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A CHARACTERIZATION OF "HEISENBERG GROUPS"; 
WHEN IS A PARTICLE FREE? 

LARRY BAGGETT 

ABSTRACT. Let H be a connected Lie subgroup of a connected 
Lie group G. Sufficient conditions are given to ensure that the 
smallest closed normal subgroup of G containing H is a generalized 
Heisenberg group. The conditions are that there should exist an ir­
reducible representation T of G and a nonzero vector <p in the space 
of T such that (a) g —• (Tg(<p), <p) vanishes at infinity, and (b) the set 
of functions h—> \(Th(Tg(<p)), Tg(<p))\ should be an equicontinuous fam­
ily of functions on H. Applications are made to theoretical quantum 
mechanics to conclude that a particle is free of external forces pro­
viding some state is appropriately transformed under the action of 
the symmetry group. 

1. Introduction. In this paper we shall concern ourselves primarily 
with a Lie subgroup H of a Lie group G. There are two properties of 
representations T of G which we shall explore. The first is that T 
should "vanish at infinity", (matrix elements vanish at infinity). The sec­
ond is that there should exist a nonzero vector <p in the space H(T) of T 
such that the set [Tg(<p)] of vectors is an "absolutely equicontinuous 
family of vectors for T\H." (This means that the set of functions 
h—* \(Th(Tg(<p)), Tg(<p))\ should be an equicontinuous family of functions 
of H.) Let us discuss these properties briefly. 

Whether a representation vanishes at infinity or not is of interest to 
other researchers, for other reasons, and it is not very well understood 
at all. We prove below, Theorem 2.4, that many standard representa­
tions do vanish at infinity, e.g., faithful irreducible representations of 
connected compact extensions of vector groups. We also indicate a 
proof below that every locally compact group possesses a separating 
family of representations which vanish at infinity. On the other hand, 
there are groups none of whose irreducible representations vanish at in­
finity. 

Our second property is perhaps more interesting, perhaps because it 
is satisfied so seldom. There are a number of other conditions which 
imply the existence of an absolutely equicontinuous family of vectors. If 
T\H is uniformly continuous, then every vector <p generates an absolute­
ly equicontinuous family. If, for some vector <p, the set [Tg(q>J] forms a 
precompact subset of the space H(T), then [Tg(<p)] is an absolutely equi­
continuous family. If the set of functions h—* (Th(Tg(<p)), Tg(cp)) (without 
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the absolute values) is an equicontinuous family of functions on H, then 
<p generates an absolutely equicontinuous family. The important point is 
that all three of these conditions are strictly stronger than absolute 
equicontinuity. These three rarely occur. For instance, in [5] it is shown 
that if H has a separating family of uniformly continuous representa­
tions, then H is the direct product of a compact group with an abelian 
group. On the other hand the weaker property of absolute equi­
continuity does occur, when H is a Heisenberg group for example, and 
from our experience it appears to be a property both delicate and im­
portant. 

In many applications, for example in Section 5 where we prove a 
theorem in theoretical quantum mechanics, H is a one-parameter group. 
In that case we can describe absolute equicontinuity in a more concrete 
way. Thus if T is a unitary representation of the real line, (as T\H would 
be), then by Stone's theorem we know that there exists a projection-
valued measure p on the Borei subsets of the line such that 
Tt= J eitX dp(\)7 If if/ is any vector in H(T)9 then ( T ^ ) , 
\fz) — j eltx d/x̂ (X), where ju,̂  is the measure on R determined by p and 
ip. Now the assumption that qp generates an absolutely equicontinuous 
family of vectors is the same as assuming that the set of functions 
t—-» | j eitx dpig(K)\, (where \ig is the measure determined by p and the 
vector Tg(y).), is an equicontinuous family of functions on the real line. 
But these functions are equicontinuous if and only if the functions 
t —• | J* eitx djLt̂ X)!2, which equals \fig\

2(t), which equals [/Aff*/Aff*] (t), are 
equicontinuous. Consequently, cp generates an absolutely equicontinuous 
family of vectors if and only if this set of Fourier transforms of mea­
sures, (probability measures if cp is a unit vector), forms an equi­
continuous family of functions on R. We do not know of any particular 
criterion ensuring this, but it appears to be a condition with which one 
could compute. 

These properties of the representations of G will have again implica­
tions about the structure of G and of H. Compactness and commuta-
tivity will again play a central role, but this structure is not so simple 
as a direct product. Compare [5]. Indeed our main result, Theorem 3.1, 
asserts that if a representation T satisfies both of the above properties, 
then the smallest closed normal subgroup H" of G containing H is a 
compact extension of a vector group, by which we mean that H" con­
tains a compact normal subgroup K for which the quotient group 
H"/K is a vector group. Mathematically this is simply a statement that 
certain representational hypotheses imply certain structural conclusions. 
This may very well be of theoretical interest in itself, but the author 
feels that it is in the contrapositive direction that this result will be 
useful. If one knows that H" is not a compact extension of a vector 
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group, then information about T\H is available by our theorem. Some 
examples of this sort are given in Section 4. 

Suppose T is an irreducible unitary representation of a Heisenberg 
group G. Then, factoring out its kernel Z, we may think of T as a rep­
resentation of G/Z. We know all of the irreducible representations of 
G, and so we know that G/Z either is a circle group T1 or Z is isomor­
phic with the group of integers, in which case G/Z is an extension of 
an even-dimensional Euclidean space R2j by a circle group. Always 
then G/Z is a compact extension of a vector group. It seems natural to 
think of this class of groups as "Generalized Heisenberg Groups" at 
least in so far as their representations are concerned. 

Finally, in Section 5, we make an application to quantum mechanics. 
Using Theorem 3.1 we can give conditions under which a one-parame­
ter subgroup of the symmetry group of a system is a group of pure 
translations. In other words, given certain hypotheses about the repre­
sentation of the symmetry group, (that representation coming from the 
quantum mechanical model), there must exist some translational symme­
try. For example, if there is an external force acting on the system, 
then it must be acting perpendicularly to some fixed direction. Clearly, 
if enough of these hypotheses hold then there can be no external force. 

2. Special Properties of Representations. By a representation we shall 
mean either a unitary representation or a multiplier representation. If T 
is a representation, then H(T) denotes the Hilbert space in which T 
acts. 

DEFINITION 2.1. Let G be a locally compact group. A representation 
T of G is said to vanish at infinity if for each pair (v, w) of vectors in 
H(T) the function g—> (Tg(v), w) vanishes at infinity. 

