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NON-LINEAR QUANTUM FIELD THEORY* 

BROSL HASSLACHER AND ANDRÉ NEVEU 

0. Introduction. This review is a greatly extended version of a set of 
lectures given at the Soliton conference in Tucson, Arizona. 

It is written for mathematicians who have at least a casual acquaint
ance with systems that support soliton behavior, though one does not 
have to be a specialist to follow it. The lectures presume no knowledge 
of quantum field theory, despite the title. The idea was to present 
methods for investigating non-linear phenomena intrinsic to certain sys
tems of physically interesting equations arising in quantum field theory, 
and so physics will play a muted role. Some of the material will in
volve familiar systems, e.g., the sine-Gordon equation, analyzed in an 
unfamiliar setting; for certain classical perfect systems are so stable 
they survive intact the process of second quantization. 

The methods we discuss are new, this being a review of work done 
in the area by us and others in the last two years. Our main analytic 
tool is the functional, or Feynman path integral and approximations to 
it. Since we assume this is unfamiliar to most mathematicians, we have 
included a short course on the subject in Section 1, adequate to follow 
the subsequent development. All the quantum field theory, represented 
in the language of path integrals, that one needs is introduced where 
appropriate. There are many excellent texts available for those who 
wish to know more than we have space to present here. The bibliogra
phy contains a short list of relevant papers, which in turn contain refer
ences to the already extensive literature. 

This is the first time in a century that the frontiers of physics and 
mathematics share a common ground. The most surprising consequences 
of nonlinear phenomena for modern physics are in the future, but al
ready there are indications that they play a fundamental role in the 
field theory description of the sub-nuclear world. 

1. A short course on path integrals. In the literature, path integrals, 
functional path integrals, and Feynman path integrals, are names used 
interchangeably. We will make no attempt at giving a rigorous justifi-
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cation of the method of path integrals. This is neither necessary nor 
possible. As they are used in quantum field theory (the reader should 
not become apprehensive if he has never heard of quantum field theo
ry; it will be explained), a functional integral is usually defined as the 
limit of a finite dimensional approximation. The precise definition of 
this limit is not needed in anything that follows. 

Let .<£(•) denote a field, that is a function of space and time, and let 
éhc denote a class of (sufficiently nice) fields subject to fixed boundary 
conditions (b.c.). For example, 4\ could denote the set of all fields 
which are continuous and vanish as |x| —» oo, t fixed. Furthermore, let K 
denote an invertible linear operator and adopt the shorthand notation 

<|>K</> = f J 4>(x)K(x, y)<t>(y)dnxdny 

Here x and y are points in space-time, and the integrals range over all 
of space-time. 

The Feynman integral is an expression of the form 

(lla) X o ^ « ' ) { e x p [ | **+ ] '<•> }• 
where the integrand !(•) is a functional of the fields, I.^òc—»R, and 
one thinks of the integral as a continuous sum over all fields in the 
class 7^&c. (The actual definition of the Feynman integral is given in 
terms of a limit of iterated integrals [8]. One considers a family of 
partitions of space-time, {(xp x2 • • -, xn) for N = 1, 2, • • •} which be
come finer and finer as N—* oo. For each partition, the field <j>(x) is ap
proximated by the N-vector {<̂  = <f>(aci), / = 1, 2, • • • N) and the kernel 
K(x,y) by the matrix {Ki§ = K(xi9 y^}. Then the Feynman integral is 
defined by a formula of the type 

Xòc &<>{•) ( e * p [ f **• ]}*(+) 

(1.1b) = lim CN § f ••• / ^ • • • ^ 

( e x p [ | <MCiA. ] j 

where CN is a normalization constant and IN denotes a suitable approx
imation of the integrand I(4>).) 

