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LARGE ABELIAN SUBGROUPS OF SOME 
INFINITE GROUPS, II 

V. FABER 

1. Introduction. This paper extends the work of [2], [3], and [4]. 
The main theorems are: 

THEOREM 1. If G is an infinite group of cardinality m+ having a 
(strictly increasing) normal series (GJ with \ Ga\ Ŝ m for all ot, then every 
maximal abelian subgroup A of G satisfies m'Al = | G|. 

THEOREM 6. Every infinite FCN* group has an abelian subgroup A 
such that exp \A\ ^ |G|. 

THEOREM 9. Every maximal abelian subgroup A of an uncountable 
ZA group G satisfies exp \A\ = |G|. 

THEOREM 13. Every infinite SI* group G has an abelian subgroup 
A<2 G such that exp2| A| ^ |G|. 

Theorem 6 sharpens Theorem 8 in [3]. Theorem 9 sharpens 
Corollary 1 in [2]. Theorem 13 sharpens Theorem 2 in [10]. Some 
of the results of this paper were previously announced in [5]. 

2. Notation. Let S and T be sets. S < T always means strict 
inclusion. The cardinality of S is denoted by |S|. If m is an infinite 
cardinal, O(m) is the initial ordinal of cardinality m; m+ is the first 
cardinal greater than m; exp1™ = exp m = 2m; expn + 1 = exp expnm; 
and fì( Hß) = <oß. The cofinality of an ordinal y (cardinal m) is the first 
cardinal n such that y (m) is the sum of n smaller ordinals (cardinals); 
we denote this by n = cfiy) (cf(m))\ m is a regular cardinal if cf(m) 
= m and singular otherwise. A stationary subset of o)a is a subset 
which meets every closed unbounded subset. 

If G is a group and H is a subgroup, we write H <3 n G if there is an 
ascending normal series 

H**H0<Hl.<--<Hn=G 

from H to G. If H is characteristic in G write H D & C(H) = CG(H) 
= C(H ^ G) denotes the centralizer of H in G, while N(H) = NG(H) 
= N(H ^ G) denotes the normalizer of H in G. The automorphism 
group of G is denoted by Aut(G). Za(G) will denote the 0 th member of 
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the ascending central series. G is a ZA group if it is the union of all 
the terms of its ascending central series. The class of a ZA group is the 
first a such that Za(G) = G. G is nilpotent if it is a ZA group with finite 
class. If x,y G G, the commutator of x and y is [x, y] = x~ly~lxy. 
We denote the derived (commutator) group of G by G1. Let Gn+1 = 
(Gn)1. If G is solvable, the length of G is the first n such that Gn = £, 
where E = {1} denotes the identity subgroup. 

Let F^G) be the set of all elements in G which have at most a finite 
number of conjugates in G. Following [7], the ascending FC series 
of Gis the series 

£ = F0(G) DF 1 (G) • • ' • DF a(G) D • • • 

where FaJhl(G)IFa(G) = F^G/F^G)), and if ß is a limit ordinal, then 
Fß = U < 0 Fa(G). If F,(G) = G, G is an FC group. If Fa(G) = G for 
some a, then G is a ZFC group; if a is an integer, G is FC nilpotent 

l fm is an infinite cardinal, let Mi(G) be the set of all elements in G 
which have at most m conjugates in G. By analogy with the ascending 
FC series, we define the ascending mC series of G to be the series 

E = M0(G) DMi(G) D • • • DMa(G) D ' ' ' 

where Ma+l(G)IMa(G) = M^GIM^G)), and if ß is a limit ordinal, then 
Mß(G)=\Ja<ßMa(G). IfMx(G)= G, Gis an mC group; if Ma(G) = G 
for some a, then G is a ZmC group. 

We assume the terminology of §57 and §63 of [11] to denote 
various classes of generalized solvable and nilpotent groups. In addi­
tion, if CV is a class of groups, <X /* is the class of all groups having 
an ascending invariant series with factors in <X ; SX / * is the class of 
all groups having an ascending subnormal series with factors in <X ; 
and 0( N* is the class of all groups having an ascending normal series 
with factors in 9( . Additional terminology and facts concerning 
infinite groups can be found in [ 14] and [ 15]. 