This definition is made in the same spirit as are those of integrable 
and square-integrable representations. Indeed, since the functions 
g —• (Tg(v)9 w) are all uniformly continuous, it follows that a representa­
tion which is either integrable or square-integrable must necessarily 
vanish at infinity. We have the following expected and routine proposi­
tion. 

PROPOSITION 2.2. 

(i) If T is a cyclic representation of a locally compact group G, and 
if there exists a cyclic vector v such that the function g—* (Tg(v), v) van­
ishes at infinity, then T vanishes at infinity. 

(ii) If T vanishes at infinity, then its kernel must be compact. 
(Hi) No finite dimensional representation of a noncompact group can 

vanish at infinity. 
(iv) Each cyclic subrepresentation of the regular representation of a 
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locally compact group vanishes at infinity. In particular, every discrete 
series representation vanishes at infinity. 

PROOF. Part (iii) is perhaps the only statement not immediately pro­
vable. If T is an n-dimensional representation of G which vanishes at 
infinity, and if [v^ is an orthonormal basis for H(T)9 then there exists a 
compact subset C of G such that every matrix entry (Tg(Vj), vj of the 
operator Tg has absolute value less than n~1/2 whenever g is outside C. 
But if there were such an element g, then Tg would not be a unitary 
operator. Therefore C = G. 

We remark that from (iv) it follows that every locally compact group 
possesses a separating family of (probably reducible) unitary representa­
tions which vanish at infinity. On the other hand, the real line is an ex­
ample of a group none of whose irreducible unitary representations 
vanish at infinity. Exactly which irreducible unitary representations of 
which groups do vanish at infinity is a question of considerable interest 
and complication. We content ourselves here with the one result, Theo­
rem 2.4 below. 

LEMMA 2.3. Let G be a connected Lie group which contains a com­
pact normal subgroup N for which G/N is a vector group. Let Z denote 
the center of N. Then the quotient G/Z is a direct product of a semi-
simple compact group with a vector group. 

PROOF. Let p be a Borei cross-section of G/N into G. (See [7].) We 
show first that the element p(x)p(y)[p(x + t/)] -1 of N is actually an ele­
ment of Z. Thus let L be an irreducible unitary representation of N. By 
the Mackey procedure, [9], we know that for each x in G/N there ex­
ists a unitary operator Ux on the space of L such that L[p{xWp{x)ri} = Ux-
L^U^r1 for all n in N. Then by a direct computation, and using the 
fact that Ux+y is a scalar multiple of UxUy, we find that 
LwxMvMx+y)}-1) commutes with every operator Ln and is therefore a 
scalar. Since this is true for every irreducible unitary representation L 
of N, we have that p(x)p(y)[p(x -h t/)]_1 belongs to Z. 

Modulo Z then, p is an isomorphism of G/N into G/Z, and G/Z is 
the semidirect product of the normal semisimple compact group N/Z 
with the vector group G/N. The Lie algebra stf of G/Z is then a direct 
sum of a semisimple Lie algebra Sé, the Lie algebra of N/Z, with an 
abelian algebra €, the Lie algebra of G/N. Now since every derivation 
of SS is inner, and since S3 is an ideal, there exists a linear mapping $ 
of 4 into Sß such that [ Y, X] = [*( Y), X] for all Y in ig and all X in SS. 
By the Jacobi identity we see also that 0 preserves brackets. Defining 
i//(Y) = Y — $(Y), we find that ip is an isomorphism of -ê with another 
abelian subalgebra & of s/. Finally, the mapping X+Y—»X + \p(Y)is 
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an isomorphism of the direct sum £§ ®-é onto the sum S$ ®S). Also & 
and @) are orthogonal ideals in srf'. The global result now follows rou­
tinely. 

THEOREM 2.4. Let G be a connected Lie group which contains a com­
pact normal subgroup N for which G/N is a vector group. Then every 
irreducible representation T of G vanishes at infinity modulo its kernel. 

PROOF. By passing to the usual group extension, we may as well as­
sume that T is unitary. (Because the usual group extension is an exten­
sion by a torus, a multiplier representation vanishes at infinity if and 
only if the corresponding unitary representation vanishes at infinity.) 
Now T\N is a multiple of a fixed irreducible unitary representation L of 
JV. Hence the restriction of T to the center Z of N is a scalar. Modulo 
Z then, T is a multiplier representation, and it will suffice to show that 
every irreducible multiplier representation of G/Z vanishes at infinity 
modulo its kernel. By the above lemma, G/Z is the direct product of a 
compact group with a vector group, and any irreducible multiplier rep­
resentation of such a direct product is the outer Kronecker product of 
irreducible multiplier representations of the factors. It follows then that 
we need only verify that every irreducible multiplier representation of 
a vector group vanishes at infinity modulo its kernel. 

Let W be an irreducible multiplier representation of Euclidean space 
jRn. Then, by [2], there exists a vector subgroup M of Rn, for which 
Rn/M is an even-dimensional space R2j, such that W is equivalent to 
the representation $(S • ir), where 0 is a character of Rn, IT is a projec­
tion of Rn onto Rn/M and S is the multiplier representation of R2j act­
ing in L2(#) and defined by [S(gp)(f)](p') = eixiQ>p,)f(p + p'), where X is a 
nonzero real number. Now W will vanish at infinity modulo its kernel 
if S vanishes at infinity. 

Fix an element / of L2(Rj) with compact support Cv For each p in 
Rj define fjp') = f(p + p')/(p')* Then p —*> fp is a continuous map of RJ 

into L1(Ä^). It follows from this fact, together with the Riemann-Le-
besgue lemma, that for any c > 0 and any compact subset C of Rj 

there exists a compact subset C* of R> such that \fp \Xq)\ < c whenever 
p belongs to C" and q is outside C*. The fact that S vanishes at infinity 
follows now by taking C = Ct — Cr This completes the proof. 

The other property of representations that we wish to consider here 
is somewhat more subtle. 

DEFINITION 2.5. Let H be a connected Lie subgroup of a connected 
Lie group G and let T be a multiplier representation of G. A set ty] of 
vectors in H(T) is called an absolutely equicontinuous family of vectors 
for T restricted to H if the set of functions h —• \(Th(\p), \p\ is an equi-
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continuous family of functions in the topology of H. A vector <p is 
called an absolutely equicontinuous vector for T restricted to H if the 
set [Tg(<p)], for g an element of G, forms an absolutely equicontinuous 
family of vectors for T\H. 

