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ON THE FOURIER COEFFICIENTS AND CONTINUITY
OF FUNCTIONS OF CLASS >Y

ELAINE COHEN

ABSTRACT. Let / be a periodic function with a fractional intergral
f(T) or fractional derivative fr) of class X^*. For a class of Young's
functions, this paper presents necessary and sufficient conditions for
continuity of f(T} or /M in terms of the orders of magnitude of the
partial sums of the absolute values of the Fourier coefficients of /.
Sufficient conditions are presented for another class of Young's func-
tions. Also, results on the order of magnitude of the Fourier
coefficients of / are derived.

1. Introduction. For real functions / of period £77 with r-th fraction-
al derivative, r = 0, of bounded p-variation, Golubov [4] has obtained
conditions for continuity of the r-th derivative in terms of the moduli
of the Fourier coefficients. We consider the analogous problem for
functions whose fractional derivatives are of O-bounded variation, and
also obtain estimates on the order of magnitude of the Fourier
coefficients. Below, we shall briefly define the terms used and state
some elementary properties. For a short summary of the properties of
these terms see Cohen [2]. More complete discussions are in Zygmund
[11], Krasnosel'skii and Rutickii [5], L. C. Young [10], E. R. Love [6],
and Musielak and Orlicz [7].

We define an N-function or Young's function to be any convex,
strictly increasing function O such that limu_>00 O(M)/M = oo and limu_0

<$>(u)/u = 0. Furthermore, an N-function O satisfies the A' condition (or
O is A') for (small; large) values if there exists c > 0 (and u0 > c) such
that (for |4 |t/| ^ u0; |x|, \y\ i= w0)

If O is A' for small values, say \u\ ^ w0, then we can replace MO by any
w > UQ but the A' constant c increases unboundedly with w unless O is
A' for all values.

For an N-function O, define

V»(f; I) = sup
Q

where the supremum is taken over all partitions Q of the interval I.
We call V^(f; 7) the $-varation of f on L V#(f) and "the O-variation of
/" is used when the interval is of length £77- .
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The class of functions of ^-bounded variation (O#V) is

^*(J) = (/ e Ll(/): V*(f' J) < °°}'
Closely related definitions are

) = sup ]

and

V(f; /) = lim Vg>(f; I),
5-0+

where \Q\ denoted the mesh of the partition Q, and

W for some real

Functions / of O bounded variation can have simple discontinuities
only. We shall assume that they are normalized so that

/(*) = fax +) + /(x -)).

It can be shown that a necessary and sufficient condition for V^(f; I) to
be finite is that V$*(f; I) is finite. Later proofs will use the two defini-
tions interchangeably.

Suppose / is of period 277, / has mean value zero ( J/ = 0) and

/(*) ~ 2'cne
in* = 2 cne

inx.
n^O

For r > 0 set

(in)~T — \n\~r exp(— ^iTrrsgn n),

and define

If r is an interger D<r) is a polynomial and

is an r-th order primitive of /. For any real r > 0 we define the frac-
tional integral of order r of /:

- t)dt.
It can be shown that /(r)(ac) exists almost everywhere, is integrable, and
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We say that fr) is the fractional derivative of / of order r if

fix) = JD«(*- t)f«(t)dt a.e.,

i.e., / is a fractional integral of fr} of order r.

We let

^1? = {/i/W exists and/™ E V*}.

Define W as the set of 2?r periodic functions with no discontinuities
of the second kind, and such that

-), g(t +)} ^ g(*) ̂  max{g(* -), g(

Then V$ C W for all N-functions $.

2. Suppose that g E >^ for any N- function O and that

00

(2.1) g(t) ~ 2 «fccos t* + £fcsin **
fc=i

and

(2-2) Pfc(g) = («fc
2 + ,8fc

2)1/2.

Consider the following conditions on a sequence of non-negative real
numbers (p fc):

(I) £ *2P*2 = o(n)

n

(II) 2 % =<>(«)

(HI) 2 P* =°(log n)

(IV) 2n P*2=°(*/»).