3. Large abelian subgroups. 

LEMMA 1. Let G be an infinite group and H a subgroup. IfH^N 
< Gand \N\W < |G|, then \C(H)\ = |G|. 

PROOF. If N is finite, \C(N)\ = \G\. If N is infinite, [G:C(H)] = 
[G : N(H)] [N(H) : C(H)] ^ \Cl(H)\ |Aut H\ g \N\W < \G\. 

THEOREM 1. If G is a group of uncountable regular cardinality 
having a (strictly increasing) normal series (Ga) with \Ga\ < \G\ and if 
H is a subgroup of G with |GJIHI < \G\ for all a, then \C(H)\ = |G|. 
In particular, every maximal abelian subgroup A of G satisfies m^l 
^ \G\fbrsomem< \G\. 
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PROOF. Let 0 = ft(|G|). Well-order G = {xa | a < 6} so that (1) 
x( E Ge+1 and (2) zp E Ge implies that ^ G G ( for all a ^ p. Since 
|H| < |G|, H ^ f c | a < y } fpr some y < 0. For each h E H and e 
such that £€ <£ Gy+1, let /^(c) be defined by Xnh(€) = [h,x€]. Let 
a be the first ordinal such that x€ E Ga+l. Since {xa | a < y} ^ Ĝ  <] 
Qr+i» [^ *J ^ Or- If * = /**(*)> then xe E G,,, a contradiction. It fol­
lows that nh(€) <€. Let S = {e | € > y and cf(c) > |H|}. Let 

/1(c) = suphGH/uih(€); 

/i(€) < € for € E S since cf(c) > |Jf|. Now \H\+ < |G|, otherwise 
2W = |H|M â |G|, so S D { a < 0 |cf(a) = |H| + and a > y}. If C 
is any closed unbounded subset of 6 and if a is the first member of C 
such that \{ß E C\y <ß < a}\ = |H|+, then a is the sum of the 
ordinals ß E C with ß < a since C is closed and hence cf(a) = |H| + 

since |if|+ is regular. Thus a E S and it follows that S is a stationary 
subset of 0. By [13; p. 260], there exists T^g S such that p, is con­
stant on T and \T\ = |G|. (In fact, by [6, p. 141], T can be taken to 
be a stationary subset of G.) Hence there exists T < 0 such that 
[h, x€] E GT for all e E T and h G H. Define an equivalence relation 
^ on r by p — cr if and only if for all h E H, [h, xp] = [h, x^]. Since 
the number of equivalence classes is less than or equal to the number 
of subsets of GT of cardinality |H|, there are at most |GT|IH' < \G\ 
equivalence classes and one must have cardinality |G|, that is, there 
exists 17 Si T with \U\ = \G\ such that for all p,a E U and for every 
h E H, [h, xp] = [/i, x^]. Then a y ^ - 1 ^ ^ " 1 = h for ali p, a E C7 and 
fcEH, so {ayV11 a, p E 17) ^ C(H). This shows that |C(H)| = 
| G|. If A is a maximal abelian subgroup with \A\ < \G\ and | Gj 'A' < | G\ 
for all a, then \A\ = |C(A)| = |G|, a contradiction. 

REMARK 1. R. Laver and the author have observed that if one 
assumes the generalized continuum hypothesis (G.C.H.), one gets the 
following stronger theorem. 

THEOREM 1'. Let G be an uncountable group with a (strictly in­
creasing) normal series (Ga) with |GJ < |G|. If H is any subgroup of G 
with \H\<cf\G\ and | G J M < | G | for all a, then \C(H)\ = |G|. 
In particular, every maximal abelian subgroup A of G satisfies either 
(1) \A\ è cf|G| or (2)mlA»â \G\forsomem < \G\. 