It is implicit here that if a nonzero absolutely equicontinuous vector 
exists, then the multiplier is at least locally continuous. As remarked in 
the introduction, there are various other conditions which imply the ex­
istence of an absolutely equicontinuous vector. We shall see in the 
course of the proof of the next theorem that an absolutely equi­
continuous vector can exist without any of those conditions holding. 
Observe too that, since the topology of a Lie subgroup is stronger than 
the relative topology it inherits from G, we have that if a vector is ab­
solutely equicontinuous for T\G then it is absolutely equicontinuous for 
T\H for all Lie subgroups H. 

THEOREM 2.6. 

(i) If T is a finite dimensional representation of G, then every vec­
tor is absolutely equicontinuous for T\G. 

(ii) If T is an irreducible unitary representation of a Heisenberg 
group G, then every vector is an absolutely equicontinuous for T\G. 

(iii) Suppose G is a compact extension of a vector group. (See the in­
troduction for the definition of "extension. ") If T is an irreducible repre­
sentation of G, then every vector is an absolutely equicontinuous vector 
for T|0. 

PROOF. Finite dimensional representations are uniformly continuous, 
and this proves (i). As we mentioned in the introduction, every irredu­
cible unitary representation of a Heisenberg group is really an irredu­
cible representation of a compact extension of a vector group. So part 
(ii) follows from part (iii). 

Of course as before we need only prove (iii) for unitary representa­
tions. Let T be an irreducible unitary representation of a group G hav­
ing a compact normal subgroup K for which G/K is a vector group. By 
the Mackey machine, [9], there exists an irreducible finite dimensional 
unitary representation L of K, a continuous multiplier co on the vector 
group G/K, a co • 7r-representation M of G which extends L, and an ir­
reducible co-representation S of G/K such that T is equivalent to the 
tensor product M ® (S • IT). Because co is continuous, both M and S are 
strongly continuous multiplier representations. Since M is finite dimen­
sional it is actually uniformly continuous, and so it follows that we 
need only verify that every vector <p in H(S) is absolutely equi­
continuous for S\G/K. Now according to [2], we can describe the multi­
plier representation S as follows. There exists a closed vector subgroup 
N of G/K and a character x of G/K such that S is equivalent to the 
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multiplier representation x(V "n"'), where 77' is projection of G/K onto 
(G/K)/N, which is an even-dimensional space R2j, and where V is the 
unique irreducible multiplier representation of R2i associated with the 
cocycle [(qv px), (q2, p2)] — e

i{a***. We have that V acts in L2(Rj) and 
is defined by 

[V(qJ<PW) = e^Mp + P')-

Because of the absolute value signs in the definition of absolutely 
equicontinuous vectors, the character x *s of n o consequence, and we 
need only verify that every vector in H(V) is an absolutely equi­
continuous vector for V|(Ä^. But this is trivial since 

IWapM,.»), V c » ) l = KV<«-M 9)1. 
i.e., there is but one function in the family and so that family is ob­
viously equicontinuous. We remark that (q, p) and (x, y) do commute 
but the operators V(Q p) and V(x y) do not commute. Indeed V is a multi­
plier representation. However the absolute value signs wipe out the 
multiplier. Without the absolute value signs we have 

(V<UV<U<P))> Vi*M) = e4(w,)(V<M,M ?)• 

As x varies, this is not an equicontinuous family of functions on R2j un­
less <p = 0. 

We have proved part (iii), and we have seen that absolute equi­
continuity is definitely weaker than is mere equicontinuity for a vector 
<p. It is likewise clear that V is not uniformly continuous, and that 
[V(xtl/)(<p)] does not constitute a precompact subset of L2(Rj). 

In the next section we shall be interested in a rather delicate inter­
play between the two properties of representations we have introduced 
here. We have just seen that every irreducible representation of a gen­
eralized Heisenberg group has plenty of absolutely equicontinuous vec­
tors. It follows directly from the Mackey machine and Corollary 2.4 
that every irreducible representation of a generalized Heisenberg group 
vanishes at infinity. These groups will be our prototypes. 

EXAMPLE 2.7. Let G be the three-dimensional Heisenberg group. For 
each real number À let Tx be the representation of G defined on L2(R) 
by 

Now if X ¥= 0, then Tx is irreducible and so every vector in H(TX) is an 
absolutely equicontinuous vector. However Tx does not vanish at in-
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finity, its kernel being isomorphic with the group of integers. If we de­
fine T to be the direct integral representation T = J f Tx dX, then one 
sees easily that every vector in H(T) is still an absolutely equicontinuous 
vector for T\G. Furthermore T vanishes at infinity. It is a sub-
representation of J* R Tx d\, and this representation is quasi-equivalent 
to the regular representation of G. Since the multiplicity of the regular 
representation is infinity, T must be a subrepresentation of that regular 
representation and therefore vanishes at infinity. 

We have then an example of a group, which is not a compact exten­
sion of a vector group, but which has a representation vanishing at in­
finity and possessing many absolutely equicontinuous vectors. It is of 
course not irreducible. 

3. A Characterization of Generalized Heisenberg Groups. As in­
dicated at the end of the last section, it will be the class of compact ex­
tensions of vector groups in which we shall be interested here. It is 
known that a connected Lie group G is a compact extension of a vec­
tor group, (G contains a compact normal subgroup K for which G/K is 
a vector group), if and only if G is an IN-group, (G contains a compact 
neighborhood of its identity which is invariant under all inner auto­
morphisms). Although the invariant neighborhood concept has been 
quite popular and productive, it seems perhaps more appropriate, from 
the point of view of representation theory, to think in terms of the 
group extension notion. A representation of G/K obviously extends to a 
representation of the extension group G. We shall make use of the 
equivalence of these two properties throughout. 

The following theorem is the main result of this paper. 

THEOREM 3.1. Let H be a connected Lie subgroup of a connected Lie 
group G. Suppose T is a representation of G which vanishes at infinity 
on G and for which there exists a nonzero absolutely equicontinuous 
vector qp for T\H. Then: 

(i) The smallest normal subgroup W of G which contains H is a Lie 
subgroup and is in fact a compact extension of a simply connected two-
step nilpotent Lie group. ("Two-step" nilpotent is to mean that the first 
or second commutator subgroup is trivial.) 

(ii) If T is irreducible, in fact if T is a primary representation, then 
the smallest closed normal subgroup H" of G containing H is a compact 
extension of a vector group. 