The following result is well known [3].

LEMMA 2.1. Conditions (I)-(IV) are related as follows (IV) => (I) =>
(ii) ̂  (in).

In the same paper Golubov has proven the following result which we
shall require.
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THEOREM 2.2. If g E W, and [pn] is as in equation (2.2), each of
the conditions (I)-(IV) is sufficient for g to be continuous; however,
there is no condition on [pk] which is necessary and sufficient.

For a smaller class of functions we make this result somewhat more
precise in the following theorem.

THEOREM 2.3. Let O be an N-function and let g E ^^*, and equa-
tions (2.1) and (2.2) hold. We have

(a) if limu_>0M2/O(w) = 0, each of the conditions (I)-(IV) is
necessary and sufficient for g to be continuous,

(b) if lim infM^0w2/<J>(w) =£ 0, each of the conditions
(I)-(IV) is still sufficient, but there is no condition on
{pk} which is necessary and sufficient.

PROOF, (a) Since f^ C W for all I, by Theorem 2.2, we have that
each condition is sufficient for the continuity of g &^$*. Now, sup-
pose limu_>0M2/O(w) = 0, g E^$* and g is continuous.

00

g(t + h) - g(t - h) ~ 2 2 ( - «fcSin kt + /?fccos kt) sin kh.
i

Cohen [2] has shown that for / E J/^ there exists b ¥= 0 such that

(2.3) sup J^ " $(fc/(xth) - bf(x))dx ^ 3dV%*\bf).

Now limM_>0M2/O(u) = 0 implies ^^ C ̂ 2, so using Parseval's formula
and equation 2.3, for some b¥= 0,

00
! 2 Pk2 sm fcfr
fc=l

= — J2V|g(* + h) - g(* - h)\2dt
77

*) - fog(X - *))

+ h) - bg(t- h))dt

[0, 2,]; W S fc )
L J' " J

= o(h).

From Wiener [9] and above,
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— lim sup ( n 2 P&2 ) = nm SUP ( n 2 Pfc2sm ) — °W
4 n-»oo \ k=n I n-»oo \ k—^ n /

so condition (IV) is satisfied, and by Lemma 2.1, conditions (I)-(III) are
also satisfied.

(b) Consider the functions
^ f trr /

m - 5 fc-1 sm kt = ( V- ° < * < 2?r
1 *=i I 0 f = 0

with discontinuity at t — 0, and

00

= 2 fc"1 sin fc(* + log fc)-

Both series converge for all t, /^O) = 0, /^O -f) = f, /^O -) = - f,
and / £ ^, while /2 E Lip 1/2[11, v. I, p. 197] and hence is contin-
uous. We also have pfc(fx) = Pfc(/2) f°r all fc-

Now if lim infw^0M2/O(u) ¥= 0, then there exists UQ > 0 and A > 0
such that for 0 ^ M ̂  u0, 4>(w) ̂  Aw2.

Thus, ̂ 2* C ̂ * and since Lip 1/2 C >^2,

/2 ^ ' * '

Since ̂ x C ̂ ^, we have /j E >^. Thus, no condition on {pfc} can
be necessary and sufficient for the continuity of a function in this case.

The above theorem admits several generalizations.

COROLLARY 2.4. Let f™ E ̂  * r ^ 0. Then

(a) i/ limM_+0M2/O(M) = 0 each of the following conditions is equiva-
lent to the continuity ofj*T) (pk = pk(f)'-

(I) ^ *2r+2P*2 = <Xn)

(II) 2 *r+1P* = o(n)

(HI) 2 1fpk = o(log n)

(IV) 2 ^2rPk
2 = o(l/n).

k=n
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(b) // lim infM^0M2/O(w) ^ 0 then each of the conditions (I)-(IV) is stil1

sufficient, but there is no condition on {pk} which is necessary and suf-
ficient.