In the perturbation calculations of field theory, the integrands I are 
functional of the very special form 
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For this special type of integrand, the definition (1.1b) collapses to a 
finite-dimensional Gaussian integral. In this case, the natural extension 
of the formula 

( Ï ) '" £«*—* 

= ( -^-)* ««PC-/2«-1)) >=O 

allows us to introduce a working definition of the Feynman integral for 
this class of integrands [1]: 

(1.2) 

Such a quasi-gaussian functional form has all the properties of an ordi
nary integral: one can integrate by parts, change measures, define Fou
rier transforms, iterate, take multiple integrals and define delta func-
tionals. In short, they are like ordinary integrals with somewhat 
different rules. The most important property that makes all these prop
erties work is that the functional integral of a gaussian is again a gaus-
sian. 

Fourier Transform. 

F(<p) = exp{t J <p(x)K(x - y)<p(y) dxdy} H <p(Xj) 
j 

=>3F(/) = f F(<p)exp{i f j(x)<p(x)dx} Udq>(x) 
X 

for any gaussian functional. Hence 

F(<p) = exp i(<pfc<p) n <P(/> 

(1.4) 
3F(j)= f (^<p)F(<p)expi(/<p). 
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Integration by Parts. 

J v sw(z)exp { ï J *(*)*(* ~ yï^yïdxdy} ) 
e xP y l J <P(*)/(*) * ] I ! d<p(x) 

(1-5) 

= - J exP { | J <P(*)K(* - y)<p(y) dxdyj 8 

exp (̂  i J <p(x)/(x) è j n dxp(x\ 

that is, 

(1.6) 

J (̂ <P) [ g- e xP ^ (#<P) J e xP *(w) 

= - J (^<P)exp 1 (qpfap) [̂  — expi((]p/) J . 

Transformation of variables. The rule for the change of measure un
der a shift is somewhat different for functional integrals than for ordi
nary ones and is the origin of the path integrals' power in quantum 
field theory applications. In the hands of a skilled operator, succinct 
and transparent proofs can be given, which in another notation would 
be very complex. 

Under the shift 

(1.7) <p = fa'); fly') = c0(x) + <p(x) + fW) 

the form 

J exp | | J <p(x)K(x - y)<p(y) dxdy 

(1.8) r Ï „ 
+ i J <p(x)i(x) dx j n dy(x) 

= S e x p { I S fW(x))K(*-y)f(<p'(y))<ixdy 

+ i S M(*M*) d* } det 1 1 + ^ j n dq>', 

where 
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Equation (1.8) becomes 

J <ß<P) exp{i/2 (pK<p + iqp/} 

= f (ß<p')det ( l + # | exp [ Ì/K/+ ifj ] 

and (1.9) defines det{l -f (Sf/8q>')} as a formal power series. This for
mula is not very useful unless / is independent of <j>\ in which case it 
can be moved outside the integral. Fortunately the latter is often the 
case. These are all the properties of path integrals that we will need to 
analyze the structure of Quantum Field Theory (Q.F.T.). 

/ as an external source. The reader will have noticed the appearance 
of the auxiliary variable / in the working definition of the Feynman in
tegral (1.2). With this auxiliary variable it is easy to derive "generating 
functionals,, for various objects. Setting y = 0 at the end of the calcu
lation returns one to the original system of physical interest. Physicists 
think of / as an external source. Its use will be demonstrated in the next 
section. 

2. Feynman's Action Principle, Path Integrals and Q.F.T. Quantum 
mechanics, special relativity and the principle of causality imply a de
scription of the world known as Quantum Field Theory (Q.F.T.). Q.F.T. 
has a long history and this section will be hopelessly inadequate phys
ically. However, since the point is to show how the path integral enters 
and how one usually works with it, it will be enough to simply state 
Feynman's action principle, which provides an astonishing and com
plete connection between the classical description of a system and its 
relativistic quantum analog. 