REMARK. We are dealing here with a rather subtle interplay between 
the two ideas introduced in the last section. If we think of H as a kind 
of "winding line" (nonclosed subgroup) in G, then it is clear that T may 
very well fail to vanish at infinity in the topology of H. Also, the equi-
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continuity of the functions h—> \(Th(Tg(<p)), Tg(q>))\ on H is a far weaker 
assumption than is the hypothesis of their equicontinuity on all of G. 

PROOF. From the equicontinuity hypothesis, there exists a compact 
connected symmetric neighborhood V of the identity in H such that 

IC^VW^)' (P)I > IMI2/2 f o r a11 g i n G a n d a11 h i n v- Because T van­
ishes at infinity, we have that the set C, which is the closure in G of 
the set of all g -1hg for h in V and g in G, is compact. Obviously C is 
invariant under all inner automorphisms, and clearly C belongs to H". 
One begins to imagine that we shall be able to prove that H" is an IN-
group, which would give part (ii) even without the assumption of ir-
reducibility. However part (ii) is false without some extra assumption as 
example 2.7 shows. Hence we cannot show that H" is an IZV-group so 
easily. However, there is a germ of validity to the argument suggested 
above. If H' is already closed, then C belongs to H'. Also, U C71 is a 
normal subgroup of G containing H, whence H' = U C \ By the Baire 
category theorem some O1 is a compact invariant neighborhood of the 
identity in H', and so the theorem is proved in this special case. We 
shall use this case later on, but for now we remark that H' may very 
well not be closed, and the proof in general seems to be much more 
complicated. 

The argument we shall give goes as follows: We replace the "repre­
sentational hypothesis" by a kind of "structural hypothesis." Arguing 
then by contradiction we reduce to three special cases. We translate 
back then into a different representational hypothesis, and arrive at our 
desired contradiction. 

The fact that H' is a Lie subgroup of G is a consequence of a reason­
ably familiar kind of argument in Lie theory. We include an outline. 

LEMMA 3.2. Let H be a connected Lie subgroup of a connected Lie 
group G. Then the smallest normal subgroup H' of G containing H is a 
Lie subgroup, and its Lie algebra is the smallest ideal in the Lie algebra 
$ of G containing the Lie algebra 3^ of H. 

PROOF. Let f denote the smallest ideal in $ containing 5 ^ , and let J 
denote the analytic subgroup of G with Lie a lgebra^ . Then 7 is a nor­
mal subgroup and H' belongs to I. 

First of all, the linear span of all the elements Y in ^ of the form 
Y = éad«J • • • e(a(V(W), where X±> • • -, X. belong to é and W belongs 
to 2rif, is f . Indeed these linear combinations can be shown to belong 
to f by induction on /. Also the linear span of these elements is an 
ideal in é because of the formula [Z, Y] = lim^0(l/*)(e(a<%Z)(Y) - y). 
And finally, this linear span contains of. 

Letting [YJ be a basis of f of elements of the above form, and re-
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calling the equation exp(e(ad^(W)) = exp(X)exp(W)exp( —X) for suffi­
ciently small X and W, we see that exp(fYi) is conjugate to some ele­
ment of H for sufficiently small t and hence for all t. 

Define a mapping qp of f into G as follows: (p(2i ^Y.) = 
I l i exp(^iYi). We have that qp is an analytic mapping of the Euclidean 
space f into the manifold I. The range of qp is contained in the group 
H'. However, by the Campbell-Baker-Hausdorff formula, we see that 
the differential of qp at the origin is nonsingular. (It is in fact the identi­
ty.) And so, since f and I have the same dimension, qp maps a neigh­
borhood of the origin in f onto a neighborhood of the identity in I. 
Hence H' contains a neighborhood of the identity in 7, whence H' — J, 
both being connected groups. 

From our earlier remarks we see that it is exactly the case when 7 is 
not a closed subgroup of G that we must consider. Denote by G* the 
simply connected covering group of G with covering map 6. Let I* de­
note the closed normal subgroup of G* with Lie algebra f . If D de­
notes the kernel of 0, then D is discrete and central in G*, and 0~1(H") 
is the closure of I*D. There exists a compact connected symmetric sub­
set C* of G* for which 0(C*) = C. Unfortunately C* does not inherit all 
the nice properties of C. The reader should again think of H' as a 
winding line on a two-dimensional torus and think of C as a line seg­
ment on that winding line. The set C* is no longer necessarily in­
variant, but it is always invariant modulo D, i.e., (g*)_1C*(g*) is con­
tained in C*D for all g* in G*. On the other hand U(C*)n is again a 
connected subgroup of G*, and since 0 U (C*)n) = U C1, which is a 
normal subgroup of G between H' and H", we have that I* is contain­
ed in U ((C*)nD). By the Baire theorem once again we have that for 
some n (C*)nD contains a neighborhood of the identity in I*. Since D is 
countable, some (C*)n itself contains such a neighborhood. Finally Hf is 
exactly 0(1% which is I*/(I* H D), and it is this Lie group we will 
show is a compact extension of a simply connected two-step nilpotent 
Lie group. For shorthand in this proof, let us call such a nilpotent 
group an SCTSN-group. The proof to part (i) of Theorem 3.1 follows 
then directly from the lemma below, where we have changed notation 
for convenience. 

We remark that we cannot simply pass to the covering group G*, 
where the smallest normal subgroup containing H would be closed, and 
prove the theorem using the easy argument mentioned at the beginning 
of the proof. Indeed, on G* the representation T will very likely no 
longer vanish at infinity. 

LEMMA 3.3. Let I be a closed normal connected subgroup of a con­
nected Lie group G. Suppose D is a central subgroup of G whose inter-
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section with I is trivial and for which G is the closure of ID. Suppose 
finally that C is a compact connected symmetric subset of G for which 
C H I contains a neighborhood of the identity in I and for which C is 
invariant modulo D, i.e., g_1Cg is contained in CD for all g in G. Then 
I is a compact extension of an SCTSN-group. 

PROOF. We remark that if / is a closed connected subgroup of I, then 
the hypotheses of this lemma apply to the group / in the group Gj 
which is the connected component of the closure of JD with respect to 
the central subgroup D n Gj and the compact set C D Gr If / is nor­
mal in /, then / is normal in all of G, and the hypotheses of the lemma 
apply to the group J/J in the group G/J with respect to the central 
subgroup D/J and the compact set C/J. 

We assume, by way of contradiction, that I is a group satisfying the 
hypotheses of the lemma but which is not a compact extension of an 
SCTSN-group. We assume further that I has smallest possible dimension 
with this contrary property. We shall arrive eventually at a con­
tradiction. 