PROOF. Since f(t) = $ &r\x - t)fr\t)dt, if fr) ~ 2 akcos kx +
/?fcsin kx then

/ — 2n~rcos kx(ancos ^-TTT — f3nsin \

+ n~rsin kx(/3ncos ^irr + ansin ^

and

Pfc(/) = n~r[(<*nc

So applying Theorem 2.3 to

the result follows.

COROLLARY 2.5. Suppose f(r) E TV, 0 < r < 1.
(a) // limM^0w

2/<I>(tt) = 0, then each of the following is equivalent to
the continuity of f(r):

(I) 2 *2-2V = o(n)
k-\

(II) 2 ^-rpfc = o(n)
k-\

(HI) 2 fc-rPfc = o(log n)
k-\

(IV) 2 fc-2rP,2 = o(l/n).
fc=n

(b) if lim infu^0u2/O(w) =^ 0, then each of the conditions (I)-(IV) »
5fi/Z sufficient, but there is no condition on [pk] which is necessary and
sufficient.
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PROOF. fc-'Pfc(/) =

THEOREM 2.6. // / e ^^ and if O, ^ are N-functions such that
limx 0 ty(x)/$(x) = 0 then / is continuous iff, for some b =£ 0,
J^(b(f(x + fc) - /(X)))dt = O(|h|).

PROOF. Let / G 1^* be continuous, ¥ as above. By equation (2.3),

+ K) -

Conversely, suppose / has jump d > 0 at x0. For fo sufficiently small,
then

\f(x +h) - f(x)\ > d/2

in an interval of length |h|. Thus

Therefore, Jgw ^(fe^ + h) - ^)))dx = o(|/i|) implies / is contin-
uous.

DEFINITION. Let w^(l; /; 5) = V^}(/) and then define

«*(*;/;«)= sup «,(!; A*"1/; |h|)

= sup

where

and fc = 2, 3,
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LEMMA 2.7. Suppose $ is A' and f e T^(r), 0 ^ r and 1 ^ fc. Then

, = , x
\ «.(*,/« w/n) /

PROOF. Let g e 2^

g(x) ~-

Then

2fc«n=^r" (A*/ngW) COS nt dt.

Using Holders inequality,

Now

^ inf

n1 g(* + "/«) - A

= inf[ j:c.*(l/fl ^ J^^l *( A^1 g ( t+ ^

g inf

^ inf
c$7rco^(fc; g; 7T/n)

Thus
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1

c^Trw^fc; g; 7T/n)

1

w^(fc; g; 7T/n)

and

co$(fc; g; 7T/n)

The inequality for |/JJ is proved similarly.

Thus

max (|aj), |0J) ^

w^(fc; g; 77/n)

1

Now, let g = /W, r ^ 0. Then

fc-'P*^) = P*(/).

and if

then

i
max(|an|, |6B|) ^-

1$ -VnXO-1 / \
\ «»(*;/W;ir/n j

1

as desired.

The following class of functions was introduced by E. R. Love [5].

DEFINITION. We say that a function g is ^-absolutely continuous
(OAC) if given c > 0, there exists a 50 > 0 such that



236 E. COHEN

holds for any nonoverlapping intervals (ai9 P{} lying in the period and
such that

2 *08f - «J < s0.
THEOREM 2.8. Iff* e $AC, OaA' N-function, then

PROOF. Select £ > 0. Then choose an integer p such that 2 <&(7r/p)
= 2p$(7T/p) < 2pcO(l/p) < cd/n, where C&/TT is the 50 in the last def-
inition, and so

< C.

Let (xj be any partition of a period with mesh less than l/2p and
group the elements A^ = xi — xi_l so that

We have

/ jk+1 \
2 O(A^) < 2 $ ( 2 A*4| )

* x j=jk '

and therefore

2 W*;) - ^(^-i)) < €.

Thus V<l/<2P))(/Xr)) < £j hence

V<«r/n)^W) = 0(1) as n — 00.

Using Lemma 2.7, with fc — 1,
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