Feynman originally formulated his path integral representation for a 
quantum transition probability by a method he called a "sum over his
tories," If S = / d4x_/?(x/4) is the classical action for a system, where 
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-f(xß) is the Lagrangian density, then the transition probability is ob
tained by summing over all possible paths in space time that the system 
can evolve along, each weighted by the exponential of the action for 
that path. 

Rule 1. The Action Functional The probability for a system to start 
from the vacuum state and end there under the influence of an external 
source / is given by the vacuum-vacuum transition amplitude (OIO)7 

where 

(2.1) (0\0y = N j (ß<p) exp i (S(<p) + jq>) 

S is the classical action, N is a normalizing factor to be determined. 

Rule 2. The complete n leg Green functions (which give the ampli
tude for n quanta of the theory to interact) is given by the rule 

fy'(*i) ' • ' S/(xn) j-Q 

These two rules, amended with a prescription for assembling Green 
functions together to get a physical quantity, called the S matrix, are a 
complete description of the Q.F.T. corresponding to a given classical S. 
We will focus our attention on Rule 1, which defines (0|0) J also known 
as the vacuum generating functional. There are some assumptions built 
into Rule 1. The main one is that at large enough distances and times 
the system under consideration behaves as a collection of free fields, 
having no interaction with one another. This implies that they are 
point-like. Unless this boundary condition is altered there is no way one 
can see systems which are asymptotically of finite extent, coherent ex
tended objects or bound states. This boundary condition selects out only 
a part of the available Hilbert space of states, missing all coherent non
linear phenomena. The second point is how one deals with (2.1). As it 
stands it is intractable, since S is not, in general, quadratic. So one must 
resort to approximations on it. The most commonly used one is to ex
pand the path integral in a formal series in the coupling constant, 
about the free field case. This leads to the Feynman rules and Feynman 
diagrams. To clarify all this, let us choose a very simple model La
grangian and, using the formulas in Section I, see how linear per
turbations and Feynman diagrams come about. 

A simple model and some of its Feynman graphs. For simplicity, let 
us work in Euclidean space-time and consider a model Lagrangian with 
one real scalar field, interacting with a quartic self interaction. So the 
action of the system is S(<p) 
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sfo) = 2" J «PWV" 1 ^ - y)<p(y) dxdv 
(2.3) c 

+ J SJi*)à* 
where ,y i n t(x) = (g/4!)<p4(x) and AF(x — y) satisfies 
(D — m2)ÄF(x) = 84(x) i.e., is the Euclidean Green's function for the 
free, massive, Klein-Gordon equation. Then by Feynman's action prin
ciple, the vacuum functional is Z[j] = (0|0)J, 

(2.4) Z[fl= f (ßv)expi(S(<p) + j<p). 

By formula (1.1) we can rewrite this path integral as a / functional op
erating on the free gaussian, i.e., 

(2.5) 

exp { "" 2 ^ ^ A ^ * ~ yWyîdxdy\. 

Expanding both exponentials as a formal power series, we see that we 
get an expansion in powers of the coupling constant g 

^-{'^/G-sèr)'* 
2-4! A i Sj(x) I \ i S/(i/) 1 } 

m / i c 
X 1 1 - - J /(*)AF(x, ?/)/(*/) dxdt/ 

2—2 J /(*)AA i ! / ) / W ^ y,)\(y'dxdxfdydy'+-- j + 2-2 

Now, if we agree to represent AF(x, i/) as an undirected line between 
space-time points x and y, and take integrals over the same point to 
mean the joining of lines at that point, we can write down Feynman 
diagrams. As an illustration we write out the first few terms of the con
nected diagram series (there are many disconnected ones) for the 2- and 
4-point functions. Simply apply Rule 2. 2-point function: where the 
shaded bubble means the complete Green's function 

1 5 8 
Z[;] 42 0/(1) 5/(2) jzzO 
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to lowest order in g, because of the / = 0 condition we get only the 
term quadratic in /, i.e., 

(2.7) 
5/(1) 0/(2) 

J /(*)<V*, y)j(y) dxdy 

= J 8(x- l)^x, y)S(y - 2) dxdy = A^l, 2) = A^2, 1). 