1. J contains no compact normal subgroups of positive dimension. In­
deed if K were such a compact normal subgroup, then I/K would have 
smaller dimension than I, the hypotheses of the lemma apply to I/K, 
and so I/K would be a compact extension of an SCTSN-group, and 
consequently so would I. 

2. I is not semisimple. To see this, let S denote the "radical" of G, 
i.e., the maximum (closed) solvable subgroup of G. Then S contains D 
since S always contains the center of G. If I were semisimple, then I/S 
would be a semisimple subgroup of the semisimple group G/S, and 
therefore I/S would be closed in G/S. (See the exercises at the end of 
Chapter II of [4].) Now, because G = JQ we have that G/S = TtyS 
which is contained in (ILfS) which equals I/S which is I/S. But now 
C/S is a compact invariant neighborhood of the identity in I/S, whence 
I/S is compact, being a semisimple ZiV-group. But then I itself must be 
compact, being at worst a covering group of a compact semisimple Lie 
group. But by 1, I cannot be compact. 

3. Let N be a maximal closed normal connected abelian subgroup of 
I. Because I is not semisimple, dim N > 0. Since I contains no compact 
normal subgroups of positive dimension, N must be a vector group. 
Since the dimension of I/N is less than the dimension of I, there must 
exist a closed normal subgroup L of I containing N such that L/N is 
compact and I/L is an SCTSN-group. Now L must be connected. For 
in any event the connected component of the identity in L is a normal 
subgroup II of I for which L/L' is finite. But I/U is a covering group 
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of the simply connected group l/L, and therefore L/U must be the 
one-element group, or L is connected. 

Now if L lies properly between N and Z, then L itself is a compact 
extension of an SCTSN-group. But that compact normal subgroup of L 
is a "characteristic" subgroup of L, (invariant under all automorphisms 
of L), and is therefore normal in all of J. But by 1 there are no com­
pact normal subgroups of J of positive dimension so that L is a finite 
extension of an SCTSN-group. But we just argued in the preceding par­
agraph that that can happen only when the normal finite subgroup is 
trivial. Hence L is itself an SCTSN-group. Therefore L is diffeomorphic 
with a Euclidean space which is impossible if L/N is a nontrivial com­
pact group. Therefore L either is N or it is all of L 

3.A. L = I By the theorem of Iwasawa on vector extensions of com­
pact groups, see [11], we may write I as a semidirect product I = NK, 
where K is a compact group. If dim K > 1, let T denote a closed one-
dimensional torus in K, an consider the subgroup NT in I. Its dimension 
is less than that of J, the hypotheses of the lemma apply to NT, so NT 
must be a compact extension of an SCTSN-group. Because NT is clear­
ly not simple connected, there must be a compact normal subgroup M 
of NT of positive dimension. But T must belong to M since the quotient 
of NT by M is simply connected. It follows that M = T and therefore T 
commutes with N, i.e, the semidirect product is direct in this case. But 
this implies that the normal subgroup K' of K consisting of those ele­
ments of K which commute with N has positive dimension. But then K' 
would be a compact normal subgroup of all of I with positive dimen­
sion, and this we have ruled out in 1. Therefore K has dimension 1. 

Now the vector space N decomposes into a direct sum of irreducible 
subspaces (one or two dimensional) under the action of the one-dimen­
sional torus K. Since I is certainly not abelian, some one of these sub-
spaces, say Nv is two-dimensional. The hypotheses of this lemma apply 
to the group It — NtK. This is of course the semidirect product of the 
complex plane with the circle group, where an element X of the circle 
acts on a complex number z by \(z) = Xjz for some nonzero integer /. 
We show below, in 4.A, that the hypotheses of the lemma cannot apply 
to this group, and we reach a contradiction in this case. 

3.B. L = N. In this case I is at worst a three-step solvable group. 
Let / denote a closed normal subgroup of I of codimension 1, and 
choose a closed one-parameter subgroup A of J so that I = JA. Now 
dim / < dim I, and so / is a compact extension of an SCTSN-group. 
That compact normal subgroup of / would, as before, be a character­
istic subgroup and hence normal in J which is not the case, so / is itself 
nilpotent and simply connected. Let Z denote the center of /. Then Z 
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is a nontrivial vector group. In addition Z is setwise invariant under A. 
However, Z may not decompose into a direct sum of irreducible sub-
spaces, because A very likely is not compact but is the real line. How­
ever there is at least one irreducible subspace Zx under the action of A. 
We shall examine the group ZXA. There are some subcases. 

3.B.i. Suppose dim Zx = 1 and that ZXA is not commutative. Then A 
must be the real line, and the group I2 = ZXA is the semidirect product 
of the reals with the reals where the real number t acts on a real num­
ber b by t(b) = ^b for a ¥= 0. We show in 4.B.Ì that the hypotheses of 
the lemma cannot apply to this group, arriving again at a con­
tradiction. 

3.B.Ü. Suppose dim Zx = 2. Then Z^A is necessarily nonabelian. In 
this case the group I3 is the semidirect product of the complex plane 
with the real line where a real number t acts on complex number z by 
t(z) = eibtefltz9 where fc^O and a is any real number. In 4.B.Ü we see 
that the hypotheses of the lemma cannot apply to this group either. 

3.B.iii. The only remaining case is when dim Z1 = 1 and ZXA is 
commutative. But then Zt commutes with everything in I, i.e., I con­
tains a center Z' of positive dimension. So I/Z' is a compact extension 
of an SCTSN-group. As usual there can be no compact normal sub­
groups of positive dimension of I/Z", so l/Z' is itself a two-step nilpo-
tent Lie group. Then I, being a central extension of I/Z', is at worst a 
three-step nilpotent group, and therefore so is G. Letting Z" denote the 
center of G, we know that D belongs to Z" and so l/Z" is a dense nor­
mal subgroup of G/Z". But G/Z" is simply connected, and so 
I /Z" = G/Z". But we have now that C/Z" is a compact invariant (D 
having been factored out) neighborhood of the identity in I/Z". There­
fore I /Z" is an IlV-group, and is then a compact extension of a vector 
group. There can be no compact normal subgroup of I /Z" for the usual 
reasons, and so I /Z" is a vector group, whence I, being a central exten­
sion of a vector group, is a two-step nilpotent Lie group. This of course 
is already a contradiction to our assumptions on I. 

To complete the proof of the lemma we need to verify that the hy­
potheses of the lemma cannot apply to three particular groups, I1? I2, 
and I3. 

