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A NOTE ON LOCAL FIELD DUALITY 

KEITH PHILLIPS 

1. Introduction. The additive group of a local field is self-dual. 
Elementary and explicit constructions of character groups can be 
obtained for the p-adic and p-series fields as well as for the real 
numbers. See [4], [8], or [6] chapter 3; there is a brief history in 
the notes to section 25 of [4]. These constructions together with 
structure theorems yield proofs of self-duality for all local fields, as 
noted in [8] and [6]. To the author's knowledge the first explicit 
mention of self-duality for all local fields is in Tate's thesis [7]. Tate's 
proof is based on the general Pontryagin duality theorem. This proof 
is used by Lang in [5] and (with more details) by Goldstein in [3]. 
Weil [9] gives a different proof, based on a dimension argument but 
again using Pontryagin duality. The purpose of this note is to add 
perspective to these proofs by giving a simple proof of the Pontryagin 
duality theorem for zero-dimensional local fields. The proof is given 
for any zero-dimensional locally compact Abelian group. 

Before beginning we note that use of the term "local field" is not 
standard and that we follow Weil in meaning a nondiscrete commuta­
tive locally compact topological field. A local field is either a finite 
extension of the real number field (in fact the real numbers or the 
complex numbers) or it is zero-dimensional (see [9], section 3, theorem 
5; the proof does not use duality). 

2. Pontryagin duality for zero-dimensional groups. 

THEOREM 1. Let G be a locally compact Abelian topological group 
which is zero-dimensional and has Hausdorff separation. Let X(G) 
denote the character group of G and X2(G) the character group of 
X(G), both X(G) and X2(G) having the compact-open topologies in­
herited from continuous junctions. The map r from G to X2(G) defined 
by 

r(x)(X) = X(x) 

is a topological isomorphism onto X2(G). 

PROOF. We will write G multiplicatively. It is easy to verify that 

T(X) is in X2(G) for each x £ G and that r is a homomorphism. The 

continuity of r at the identity e of G can be phrased: "for every neigh-
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borhood U of 1 in the circle group T and each compact set K in 
X(G) the set 

{ x G G : X ( x ) G l 7 f o r a l l X G K } [ = f| X~l(U)] 

is a neighborhood of e". So phrased, the continuity of r is apparent 
from the general Ascoli-Arzela theorem; it also follows easily from the 
continuity of the map (x, X) -> X(x) from G X X(G) to T. 

We have not used the fact that G is zero-dimensional; we use it now 
to show that r is one-to-one. Let x £ G , x ^ e. Since G is zero-
dimensional, it contains a compact open subgroup H such that x $ H. 
The group GIH is discrete. We define a homomorphism a on the cyclic 
subgroup of GIH generated by xH to T satisfying a(xH) ^ 1. If xH 
has finite order, let a(xH) be a nontrivial root of 1 of that order, and 
if xH does not have finite order let a(xH) be any element of T \ l . 
Since T is divisible, a has an extension to all of GIH ([2] section 21; 
[4] appendix A). If the extension is also denoted a and <£> is the 
canonical map from G to GIH, then X = a ° <f> is a character of G and 
X(x) ^ 1. Thus T(X) / r(e) and so r is one-to-one. 

We prove next that r is onto. First suppose that G is discrete. We 
need the fact that X(G) is compact. To prove it note that a subset of 
G is compact if and only if it is finite. Hence the topology of X(G) is 
the relative topology of T 0 ; and, it is immediate that X(G) is closed 
in TG. Thus X(G) is compact. Clearly T(G) separates points in X(G) 
and is conjugate closed, so the span of r(G) is dense in C(X(G)) by the 
Stone-Weierstrass theorem. By a standard argument (not depending 
on zero-dimensionality) it follows that T(G) = X(G) (e.g., see the last 
part of the proof of (23.20) in [4] ). 

The proof so far uses well known methods. The simplification ob­
tained by zero-dimensionality now becomes important, in showing 
that T is onto. Suppose then that G is zero-dimensional but not discrete. 
If H is a subgroup of G, we let 

A(H) = {X G X(G) : X(h) = 1 if h G H}, 

the annihilator of H. We need the following facts about annihilators 
and quotients; each makes a routine exercise. The results appear in 

[4], §23. 

(i) A(H) is a closed subgroup of X(G). 

(ii) A(H) is open if H is compact. 

(iii) A(H) is compact if H is open. 
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(iv) Gl H is discrete if H is open. 

(v) p(X)(xH) = X(x) defines a topological isomorphism 
p of A(H) onto X(GIH) if H is closed. 