PROOF. Suppose G is a counterexample of smallest (singular) car­
dinality. Since | H\ < cflG|, there is some a such that H g Ga, \H\ < \Ga\ 
and \C(H)\ < |GJ. There are two cases. If there exists a y ^ a such 
that |Gy+1| ^ IGJ + +, then by G.C.H. \Gy\W < |G,+1|. Thus Lemma 1 
applies and | C(H)\ §̂  |Gy+1| i? |Gj , a contradiction. On the other hand, 
if no such y exists, there is a first ordinal p, such that |GJ = |Gj + + . By 
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G.C.H., ifß < fi, then \Gß\W g (|GJ +)M = |Gj + < |GJ, so Theorem 
1 applies and yields \C(H)\ ^ |Gj ^ |Gj , a contradiction. 

THEOREM 2. Le* G be a group with \G\ > m. Suppose G has a normal 
series(Ga)suchthat [Ga+l : GJ ^ mforalla + 1. ThenGhasanabelian 
subgroup A such that mlAl = | G|. 

PROOF. Let X = sup{|A||A abelian} and suppose n = sup{(mlAl)+| A 
abelian} = |G|. If there exists A such that \A\ = X, then n — (mN)+ . 
By Theorem l,Gft(n) has an abelian subgroup A such that | Gn(n)| = (m*)M 
^ mK , contradicting |Qi(n)| = (mN )+ . On the other hand, if supama = 
X, every maximal abelian subgroup A of Gci((mm-)+) has | A| > ma so we 
can find an abelian subgroup of power X. 

QUESTION 1. Suppose G is a group with \G\ > m. If G has a normal 
series (Gja < X) with X a limit ordinal and [ Ga+1 : GJ ^ m, does every 
maximal abelian subgroup satisfy mW ^ |G|? 

THEOREM 3. Every infinite SN* group G has an abelian subgroup A 
such that exp|A| ^ |G|. 

PROOF. G has a normal series with countable factors. If G is count­
able, it has an infinite abelian subgroup by [ 10; p. 243]. If G is 
uncountable, Theorem 2 yields the result. 

EXAMPLE 1. ([15, p. 454] ) For every cardinal Xa there is a two-
step solvable group Ga with |Gj = Xa and having a finite maximal 
abelian subgroup. Let H( = (x€) • (t/J with x€

2 = 1 = t/c
2. Then 

Ha=^€<(üaH€ has an automorphism aa of order three given by 
aa(x*) = y* and aa(yt) = x€ye. If Ga is the split extension (aJHa, (aa) 
is a maximal abelian subgroup. 

THEOREM 4. [4, p. 31] If G is an infinite FC group, every maximal 
abelian subgroup A has exp|A| = |G|. If G is an infinite mC group, 
every maximal abelian subgroup A has m'Al = |G|. 

PROOF. Since A ^ A G O G , Lemma 1 applies. If \A\ < |G|, then 
|GrS|AG | lA l^|(Cl(x) |xGA)| lAL If G is FC, A cannot be finite 
since G is infinite. Thus \G\ g (|A| • X0),A| = exp|A|. If G is mC, \G\ 
^ (m • |A|)W = roW. 

THEOREM 5. Every mCN* group G has a normal series (GJ such that 
[Ga+l : Ga] ^ mforalla + 1. 

PROOF. Let (GJ be any ascending mC series for G. Let Ga 0 = Ga for 
all a. We form an invariant series (GatßIGa) for the mC group Ga+x/Ga by 
choosing Gaß+ilGatß to be any normal subgroup of Ga+1/GaJ3 of car­
dinality at most m. It follows that (GaJ3) is the desired normal series. 
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THEOREM 6. Every infinite FCN* group G has an abelian subgroup 
A such that exp|A| = \G\. Every mCN* group G has an abelian sub­
group A such thatmM = \G\. 

PROOF. This theorem follows directly from Theorems 2 and 5 except 
in the case where G is a countable FCN* group. In that case, we may 
suppose that G has an FC series (Gtt | a ^ ß) of minimal length. Then 
Ga is finite for all a<ß. Ifß = o>, G is locally finite and has an infinite 
abelian subgroup by [15, p. 453]. If ß = n + 1, GIGn is FC and thus 
has an infinite abelian subgroup H/Gn by Theorem 4. Since H1^ Gn 

is finite, H is FC and the theorem follows from Theorem 4. 

