J. T. Hallett and K. A. Hirsch, Die Konstruktion von Gruppen mit vorgeschriebenen Automorphismen-Gruppen, J. Reine angew. Math. 238/240 (1970), 32-46.
5. M. E. Harris, A universal problem and covering groups of finite groups. Unpublished.
6. H. Heineken and H. Liebeck, The occurrrence of finite groups in automorphism group of nilpotent groups of class 2, Arch. Math. 25 (1974), 8-16.
7. I. N. Herstein and J. E. Adney, A note on the automorphism group of a finite group, Amer. Math. Monthly 59 (1952), 309-310.
8. B. Huppert, Endliche Gruppen I, Springer-Verlag, New York, 1967.
9. K. H. Hyde, On the order of the automorphism group of a finite group, Ph.D. Thesis, University of Utah, 1969.
10. G. A. Miller, Groups with the same group of isomorphisms, Trans. AMS 1 (1900), 395-401.
11. W. R. Scott, Group Theory, Prentice-Hall, 1964.
12. A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, Dritte Auflage, Dover Publications, New York, 1937.
13. H. deVries and A. B. de Miranda, Groups with a small number of automorphisms, Math. Z. 68 (1958), 450-464.
14. R. Baer, Finite extensions of abelian groups with minimum condition, Trans. AMS 79 (1955), 521-540.
15. J. L. Alperin, Groups with finitely many automorphisms, Pacific J. Math. 12 (1962), 1-5.
16. D. J. S. Robinson, A contribution to the theory of groups with finitely many automorphisms, Proc. London Math. Soc. 35, July 1977, 34-54.

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112. Current address: Department of Statistics, Colorado State University, Fort Collins, Colorado 80523

[^0]: Received by the editors on June 12, 1977, and in revised forn on September 24, 1977.