So to order g2 

• 2 + I- • 2 + - , 

4-point function: 

0)' s 
(2.8) 0/(1) 0/(2) 0/(3) 0/(4) 

m j-o 

Consider only connected terms. Examining the series, we see that it be
gins in order g with the integrand 

/ lA12/2/3A34/4/5A56/6/7A78/8 

where (8/8j(x))4 contracts 4 points to x and the remaining 
(8/8/(1)) • • • (8/8/(4)) sets the other 4 points to be external lines so 

+ perm. + 

This is the origin of Feynman graph expansions, and is the way he orig
inally invented them. This ends the section on the formal development 
of linearized Q.F.T. 

3. Quantizing extended solutions (Modified Feynman expansions). The 
Feynman diagram technique is obviously a very powerful com
putational tool. It allows a space-time picture of the structure of vari
ous Green's functions, to which one can very often apply physical con
siderations to reduce their number and complexity. However, it suffers 
from all the limitations mentioned above. It is, essentially, a weak cou
pling expansion about a point-like free field theory. 

Most of the simple field theories that physicists work with have the 
property that bounded energy solutions are dissipative. There are, how
ever, very important models, which as classical field theories, admit 
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non-dissipative solutions of finite energy. The physicist Sidney Coleman 
has given them the name "lumps" to distinguish them from the true 
solitons of completely separable systems. This is a good distinction to 
remember since any theory which tries to use spacially constrained so
lutions as a model for elementary particles is going to have to deal 
with "lumps." The reason for the distinction is that solitons have an in
teraction which is far too simple to be physically useful. For example, 
particle creation and destruction is missing. Also physical theory must 
ultimately be formulated in (3 -f 1) dimensions (three space and one 
time dimension) where true solitons probably don't exist. 

To begin, however, it seems a good idea to go to (1 + 1) dimensions 
where sensible field theories having classical soliton modes exist and at
tempt to find approximation methods which keep intact non-linear ef
fects from the beginning. If we insist on perturbing about a point-like 
free field solution in the action principle, then in studying non-linear 
coherent phenomena, no graph can be neglected. One is reduced to 
considering infinite sums of them, which ruins the utility of the Feyn
man diagram expansion. 

This puts us back to equation (2.1), the action principle. We still 
have available the entire battery of properties of path integrals de
scribed in Section 1. There are two directions we can pursue. Both are 
approximation methods, both altering the boundary conditions on the 
class of paths considered. From here on the main development will 
take place in (1 + 1) dimensions. The reason is simply that we want to 
use the remarkable properties of soliton systems, both physically and 
mathematically to guide us in approximating the path integral. 

Modified Feynman Expansions. The first approximation scheme is pri
marily due to Gervais, Jevicki, and Sakita [2] and involves the smallest 
modification to the path integral. The idea is to develop an expansion 
analogous to a Feynman diagram expansion, but perturbing about the 
classical extended lump. We will give only the briefest outline of the 
idea and some of the troubles it encounters, since, because of its ex
treme complexity, this approach does not go very far toward a quan
tum field theory of soliton modes. 

Translation Modes. Let us consider only static solutions to a field 
theory. If we wish to perform a perturbation about a static soliton even 
classically, it is clear that a naive attempt will fail. Say <j>(x — vt, t) is 
the functional dependence of the soliton mode and begins at a time 
( « 0 with a slight increment in velocity Ü « C , a small expansion pa
rameter. Once set into motion, the soliton will remain at a constant ve
locity c, so that at small enough times ~ 1/c, fluctuations in the system 
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become so large that the expansion fails. This is the problem of the 
translation mode, which in the quantum field theory version causes the 
inverse kernel in the quadratic piece of the action (<J)(x)AF

_1(x, y)<t>(y)) to 
be undefined. It picks up a translation pole, a singularity which is 
called an infrared disaster. With a moment's thought, it is apparent that 
any symmetry of the system will cause like poles. Each such symmetry 
defines a line along which the potential energy remains constant. Fluc
tuations, in any approximation around a soliton mode become un
bounded along such a line, since there are no energy constraints on 
them. 