LEMMA 2. If A is an abelian subgroup ofG, then AZ^+^G) is at most 
a class X 4- 1 ZA group. 

PROOF. Note that AZk+l(G)IZK(G) is abelian and that ZK{G) ^ 
2^(A2Ui(G)). 

THEOREM 7. Let A be a maximal abelian subgroup of an infinite 
nilpotent group G. Then 

exp |A|^ |G| . 

PROOF. We suppose G is a counter-example of smallest class X. Since 
G1 ^ Z^x(G), if Z^_2(G) is finite, G is FC and the result follows from 
Theorem 4. Thus exp|A| ^ lAZ^J ^ IZ^.^G)! ^ \G% so G is 
(exp|A|)C. Thus 

\G\ S (exp|A|)N = exp|A|. 

THEOREM 8. Let G be an infinite ZA group with a finite maximal 
abelian subgroup A. Then Gis a direct sum ofCernikov p-groupsfor 
a finite number of distinct primes p. In particular, G is countable. 

PROOF. First we show that G is periodic. Suppose a H- 1 is the first 
ordinal such that there exists an element x with infinite order in 
Za+1. Then Zß is periodic for ß = a. If a G A, then [x9 a] G Za. Sup­
pose for all n, [xn,a] f& 1. Then let X + 1 be the first ordinal such 
that there exists n, [xn, a] G ZK+Ï. Then X < a, so Z^+l is periodic 
and there exists n such that [xn, a] G Zk+V Thus a~lxna = xnz, z G 
2^+1. Since [z, x] G 2^, if m is the order of z, (a'^a^Z^ — (xnz)m^ 
= xnmzmZk = xnmZ .̂ Therefore [xnm, a] G Ẑ , a contradiction. This 
shows that for each a G A there exists n(a) such that xn(o) G C(a). Let 
n = JJ a e A n(a) . A cannot be finite since (xn) ^ C(A) = A. This 
proves that G is periodic. 

Now suppose G is a p-group. Let AQ be a maximal normal abelian 
subgroup. AQ is an infinite maximal abelian subgroup of G by [3, p. 
681]. Let V = {x G AQ \ xp = 1}. Suppose, by way of contradiction, 
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that V is infinite. Since V is a characteristic subgroup of A^ we may 
suppose G = AV, V <] G. Suppose W is a finite subgroup of V and 
WA S W. If WW = Z(G/W) is infinite, AH is an infinite FC group. 
By Theorem 4, A cannot be a maximal abelian subgroup of AH, a 
contradiction. Thus Z(G/W) must be finite. We claim that V has a 
minimal infinite subgroup V0 such that V0

A ^ V0. Let {Vi}iGI be a 
descending chain of infinite subgroups such that V{

A ^ V*. Suppose 
W = Hie/V* is finite. Then Z(G/W) ^ E is finite. We also know that 
VJW H Z(G/W) f E (see [14, p. 14]). Thus Eff]iGI(VJWn 
Z(G/W)) = WIW PI Z(G/W), a contradiction. Thus Wis infinite, and the 
claim follows by Zorn's Lemma. Consider (AV0)' = V0. It is easy to 
calculate that (AV0Y ^ (A - 1)V0 = ( u ° - t j | t ) £ V o , a £ A > . Since 
for every a G A there exists k such that 

(a - iyk = a?k - 1 = 0, 

where a — 1 is the endomorphism on V defined by (a — l)(ü) = 
va — v, (a — 1) V0 is a proper subgroup of V0 such that [ (a — 1) V 0]A =i 
(a - 1)V0. Thus (a - 1)V0 is finite and so is (A - 1)V0. It follows 
that (AVo)1 is finite. Hence AV0 is an infinite FC group, contradicting 
Theorem 4. This shows that V is finite. Hence Ao = D + R where D 
is a finite sum of p °° groups and R is reduced. Since every infinite 
reduced group contains a cyclic summand, if R is infinite it contains 
an infinite direct sum of cyclic groups, contradicting the fact that V 
is finite. Thus R is finite and AQ satisfies Min. Since AQ is maximal, 
GIAQ is a periodic group of automorphisms of Ao. By a theorem of 
Baer (see [14, p. 54]), GIAQ satisfies Min. It follows that G is a 
Cernikov p-group. 

