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ON THE FOURIER COEFFICIENTS AND CONTINUITY
OF FUNCTIONS OF CLASS 7 ,*

ELAINE COHEN

ABSTRACT. Let f be a periodic function with a fractional intergral
fuy or fractional derivative f of class #",". For a class of Young’s
functions, this paper presents necessary and sufficient conditions for
continuity of f,, or f” in terms of the orders of magnitude of the
partial sums of the absolute values of the Fourier coefficients of f.
Sufficient conditions are presented for another class of Young’s func-
tions. Also, results on the order of magnitude of the Fourier
coefficients of f are derived.

1. Introduction. For real functions f of period 27 with r-th fraction-
al derivative, r = 0, of bounded p-variation, Golubov [4] has obtained
conditions for continuity of the r-th derivative in terms of the moduli
of the Fourier coefficients. We consider the analogous problem for
functions whose fractional derivatives are of ®-bounded variation, and
also obtain estimates on the order of magnitude of the Fourier
coefficients. Below, we shall briefly define the terms used and state
some elementary properties. For a short summary of the properties of
these terms see Cohen [2]. More complete discussions are in Zygmund
[11], Krasnosel’skii and Rutickii [5], L. C. Young [10], E. R. Love [6],
and Musielak and Orlicz [7].

We define an N-function or Young’s function to be any convex,
strictly increasing function @ such that lim, ®(u)/u = co and lim,_,
®(u)/u = 0. Furthermore, an N-function ® satisfies the A’ condition (or
® is A’) for (small; large) values if there exists ¢ > 0 (and u, > ¢) such
that (for [« |yl = ugi [t [y] = uo)

Oxy) = cD)D(y).
If @ is A’ for small values, say |u| = u,, then we can replace u, by any

w > u, but the A’ constant ¢ increases unboundedly with w unless @ is
A’ for all values.

For an N-function ®, define
Volfs I) = sup 2 O(flx) — fix;_y)

where the supremum is taken over all partitions Q of the interval I
We call Vi(f; I) the ®-varation of f on I. Vg(f) and “the ®-variation of
f” is used when the interval is of length 2.
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The class of functions of ®-bounded variation (PBV) is
7 ol) = {f € L{I): Vo(f; I) < oo}

Closely related definitions are

V@, ) = sup > O(flx;) — flx;_y)

Q=8

and

V' (f: I) = lim V@)f; I),

s§-0*

where |Q| denoted the mesh of the partition Q, and
7 o) = {fi(kf) € 7 g(I) for some real k # 0}.

Functions f of ® bounded variation can have simple discontinuities
only. We shall assume that they are normalized so that

fa) = 3(flx +) + fle ).

It can be shown that a necessary and sufficient condition for V(f; I) to
be finite is that V,*(f; I) is finite. Later proofs will use the two defini-
tions interchangeably.

Suppose f is of period 27, f has mean value zero ( {f = 0) and
fa) ~ Zeeine = 3 ¢ e,

n#0
For r > 0 set
(in)™" = |n|7" exp(— Zimrsgn n),
and define
DO(t) = 3 (in)~" €int.
If r is an interger D is a polynomial and
b S FOD — tyde

is an r-th order primitive of f. For any real r > 0 we define the frac-
tional integral of order r of f:

fol®) = SFODO — vt
It can be shown that f(x) exists almost everywhere, is integrable, and

f(r)(x) ~ 2

, Cneinz
(in)
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We say that f is the fractional derivative of f of order r if
fx) = SDx — t)f(H)dt  ae.,
i.e., f is a fractional integral of f of order r.
We let
7Y = {f: fO exists and fO € V,}.

Define W as the set of 27 periodic functions with no discontinuities
of the second kind, and such that

min{g(t —), g(t +)} = gt) = max{g(t —), gt +)}.
Then V, C W for all N-functions ®.

2. Suppose that g € 74 for any N-function ® and that

2.1) git) ~ > aycos kt + Bsin kt
k=1

and

2.2) (@ = (a” + B2

Consider the following conditions on a sequence of non-negative real
numbers {p,}:

W) S Ko = ofn)
k=1

) S ko, =o(n)
k=1

() S, =ollog n)
k=1

() 3 nd =ol/m)

The following result is well known [3].

Lemma 2.1. Conditions (I)«(IV) are related as follows (IV) = (I) =
(II) = (III).