Let i\i G X2(G). We need an x for which ifr — T(X). For each com­
pact open subgroup H of G let $H denote i/f restricted to A(H). The 
subgroup A(H) of X(G) is compact and open. By (v), for the element 
ilßH of X(A(H)) there is a unique \pH G X2(GIH) such that ^rH(X) = 
^H(P(X)) for all X G A(H). Since G/ff is discrete there is in turn a 
unique coset xHH such that ^//(tr) = cr(xHH) for all a in X(GIH). 
Thus xHH is the unique coset of H satisfying 

*»(*) = X(xH) for allX G A(H). 

The family Ji of compact open subgroups of G is a directed set under 
reverse inclusion. We show that the net {xH : H G J /} is Cauchy in 
the natural uniform structure on G. Fix H. If L C H, then every X 
in A(H) is also in A(L) and so 

*HQQ = * L W = X(*L) 

holds for all X G A(H). By the uniqueness of xHH, we have xLH = 
xH//. Thus we have xLxH~l ŒHifLGH, and therefore 

xLxM-l G # if L, M C H (L, M G J/) . 

Thus {*// : H G J /} is Cauchy and so converges, say to x (G is com­
plete). For any H there is an L C H such that xxL~l G H, and thus 

XXH-1 = (XXL~1)(XLXH~1) £ # . 
Thus the equality xH = xH / / holds for each H and we have $H(X) = 

X(x) for all X G A(H). Since every X in X(G) is in some A(H), î (X) = 
X(x) holds for all X in X(G). Thus the proof that r is onto is complete. 

It remains to prove that r~l is continuous. For a compact open 
subgroup H and x (£ H, the proof that r is one-to-one can be adapted 
to show that there is a X G A(H) such that X(x) j4 1. From this and 
the fact that r is onto it follows that r(H) = A(A(H)) for each compact 
open subgroup H of G. But A(H) is compact, so A(A(H)) is open. 
Thus T(H) is open for each compact open subgroup H of G. It follows 
that T is an open mapping, and the proof is complete. 

COROLLARY. With notation as in Theorem 1, if Y is a closed sub-
group ofX(G) that separates points in G, then Y = X(G). 

PROOF. Let 0 G A(Y) (in X2(G)). By Theorem 1 there is an x such 
that 0(X) = X(x) for all X G X(G). If x ^ e, then there would be a 
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X G Y such that X(x) ^ 1. Thus x = e; hence 0 = 1 , and A(Y) = 
{1}. Since Y is closed, Y = A(A(Y)) = A({1}) = X(G). 

COROLLARY (TATE). The additive group of a zero-dimensional local 
field is self-dual. 

OUTLINE OF PROOF. Let X be any nontrivial additive character of a 
local field K. Let Xa(x) = X(ax), a G K, and let p(a) = Xa. It is ele­
mentary that p is continuous, one-to-one, and onto. To see that p 
is also open (p _ 1 continuous) let H be any compact open subgroup of 
K. Since a local field is a-compact ( [9], p. 4), KIH is countable. Thus 
there are an G K such that p(K) = Un=i p(an)p(H). The group p(H) 
is compact, so by an application of the Baire category theorem some 
p(an)p(H) has nonvoid interior. It follows that p(H) is open and hence 
that p is an open mapping. Thus p embeds the additive group of K 
in X(K), p(K) is closed, and p(K) separates points. Thus the first 
corollary applies, and p(K) = X(K). 

The continuity of p _ 1 in the above outline also follows from (5.29) 
of [4], which states that a continuous homomorphism is open if the 
domain is locally compact and a-eompact and the range is locally 
compact and Hausdorff. The result is a modification of one appear­
ing in Pontryagin's "Topological Groups"; see [4], p. 51 for a dis­
cussion. The openness of continuous homomorphisms is a major minor 
topic in its own right. 

REMARKS, (i) The fact that T is one-to-one is equivalent to the semi-
simplicity of the Banach algebra L^G). In the general case both re­
sults are difficult. As seen above, for discrete groups the result is a 
consequence of the fact that homomorphisms from subgroups to 
divisible groups have extensions. The point of this part of the proof 
is that the zero-dimensional case follows easily from the discrete case. 

(ii) There is a proof of Theorem 1 in the case that G is zero-dimen­
sional and compact in [2], section 48. Actually, compact-discrete 
duality is not terribly difficult in the general case; see (24.3) of [4]. 

(iii) If V is a finite dimensional vector space over a local field K 
and B is a continuous regular bilinear form on V over K, then for any 
nontrivial additive character X of K the expression 

Xy(x) = X(B(x,y)) 

defines a character Xy of V for each i / G V and the map y —» Xy is a 
topological isomorphism of V onto X(V). A proof such as that out­
lined following the last corollary above can be given, although more 
details arise. A similar result appears in [9], p. 40. 
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