Now since G is periodic, G is the direct sum of non-trivial p-
groups for different primes p, G = ^ Gp. A is also the direct sum of 
p-groups, A=^ Ap, where each Ap must be a maximal abelian sub­
group of Gp. Hence G is a finite sum of Cernikov p-groups, and G is 
countable. 

EXAMPLE 2. Let H be the direct sum of Z3<» groups generated by 
{Xi | 3xi+l = %i} and {y{ \ 3t/j+1 = t/̂ }. Let a be the automorphism of 
order 3 on H defined by ofo) = — x{ + y{ and a(y<) = — x{. The 
split extension (a) H is a Cernikov 3-group. Suppose zG H and 
a(z) = z. Then since z= ax{ + btji for some i with a,b G Z3', we 
have 3aXj = 3bt/< = 0. Thus zE. (xx + yx) and so (a) • (xx + t/j) is 
a finite maximal abelian subgroup. 

THEOREM 9. Let Abe a maximal abelian subgroup of an uncount­
able ZA group G. Then 

exp|A|^|G|. 
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PROOF. We suppose that G is a counter-example of smallest class 
X 4- n, where X is a limit ordinal. By hypothesis, 

exp|A| ^ |A3,+1(OI ^ K+1(G)| 

for all a + 1 < X + n such that ^,+1(G) is uncountable. Also, by 
Theorem 8, we may suppose that |G| > Nx and that A is infinite. 
Hence exp|A| è |2^+1(G)| for all a + K X + n. If n = 0, G = 
U«<YZa+1(G). Thus exp|A| ^ limÄ<x|Za+1(G)|. If n = 1, exp|A| è 
l i n w |Ztt+1(G)| ^ I2KOI ^ IG1!. If n > 1, exp|A| è | iWi(G) l è 
IG1!. In either case, G is (exp| A|)C and by Theorem 4, 

|G| ^ (exp|A|)W = exp|A|. 

REMARK 2. The group Ga of Example 1 is a two-step FC nilpotent 
group. Thus Theorem 9 cannot be extended to FC nilpotent groups. 

QUESTION 2. Is there a nilpotent group G with a maximum abelian 
subgroup A such that exp| core A| < | G| ? 

QUESTION 3. Does every infinite FCN* group have an equipotent 
SN* subgroup? 

THEOREM 10. Every infinite solvable group G of length n has a 
characteristic nilpotent subgroup N of class at most n such that 
exp|2V| ̂  |G|. 

PROOF. We induct on n. The theorem is clearly true for n = 1. 
Let n + 1 be the length of a counter-example G of shortest length. We 
must have explO1! < |G|. Thus 

[G : C(G>)] g |Aut G"| ̂  exp|G"| < |G|. 

Hence H = C(Gn) • G has the same cardinality as G. Since G* C 
Z(H) [JH, we must have |Z(tf)| < \H\. Since HIZ(H) has shorter 
solvable length, it has a characteristic nilpotent subgroup NIZ(H) of 
class at most n such that exp|N/Z(/f)| è \HIZ(H)\ = |ffj. Thus 
[N,N, • • -,N] S Z(H). Since [N,Z(H)] = E, N is a nilpotent group of 
class at most n + 1. In addition, since NIZ(H) ÉjHIZ(H)zndZ(H)C\H, 
N D H D G a n d 

exp|N| ^ exp|N/Z(H)| ^ |if| = |G|. 

THEOREM 11. An infinite solvable group G of length n has a charac­
teristic two-step nilpotent subgroup N such that expn|2V| = |G|. 

PROOF. As above, let n + 1 be the length of a counter-example G 
of shortest length. IfexpjG1! < |G|,wehave 
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[G : C(&)] g |Aut(Gi)| g exp|Gi| < |G|, 

so ^(G1)! = \G\. Since C(Gl) is a characteristic two-step nilpotent 
subgroup, we must have explG1! = |G|. Since G1 has a characteristic 
two-step nilpotent subgroup N such that expn|N| == \Gl\, we have 
e x p ^ N l ^ e x p l G 1 ! ^ |G|. 