Singular Lagrangians. In a more compact language, translation and 
symmetry poles arise because the original problem contained a singular 
Lagrangian. Singular Lagrangians, -f(q, q) are those for which the usual 
equation pi = dL(q, q)/òqi cannot be inverted to find the q. This causes 
the path integral containing them to be ill-defined. The cure for this is 
to go over to a Hamiltonian formalism for the path integral and find an 
independent set of functional variables. Effectively, this causes the 
troublesome terms to factor out of the functional measure. A systematic 
way to do all of this was given by L. D. Faddeev [3], in a classic paper 
on path integrals for singular Lagrangian systems. 

We will give only a brief outline of the prescription for the case of 
(1 + 1) dimensions and arbitrary numbers of solitons, treating only the 
translation mode. The explicit prescription for this case will show the 
reader why the modified perturbation approach to soliton quantization 
is bound to become enmeshed in complexity. 

Consider a system defined by the Lagrangian J9 = 
(l/2)(3<J>/8*)2 - (l/2)(a<J>/9x)2 - V(<f>) where V(<f>) is a potential function. 
Let <f>c(x, t) be an n-soliton solution to the classical equations of motion. 
This depends on n constants of integration representing the initial posi
tions of the soliton array, which we call (qv • • -, qn). Then <f>c(x, t) = 
<f>c(x, t,qv - - -, qn). Translation invariance allows us to define new varia
bles q{(i) — v{t + qi (i = 1, • •, n), vi being a set of velocities to be de
termined. Then <j>c(x, t) = <j>c(x, t, q^t), • •, qjf)). If we choose to expand 
4>(x9 t) about some classical n-soliton solution <f>(x, t) = 
<f>c(x, {qi(t)}) + £(x, t), i — 1, • -, n, we have effectively chosen the gen
eralized coordinates {q^t)}, £(%, *)} t o describe the system. To complete 
the description we must find the momenta canonically conjugate to the 
coordinates and check that they are linearly independent. It turns out 
that they are not. 

The conjugate momenta are given by 
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P.ft)„J£__*. ÇJÉLJÉL+ f (J±-

These are related by the equations 

the so-called *// constraints. This means that _/" is singular since one can
not solve for qv £ as functions of px and IT, SO a straightforward transi
tion to the Hamiltonian formalism is blocked. 

The way around it is Faddeev's prescription, and we simply present 
his form of the Hamiltonian action integral for constrained systems. 

Faddeev's formula. Let a mechanical system be defined by the canon
ical variables q = (qv • • -, qn) and p = (pv • • -, pn\ the Hamiltonian 
H(q, p) and a set of functions <j>a(q, p) called links. Links are the con
straint functions <f>a(q, p) = 0, a = 1, • •, n which restrict the variables 
p and q from varying throughout the whole of the phase space T. The 
xpi = 0 are links. Let the linking functions additionally satisfy (1) {<pa, 
<p&} = 2 c C c

a V ; (2) {H> <Pa} = 2ÖC&V, where {/, g} is the usual 
Poisson bracket in T and the C's are certain functions. This case, al
though appearing special, is actually sufficient. Now if one can find m 
additional conditions called gauges xa(P> 9) — ̂ > a — 1 > ' ' ' >m which 
satisfy (1) det |{xa, <Pb}\ ¥> 0; (2) {xa, Xb} = 0, then the action principle, 
in its Hamiltonian form is: 

<0|S|0> = f exp{i f 2 piii - H(P> </)) Mq(t), p(t)) 

where the measure d/i(p, q) s Ua S(xa)%a) det|{xa, %}\^i dp^. 