4. Because G = ID, it follows that every irreducible representation 
of G restricts to an irreducible representation of I. It then follows, us­
ing the Mackey machine, that every irreducible representation of I ex­
tends to an irreducible representation of G, (perhaps not uniquely). We 
now return to a hypothesis on I which is a "representational" hypoth­
esis. For any irreducible unitary representation W of I, (we think of W 
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as a representation of G as well), and any vector <p in H(W), we have 
that the set [W(g-icg)(<p)] for g in I and c in C Pi I is precompact in the 
space H(W). Indeed [W(g-icg)(<p)] is contained in [WCZ)(<p)], which is con­
tained in [AWc(<p)], for |X| = 1. It is this property of the representations 
of I which we show cannot hold for Iv I2 and I3. 

4.A. Consider the irreducible unitary representation W of 11 which 
is induced from the character x + iy —•* etx of the complex plane. Then 
H(W) is L^T1) and [WtotX)(<p)](X') = eiBEW*\p(\'\). 

Now if (jp is the identically 1 function, c is an element (0, À) in C fi It 

with À not a fth root of unity, and g any element of the form (z, 1), 
then 

iw(g-a<pw) = [w((1_xw.xW) 
_ eiRE(\'Kl-\i)z)t 

But this does not form a precompact set, since, letting z run through 
the numbers n/( l — V), we obtain a sequence of unit vectors which 
converges pointwise to zero. This is a contradiction to the representa­
tional hypothesis on Iv and shows that the hypotheses of the lemma 
cannot apply. 

4.B.Ì. Let W be the irreducible unitary representation of I2 induced 
from the character b —* eib. H(W) is L2(R). Let <p be a nonzero function 
in L2(R), let c = (0, t) be an element in C Hl2 with t ^ 0, and let 
g = (b, 0). Then 

[Wto-*>)](0 = [ W ( ( 1 _ ^ » ] ( 0 = e « ^ 1 — * ^ + 0-

Again we can find a sequence of real numbers b giving a sequence of 
functions of constant L2 norm but converging pointwise to zero, con­
tradicting the representational hypothesis. 

4.B.Ü. The same kinds of arguments will work in this case as worked 
in the two preceding ones. If the parameter a in the multiplication for­
mula in I3 is zero, then I3 maps homomorphically onto Ir We could 
lift the representation of It constructed in 4.A up to I3 obtaining the 
same contradiction. Hence assume that a ^ 0. Again let W be the rep­
resentation induced from the character x -\- iy —* elx. Let cp be a non­
zero function in L2(R), the space of W, let c = (0, t) t ¥= 0 be an ele­
ment of C H J3, and let g = (z, 0). Then 

Again the proper choice of z leads to a sequence constant in L2 norm 
but converging pointwise to zero. 
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We have proved the lemma and consequently part (i) of the theorem. 
We turn next to the proof of part (ii). 

Let K be a compact normal subgroup of H' for which ft' IK is a sim­
ply connected nilpotent Lie group. Then K is compact and normal in 
G, and H'/K is dense in ft"'/K. Since the closure of a nilpotent group 
is nilpotent, we have that ft" /K is nilpotent. There exists a torus L in 
the center of ft"'/K such that (H"/K)/L is simply connected. Let K' be 
a compact normal subgroup of ft" such that K'/K — L. 

We define Ht to be the Lie subgroup K'H of G. We claim first that 
the smallest normal subgroup Ht' of G containing Ht is closed. Indeed 
H1

/ is contained .in ft", and ft^/K' is dense in the simply connected 
group ft"IK'. Of course Ht'/K' is normal, and so Ht'/K' = H"/K'. 
Since K' belongs to Ht', we have that H^ = H" which is closed. 

We shall show that H^ is a compact extension of a vector group. By 
the first paragraph of the proof to Theorem 3.1, this will follow if the 
representation T has a nonzero absolutely equicontinuous vector for 
T\(H y (Of course somewhere we must use the fact that T is irreducible.) 

We know that there is a vector cp in H(T) which is an absolutely equi­
continuous vector for T\H. If it is also absolutely equicontinuous for T\K, 
then it will be absolutely equicontinuous for T\(H). Since K' is normal 
in all of G, and since T is irreducible, (in fact primary would do), it fol­
lows from [9] that T\K, is a multiple of one fixed finite dimensional ir­
reducible representation L of K'. Therefore T\K, is in fact uniformly 
continuous, and every vector, including qp, is absolutely equicontinuous. 

This completes the proof to Theorem 3.1. 

The example in 2.7 shows that without the assumption of irreducibi-
lity we could not conclude that ft" is a generalized Heisenberg group. 
We give next an example showing that ft' need not be a generalized 
Heisenberg group even if T is irreducible, i.e., the closure hypothesis on 
ft" is necessary. 

EXAMPLE 3.4. Let a be an irrational number, and define G* to be the 
five-dimensional group, diffeomorphic with T1 X R4, where multi­
plication is defined by 

(K xi> Hi> <h> Pi) (K x2> y* <72> vè 

= ( ^ V ^ *1 + *2 + </2Pl> î/l 

+ y2 + aq2pv qx + q2> Pl + p2). 

Let / be the four dimensional subgroup consisting of the elements of 
the form (X, t, at, q, p), and let D be the central subgroup of G* con­
sisting of the elements (1, m, n, 0, 0), where m and n are integers. If 
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we let C be the compact subset of G* consisting of the elements each 
of whose coordinates has absolute value less than or equal to 1, then 
one sees directly that C is invariant modulo D. 

The subgroup I satisfies the hypotheses of Lemma 3.3 and it is a 
compact extension of the three-dimensional Heisenberg group, which is 
after all an SCTSN-group. 

If we let G = H" = G*/D, we find that H" is an extension of R2 by 
a three-dimensional torus which agrees with the theorem of course. 

4. Examples and Generalizations. We present here some examples of 
how Theorem 3.1 can be used in reverse. Also, we conclude the section 
by extending Theorem 3.1 to the non-Lie setting of "Almost con­
nected" groups. 

EXAMPLE 4.1. Let K be a compact connected subgroup of a con­
nected Lie group G. Suppose there exists a representation T of G 
which vanishes at infinity on G and such that T\K has a finite spectrum, 
i.e., there exists a finite set A of irreducible representations of K such 
that each irreducible representation of K occurring in T\K is equivalent 
to some element of A. Then the smallest normal subgroup K' of G con­
taining K is itself compact. Indeed the assumption about T\K implies 
that T\K is uniformly continuous. Then by part (i) of Theorem 3.1 we 
know that K' contains a compact normal subgroup L for which K'/L is 
a simply connected nilpotent group. But clearly then K would have to 
belong to L, whence Kr — L. 