In the same paper Golubov has proven the following result which we
shall require.
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THEOREM 2.2. If g € W, and {p,} is as in equation (2.2), each of
the conditions (I)~(IV) is sufficient for g to be continuous; however,
there is no condition on {p,} which is necessary and sufficient.

For a smaller class of functions we make this result somewhat more
precise in the following theorem.

THEOREM 2.3. Let ® be an N-function and let g € 7 4", and equa-
tions (2.1) and (2.2) hold. We have

(a) if lim,_ ju?/®(u) = O, each of the conditions (I}~(IV) is
necessary and sufficient for g to be continuous,

(b) if lim inf, u2?/®(u) # O, each of the conditions
(I(IV) is still sufficient, but there is no condition on
{p,} which is necessary and sufficient.

Proor. (a) Since 7 ;* C W for all I, by Theorem 2.2, we have that
each condition is sufficient for the continuity of g €7 ,*. Now, sup-
pose lim,_ju?/®(u) = 0, g €7 ,* and g is continuous.

gt+ h) — gt — h) ~2 3 ( — aysin kt + B,cos kt) sin kh.
1

Cohen [2] has shown that for f € 77,* there exists b # 0 such that

2.3) sup [ ®bfixth) — bfiw)dx S 38VEIbY)

Ih1=8

Now lim,_u?/®(u) = 0 implies 7"y C7",, so using Parseval’s formula
and equation 2.3, for some b+ 0,

4b% 3 p,? sin kh
k=1

1 27
— S et + B — g — P

1o (belx + 1) — blglx — 07 el =
T Sup { ‘I)(bg(x + t) — bg(x _ t)) R = [0, 2 ]a ]t| = h}

fﬂ D(bg(t + h) — bg(t — h))dt

= o(L)o(h) = ofh).

From Wiener [9] and above,

1A
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ilim sup <n > pi2 >§ lim sup<n > py2sin e > = o(1)
4 k=n n->0 k=1 n

n->00

so condition (IV) is satisfied, and by Lemma 2.1, conditions (I)~(III) are
also satisfied.

(b) Consider the functions
) T — 1
)= S klsnke= 4 gz O0<t<?2r
k=1 0 t=20
with discontinuity at ¢ = 0, and

[

fot) = 2 k71lsin k(t + log k).
k=1
Both series converge for all ¢, f,(0) = 0, f;(0 +) = % f,(0 —) = — &,
and f € 77|, while f, € Lip 1/2[11, v. I, p. 197] and hence is contin-
uous. We also have p,(f;) = p,(f,) for all k.

Now if lim inf, ,u2/®(u) # O, then there exists u; > 0 and A > 0
such that for 0 = u = ug, O(u) = Aul.

Thus, 7", C 7 4" and since Lip 1/2 C 77,
fo E7 4"

Since 7", C 7 4, we have f; € 7 4. Thus, no condition on {p,} can
be necessary and sufficient for the continuity of a function in this case.

The above theorem admits several generalizations.

COROLLARY 2.4. Let f0 € 7 "% r = 0. Then

(a) if lim, qu?/®(u) = O each of the following conditions is equiva-
lent to the continuity of f® (p, = pi(f):

n

m S K = ofn)
k=1

() S kg, = ofn)
k=1

(T1II) % k'p,, = o(log n)
k=1

(Iv) S K2 = ofl/n).



232 E. COHEN

(b) If lim inf, ,u?/®(u) # O then each of the conditions (I} ~(IV) is still
sufficient, but there is no condition on {p,} which is necessary and suf-
ficient.

Proor. Since f(t) = (D"x — t)f"(¢)dt, if fO ~ = a,cos kx +
Bysin kx then

f ~ Xn~"cos kx(a,cos ymr — PB,sin L)

+ n~"sin kx(B,cos ymr + a,sin gwr)

and
p(f) = n~"[(a,cos gmr — B, sin Fmr)?
+ (B,cos +7r + a,sin 3ar)?]1/2
=n"a,2 + B2V

= n""p(f").