REMARK 3. There is an infinite two-step solvable group all of whose 
normal abelian subgroups are finite. See [8]. 

LEMMA 3. [14, p. 14]. Let Ef H <G. IfGw S J*, H contains a 
non-trivial abelian subgroup normal in G If G is FCI*, H contains 
a non-trivial FC subgroup normal in G. 

PROOF. We shall prove only the second statement. Let (Ga) be an 
invariant FC series for G. Let a be the least ordinal such that H D Ga 

^ E. Since a is not a limit ordinal, H H Ga_x = E and H D Ga = (H 
fi GjG^i/G«..! ^ GJG^. Thus H H Ga <\ G is the desired group. 

THEOREM 12. Every infinite SI* group G has a normal ZA sub­
group H such that exp|fff= |G|. Every infinite FCI* group G has a 
normal ZFC subgroup H such that exp| H\ ^ | G\. 

PROOF. We shall prove only the second statement. Let H0= G and 
let AQ = E. If possible, let A^+i be a normal subgroup of G such that 
Aa+lIAa is a non-trivial normal FC subgroup of GIA^ contained in 
HJA^. Then let Ha+l be the normal subgroup of G such that H^JA^ 
= (4,W4»)C(A,+i/4,^ HJAJ = (A.+i/A.)(C(A.+i/AJ n HJ4,). Kß 
is a limit ordinal, let Aß = \Ja<ßAaand\etHß = 0a<ßHa. Since GIAa is 
an FCI* group, if HJA* is not trivial, then it contains a non-trivial FC 
subgroup normal in GIAa by Lemma 3. Hence Aa+i> Aa unless Ha = 
Aa. Thus there is a first ordinal y such that Hy = Ay. 

Since Ax+i/A» 
is an FC group, using the definition of Ha+i, we see 

that each element in A^^JA^ has only a finite number of conjugates in 
\IAa. Thus Ay is a ZFC group. We have (see [3, Theorem 1] ) 

[G : Hy] g fi [Ha : «Uil = II [»./A. : JWAJ 
a<y a<y 

= I l [M4.+M. ^ ««/A») : (4,+i/4,)C(iW4, ^ ««/A,)] 

à<y 

=§ J ! [MA.+ 1/A, ̂  HJAJ : C(A,+ i/A» ^ HJA,)] 

^ n Aut(A,+i/A,). 
a<y 
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It follows (see [3, § 3] ) that [G : Hy] ^ l[a<y Kö
|Att+l/AJ ^ 

Koia<y\Aa+1/Aa\ g XoiAy| = expiai. Thus \G\ ^ |Hy| exp|Hy|. There­
fore \G\ g exp|tfy|. 

THEOREM 13. Every infinite SI* group G has an abelian subgroup 
A<2Gsuch that exp2|A\ ^ |G\. 

PROOF. This follows from Theorem 12 and the fact [3, p. 681] that 
every maximal normal abelian subgroup A of a ZA group H satisfies 
exp|A| ^ \H\. 

REMARK 4. (See also Remark 3.) There is a non-abelian S J* group 
which has no nontrivial characteristic subgroups. (See [12] and 
[14, p. 102].) There is an SJ* group which has no non-trivial normal 
abelian subgroups. (See [1] ). 

QUESTION 4. Can Theorem 13 be generalized to FCI* groups? 

QUESTION 5. Can Theorem 13 be improved to read exp| A| ^ |G|? 

THEOREM 14. Every infinite mCI* group G has a normal ZmC sub­
group H such tfiat expl J/| = |G|. 

PROOF. The proof is similar to that of Theorem 12; details are left 
to the reader. 

REMARK 5. M. J. Tomkinson [16] informs us that the construc­
tion used in § 4 of [9] can be used to construct without the con­
tinuum hypothesis a two-step nilpotent group of cardinality 2N° all of 
whose maximal abelian subgroups have cardinality K0« This con­
struction does not seem to generalize to higher cardinalities and 
(unlike [2] where the continuum hypothesis is used) does not yield 
FC groups. 
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