EXAMPLE 4.2. Now let G be a connected semisimple Lie group of the 
noncompact type, and write G = KAN for the Iwasawa decomposition 
of G. Suppose that K contains a two-dimensional torus T2, and suppose 
that there exists a discrete series representation IT of G, i.e., IT is an ir­
reducible subrepresentation of the regular representation of G. Now 
7T\{T2) is a direct sum of characters of T2, and these characters are given 
by pairs (m, n) of integers. Let A be the set of all pairs occurring in 
HrV (We are thinking of T2 as being parametrized by pairs (eie, ei(f) of 
complex numbers.) 

If a is an irrational number, we denote by H the one-parameter sub­
group defined by the pairs (eu, eiat). Now *n vanishes at infinity on G, 
being a subrepresentation of the regular representation, and the smallest 
closed normal subgroup H" of G containing H is definitely not a com­
pact extension of a vector group, W necessarily being semisimple. Ac­
cording to Theorem 3.1, ir\H can have no nonzero absolutely equi-
continuous vectors. But TT\H is a direct sum of characters of the real 
line, and these characters are given by the real numbers m + not, 
where (m, n) belongs to A. One thing then that we can say is that the 
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set of real numbers M + not for (m, n) belonging to A is not bounded, 
for otherwise ir\H would be uniformly continuous. This unboundedness 
statement must hold for every irrational number a. Hence we have rul­
ed out certain kinds of subsets of the lattice points which can occur in 
the restriction to T2 of IT. One can construct infinite sets A such that 
for some a the numbers m + na form a bounded set. So we have ruled 
out a nonempty class of sets. 

Finally, we shall extend Theorem 3.1 to a non-Lie context. Other 
generalizations are undoubtedly possible, but we content ourselves with 
the following: 

THEOREM 4.3. Let H be a connected Lie group, and let I be a contin­
uous one-to-one homomorphism of H into an almost connected locally 
compact group G. (A group is almost connected if modulo its connected 
component of the identity, it is compact) Suppose there exists an irredu­
cible multiplier representation T of G which vanishes at infinity on G, 
and suppose there exists a nonzero vector <p in H(T) which is absolutely 
equicontinuous for T\I{m i.e., in the topology of H. Then the smallest 
closed normal subgroup H" of G containing 1(H) is a compact extension 
of a vector group. 

PROOF. By a fundamental structure theorem for almost connected 
groups, (see [10]), there exists a compact normal subgroup L of G such 
that G/L is a connected Lie group. Let TT denote the projection of G 
onto G/L. Then by the Mackey procedure we know that there exists a 
locally continuous multiplier <o on G/L, an co-representation S of G/L, 
and a finite dimensional co • 7r-representation M on G such that T is 
equivalent to the tensor product M ® (S - IT). It follows immediately 
that S vanishes at infinity since T does. 

We let H* be the Lie subgroup flr(i)iJ)) of G/L. We will show that 
there exists a nonzero vector w in H(S) which is absolutely equi­
continuous for S|(if#). Then the smallest closed normal subgroup of G/L 
containing H* will be a compact extension of a vector group, and so 
then will be H" since L is compact. 

Let (jp be a nonzero absolutely equicontinuous vector for T\I(H). Then 
<p = 2?= 1 2 i aij(apj ® t/^), where [<fy] is an orthonormal basis for the fi­
nite dimensional space H(M), and where [*//J is an orthonormal basis for 
ff(S). We know that the set of functions h-+ \(TIih)(Tg(<p)), Tg(cp))\, which 
equals 

2 2 2 2«« ^(AWA^,.)), MA?,)) 
I j y i v 

(K(I(h))(S*(g)tti))> Sv(g)tti>)) 
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is an equicontinuous family of functions on H. Now M, being finite di­
mensional, is uniformly continuous. (The local continuity of co is being 
used here.) Therefore, adding and subtracting 

2 2 2 2 aijai'y(Mg(<py), Mg(<pr)) 
) ) 

(Sv(I(h))(K(g)tti))> K(9)tti>))> 

and using the triangle inequality in both directions, we find that the 
functions 

I n 

2 2 2 Ay aVj (K(I(h))(S*(9)tti))>
 Sir(g)ttv)) 

j—1 i i' 

which equals 

2 ( W W 4 W ;̂)) 
3=1 

are equicontinuous where wj — 2 i aij\(/v 

Now some one of the vectors [w^] must be nonzero, for otherwise <p 
would have to be zero. What this proves then is that there exists a 
nonzero vector in the space of nS which is absolutely equicontinuous 
for nS\v(IiH)y Now nS vanishes at infinity, but it is no longer irreducible, 
unless n = 1. However nS is a primary representation, and theorem 3.1 
part (ii) is valid for primary representations. Hence the smallest closed 
normal subgroup of G/L containing H* is the desired compact exten­
sion of a vector group. 

5. An Application to Quantum Mechanics. We consider here a phys­
ical system which for convenience consists of a single particle not nec­
essarily free from external forces. W e denote by S the group of "sym­
metries" of the system, i.e., the group of all transformations of space 
(R3) which preserve the "physics" of the system. 

ASSUMPTION 1. Each element s of S is assumed to be a continuous 
transformation of space of the form s(q) — As(q) + qs, where As is an 
invertible linear transformation and qs is a vector in H3. The transfor­
mation As is called the rotational part of s and the vector qs is called 
the translational part of s. If we denote elements of S by pairs (A, q\ 
then mult ipl icat ion in S is given by (Av q1)(A2, q2) — (A1A2y 

qx + A1(q2)). We have too that the mapping s —* As is a continuous 
homomorphism of S onto a subgroup of GL(3, R). 

This first assumption is frequently satisfied because of the presence of 
other hypotheses on the system. For instance Assumption 1 holds if 
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each element of S is distance-preserving. What we shall do here is to 
derive conditions on a one-parameter subgroup of S which ensure that 
it consists entirely of pure translations. 