So applying Theorem 2.3 to
px(f7) = n'oi(f),

the result follows.
CoroLLARY 2.5. Suppose f,, € Ve 0<r<Ll

(a) If lim,_qu?/®(u) = 0, then each of the following is equivalent to
the continuity of f,:

n

@ 2 K=%p2 = o(n)

k=1

() S K7, = ofn)
k=1

(I1m) % k="p, = o(log n)
k=1

(Iv) § k=2 = o(1/n).
k=n

(b) if lim inf,_ qu?/®(u) # 0, then each of the conditions (I)—(IV) is
still sufficient, but there is no condition on {p,} which is necessary and
sufficient.
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Proor. k~"o,(f) = py(fi)-

TueoreM 2.6. If f € 7 3" and if ®, ¥ are N-functions such that
lim Y(x)/®(x) = O then f is continuous iff, for some b # 0,

-0

STY®(flx + h) — fla))dx = of|h)
Proor. Let f € 77" be continuous, ¥ as above. By equation (2.3),

17 wome + w - fuy)

V(bfit + u) — bfiY) =
P { Sfit + w by € 12wl = h }

T o + m) — fde

= o{1)- o(|h)
= o(|h|).

1A

Conversely, suppose f has jump d > 0 at x,. For h sufficiently small,
then

[ftx + h) — fl] > d/2
in an interval of length |h|. Thus

f” Yb(fx + h) — fx)dx > |h|¥ < % )séo(lh|).

Therefore, 27 ¥(b(flx + h) — flx)))dx = o(|h|) implies f is contin-

uous.

DEFINITION. Let wg(1; f; 8) = V(f) and then define

wglk; f; 8)= sup wg(1; AF~Yf; |h))

|h1=8

= sup V{)(AE-1f),

|hI=8

where
k k
sif= 3 (-0 5 e v o

= ARt +h) — AR
andk = 2,3, ---.
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LeEmMMA 2.7. Suppose @ is A’ and f € 73, 0 = rand 1 = k. Then
1 1

O e ()

1
2519 ~1/cy3m)@*Gm)m

max(|a,|, [b,|) =

Proor. Let g € 77,

glx) ~ X a,cos nx + PB,sin nx.
Then

gkg, =L j‘z {Ak, g(t)} cos nt dt.

Using Holders inequality,

2¥a,| = [Az/.80)] &

o* '
Now

187/:801 &' = lAz72 gt + 7/n) — ALY g(0)] &

lIA

inf { j:ce®(1/9)

L7 oA gt + m/m) — M2 gt = 1}

mf{ jice® 1/1 2 (D( Akl g < t+ %)

A,,k,,,lg(tju@ )) dt = 1}

inf { jiceg® (1/1) — welk; g m/n) = 1 }

. ) n
inf { i ®(1/j) = coroalks & /1) } .

1A

lIA

Thus
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1

147 /nglle =

N Gy
cpmog(k; g m/n)
1

1
(I)—l (I)—l 1 3 (I)—l
(m)®=H1/eq’m) ( wg(k; g m/n) )

IIA

and
<I>_1(1/cq,371;r<1)*< 51— > . qr’(n)q)—l(—ll—) )

T we(k; g m/n

2¥a,| =

The inequality for |B8,| is proved similarly.

Thus

nl

9-k

q>-1(n)‘1"1< m )

1
O*Gm)®~Y(1/(cg’m)m
Now, let g = f, r Z 0. Then
koi(f) = pilf)s

max (la,)), |B,) =

and if
flx) ~ X a,cos nx + b,sin nx,
then
1
max(|a‘n|’ lbﬂl) é 1
k=10 Y d ! [ —
wy(k; f; w/n
1
a®—Y(1/cy3m)®*(3m)

as desired.

The following class of functions was introduced by E. R. Love [5].

DEerFiniTioN. We say that a function g is ®-absolutely continuous
(PAC) if given € > 0, there exists a §, > 0 such that
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20(gB) — glay) <€

holds for any nonoverlapping intervals (a;, 8;) lying in the period and
such that

2 OB — ) <8,
Tueorem 2.8. If f@ € ®AC, ® a A’ N-function, then

""@“(W)'

Proor. Select € > 0. Then choose an integer p such that 2 ®(=/p)

= 2p®(w/p) < 2pc®(1/p) < c¢b/m, where cd/m is the §, in the last def-
inition, and so

2p

i j — D)
o(m(5)-rm(15F)) <
Zo(m(E)-m(=2)) <
Let {x;} be any partition of a period with mesh less than 1/2p and
group the elements Ax; = x; — x;_, so that
j2
1o =zt
N

We have
Jk41
> oAx) < X @ < > Ax; ) < 2pm®(1/p) < § < 4,
k =ik
and therefore

2 O(fx;) — fAxiy) < e

Thus V/@P)(f0) < ¢, hence

V@/m(f®) = o(1) as n — oo.
Using Lemma 2.7, with k — 1,

1 1
plf) =iy oM = © <ﬂ>)
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