This is the form for finite systems, but goes over to field theory es
sentially unchanged. From this form for the action one can immediately 
see difficulties. We have, as promised, resolved the zero eigenvalue 
translation mode problem and the functional integral is well defined. 
But the measure is written in a deceptively simple notation. The actual 
measure is a rather complex object and the Hamiltonian in the new 
variables is very complex. As the field theories get more sophisticated, 
this feature becomes alarming. For the case of a Yang-Mills gauge mod
el, with its many symmetry modes, it is almost unmanageable. Now, 
contemplate developing a Feynman diagram scheme around the result-
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ing integrand with such a complex H(p, q\ and one sees that it would 
be wise to look for a more manageable technique. It is fine in prin
ciple, but not very efficient. 

As a technical aside, the reader should, at this point, be concerned 
about the validity of a canonical transformation within a Hamiltonian 
functional integral. It is well known that if you begin with a quantum 
system described by a Hamiltonian path integral and perform a canoni
cal transformation, one passes to a system different from the original 
one. Naive canonical mappings under functional integrals are illegal op
erations. This apparent malfunction of the formalism can be repaired in 
a consistent way, but doing so further complicates the formalism, add
ing terms to the potential at the two-loop Feynman diagram level. 

Because of all these problems, we will leave the approach of the 
modified Feynman expansion and instead consider in some detail the 
last option open to us; a more drastic modification of the action prin
ciple itself. This leads us to the main subject of this review, the func
tional analogy in field theory to the WKB approximation of ordinary 
quantum mechanics. This method was developed by Dashen, Hasslacher 
and Neveu [4], [5], [6], [7], and has come to be known in the literature 
as DHN. 

4. Functional integral analog of the WKB approximation (DHN). Since 
the path integral action principle generates Q.F.T. by operating di
rectly on the possible histories of a classical system, one might wonder 
what would happen if the class of allowed paths were restricted to 
stable, periodic orbits. In ordinary quantum mechanics, one finds that 
such motions, when quantized, give a bound state energy spectrum. 
These classical paths have quantum shadows which are the kinds of ob
jects we want to analyze. But, from a canonical point of view, the tran
sition from classical quantum mechanics to Q.F.T. is a rather drastic 
process. It only appears simple because we have used Feynman's pow
erful formulation of it. Do periodic orbits survive the transition to a 
quantum field theory and if they do, what are the properties of their 
quantum shadows? The first step in asking such a question is to develop 
some analytic machinery appropriate to it. 

First, we have to find an approximation to the path integral which 
naturally chooses periodic orbits. Second, for tractability, we must not 
ask the integral to give us too much information. Third, the method 
must be non-perturbati ve. (We have already seen the difficulties in
volved in any perturbative scheme about an extended classical solution.) 

The presentation below will outline such a method, and its appli
cation to the periodic motions of an interesting soliton supporting field 
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theory, the sine-Gordon equation. We outline the development for the 
case of one degree of freedom, then simply state how it goes over to a 
field theory. 

There are only a small number of operations one can do practically 
on a path integral, all of them special cases of properties outlined in 
Section 1. We will use three of them. Given the Hamiltonian of the 
system we ask only for the bound state energy spectrum. Then we use 
a saddle point approximation to the integral, a particular shift due to 
Cameron and Martin and functional integration by parts to analyze the 
spectrum. The development should be considered heuristic at best. Ex
istence questions will be ignored. 

One degree of freedom, a particle in a potential [4]. We begin by 
outlining a rather complex derivation of the well-known WKB approx
imation to the bound state energy levels of a particle in a one-
dimensional potential well. The derivation uses a path integral repre
sentation. The ultimate advantage is that it generalizes immediately to 
field theory. 

Define 

En being the energy of the nth bound state. Write R(E) as an integral 
over an exponential. 