ASSUMPTION 2. We adopt the following quantum mechanical model of 
our system. There exists a Hilbert space K, a multiplier representation 
TT of S acting in K, and a K-projection-valued measure p on the sigma 
algebra of Borei subsets of R3 such that: 

(i) ^sg^^s""1 = 2S(E) for all s in S and all Borei subsets E of R3. 
(ii) The Hilbert space K is irreducible under the joint action of TT and 

It follows from (ii) that g is ergodic with respect to the action of S 
on R3. Therefore we can realize K as the Hilbert space L2(R3, K', /*), 
where K! is some other Hilbert space and ju is a Borei measure on R3. 
There exists a unitary representation V of R3 determined by p and de­
fined by VQ = f e1^'^ dp(q'). Alternatively, if <p is an element of 
L2(R3, K\ /i), then 

The two assumptions made thus far are both from the realm of ax­
iomatic quantum mechanics. The others we shall make are both more 
specific, and they should be distinguished from these first two. 

We shall certainly not wish to restrict our attention to symmetry 
groups all of whose rotational parts belong to a fixed compact subgroup 
of GL(3, R). However this situation does occur, and it serves to moti­
vate our extra assumptions. We have the following: 

THEOREM 5.1. Suppose that all the rotational parts [A J for s in S he-
long to a fixed compact subgroup L of GL(3, R). Then: 

(i) For each element <p in K the set of functions g—> V"u-r(Q))(<p) 
forms an equicontinuous family of functions from R3 into K, as s varies 
over S. 

(ii) If S0 denotes the subgroup of S consisting of the pure translations, 
then there exists an absolutely equicontinuous vector çpin K for TT\SO. 

PROOF. TO prove (i), we need only examine \\V(A-h(Q))(<p) — <p|2, which 
is 

f R,\em'-mM) - l\2h(q?Kdfi(q'), 

and this clearly is an equicontinuous family of functions of q if the 
rotational parts all belong to a fixed compact group. 

To prove (ii), let t be an element of S and consider the function of s, 
where s belongs to S0, given by 
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where s' is another element of S0. Namely s' is translation by the vector 
A(f-i)(qs). Now the equicontinuity is again clear if all the matrices [A J 
belong to a fixed compact group. 

Our "extra" assumptions can now be stated. They are motivated by 
the conclusions of the previous theorem, and they are essentially as­
sumptions about the projection-valued measure p. 

ASSUMPTION 3. Every vector <p in K has the property that the set of 
functions q —» Vu -i,(Q)) (<p) forms an equicontinuous family of functions 
from R3 in to K as s varies over S. 

ASSUMPTION 4. The representation V vanishes at infinity. 

As remarked, Assumption 3 holds if all the rotational parts of the 
symmetries belong to a fixed compact group. However, one can see 
from the proof to part (i) of the last theorem that this assumption can 
hold in other instances, that assumption depending so much on the 
measure ju and where it gives its mass. 

Assumption 4 is equivalent to assuming that the function 
q —• j ^'^IMqOlljr d\i(q') vanishes at infinity. If \i is absolutely contin­
uous with respect to Lebesgue measure, then this follows from the Rie-
mann-Lebesgue lemma. The assumption holds at other times as well 
and it appears to depend on whether the Fourier transform /x of JU be­
longs to some Lp class. (If \i is a point mass, for instance, then this as­
sumption is not valid. The situation is fairly well understood in this 
case however.) 

The following is the main result of this section. The theorem gives 
sufficient conditions that a one-parameter subgroup of symmetries be a 
group of pure translations. 

THEOREM 5.2. Suppose assumptions 1-4 hold. Let exp(tX) be a one-
parameter subgroup of S. If 77- vanishes at infinity on S, and if there 
exists a nonzero absolutely equicontinuous vector <p in K for 7T\exv(tX)> 
then every element s in the smallest closed normal subgroup S" of S 

. containing exp(fX) is a pure translation. 

PROOF. Let G be the semidirect product of R3 with S where multi­
plication is given by (qv st) (q2, s2) = (q1 + (A8-

r(q2)), s^). Define a 
mapping T of G into the unitary group on K by T(Q s) = VQTTS. We have 
that 

T T — V TT V TT 
(Ol. Si) (Q^Sj 9 I «i ?2 «2 
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where o is the multiplier associated with IT. Also we have 

= g-ite^w^-Kflf^]) J gite»u-ri(flr)]) dg(^') 

where ô(q2, sj = e - ^ W . - K ) ] ) . 
Therefore T(QiSi) T(fl2i^ =a(s 1 , » 2 ) 8 ( ^ 5i)T((a1.Sl)(a2,S2))

 w h i c h *ows that 
T is a multiplier representation of G. 

Since V is defined by the integral formula involving g it follows too 
that T is irreducible. Because TT vanishes at infinity by hypothesis, and 
because of Assumptions 3 and 4, it follows also that T vanishes at in­
finity. 

Define H to be the subgroup of G consisting of the pairs (q, exp(fX)). 
Again by Assumption 3 and the hypotheses of the theorem, there exists 
a nonzero absolutely equicontinuous vector cp for T\H. Now the smallest 
closed normal subgroup H" of G containing H is obviously K3S". Since 
every element of S which is conjugate to an element of exp(fX) lies on 
a one-parameter subgroup of S, we have that S" is connected, and 
therefore H" belongs to the connected component of the identity in G. 
By an obvious extension of Theorem 3.1 part (ii) to disconnected Lie 
groups G, it follows that H" is a compact extension of a vector group. 
Hence so is S". Let T be a compact normal subgroup of S" for which 
S'/T is a vector group. Now the group R3T is a closed subgroup of H" 
and so is itself a compact extension of a vector group. But this implies, 
as usual, that T commutes with everything in R3. Because of the multi­
plication formula in G we see that every element of T is a pure trans­
lation. That implies that T is trivial since no group of pure translations 
can be compact except the trivial group. For the same kind of reason­
ing, H" can contain no compact normal subgroups. Hence H" is a vec­
tor group and therefore is commutative. But then S" commutes with 
everything in JR3, and as before this implies that each element of S" is 
a pure translation. 

The peculiar connection between the physics and the mathematical 
model is this: If there exists a one-parameter subgroup exp(fX) satisfying 
the hypotheses of the theorem, and if the smallest closed normal sub­
group S" of S containing exp(fcX) is three dimensional, then there can 
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be no external forces on this system. Indeed translation in any direction 
would be a symmetry of the system, and therefore no force can be act­
ing. (Translation in almost any direction within a nonzero force field 
will change the energy of the system and so will not be a symmetry.) 

It is obvious that these same kinds of considerations can be applied 
to systems with more degrees of freedom. The basic fact is a relation­
ship between absolutely equicontinuous vectors and translational sym­
metry. 
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