R(E) = itr X00 f e x p { l (E-H)T } . 

The advantage of this form is that trexp[ — iHT\ has a path integral 
representation, the Feynman propagator: 

t rexp[- i t f r ] = f &{x{r)} exp [ ± £ ( \ *2 - V(x))dr ] 

over all paths x(t + T) = x(t). This requirement is due to the trace op
eration, (f stands for time derivative a n d / for space derivative). Treat
ing h (a scale factor which we identify with Planck's constant) as a 
small perturbation parameter, expand the integrand to leading order in 
ft by the method of stationary phase. The dominant contribution to the 
functional integral comes from paths close to classical orbit x(r) with 
fixed period T. This means that (1) the paths x(r) are periodic, and (2) 
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initial and final momentum are equal for any point on the periodic 
path. Condition 2 is caused by the stationary phase condition. 

3S / ,v 3S , A 

fa» ? ) + szr fa> 9 ) 3g v * ' 1 ' 3q' 

= P — F = 0, g, q' are end points of the path. 

Expanding the action about these classical orbits gives 

tr exp(-iHT) « exp(iScl(7y*) J* <0X(T) dxJO) 
(4.1) 

X e X p { l ^ r [ | * 2 - l *V"fta(T))] * } 

over paths x(0) — x(T) = 0. The measure dxcl(0) reflects the freedom to 
begin the integration at an arbitrary point along the orbit. The sub
script cl means "classical." 

Equation (4.1) is evaluated by a shift in the functional integral first 
used by Cameron and Martin in another context (see [8] for a survey). 
Introduce the mapping 

(4-2) !/(T) = * ( T ) - S; - f ^ *(/*)* 

and its inverse 

(4.3) *(r) = y(r) + N(r) £ - Ä yfr) dp 

where N is defined by N — — V'W. 

Substitution and integration by parts gives: 

tr exp(-iHf) » exp[iScl(T)/fc] 

&x I X J ^y(r)dadxcì(0) ( 

x exp{ii L I Jo' y2dr + a \ym 

+ •^r^*)]} 
Since (4.2) is Volterra [8], the functional Jacobian 
}ßx0y\ — \N(T)/N(0)\1/2. Integrating over y and the Lagrange multi
plier a gives: 
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tr exp(-iHT) 

(4.4) 

X s <M>) 

V 2mfi I 

N(T) 
N(0) 

exp [ i s«iT) ] 
ru dr 

-1/2 

To complete the sum over paths of the system, one sums over n tra
verses of the orbit such that its period is equal to the fundamental or
bit. After completing the sum it can be shown that 

(4.5) 

R(E\~ ( i V / 2 y f°° dT T In dE« 
m ~ v ^ r / èi Jo ~h T \n~dT-

v f . / Scl + ET 
X exp m I —Si— 

1/2 

')] 
where Ecl = dSJdT. 

Evaluating this integral by stationary phase, to leading order in Ä"1 

gives a stationary point at 

dSn 

dT 
= - £ . • E. 

This reduces R(E) to 

fi(£): 

(4.6) 
h 

iT(E) 

n | exp[m(-^-- w ) ] 

exp[iW(E)/fl] 

where W(E) m Scl(T(E)) + ET(E). 
Now if Em is a root then W(£m) 

mechanics, we know that 

1 + exp[iW(E)/fi] 

(2m + Vynh. But from ordinary 

W(E) = 2 £*[2{E-V)y*dx 

where xv x2 are turning points for the potential V. 
So, in this complicated fashion, we derive the ordinary WKB quan

tization condition from a path integral formulation. Now the transition 
to field theory is relatively straightforward, involving only one addition
al concept. The fundamental steps will be the same: An approximation 
of trexp[ — iHT], a stationary phase integral over T which converts 
R(E) to a factor times exp[iW], and finally a sum over multiple tra-
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verses of the fundamental orbit which gives a geometric series in 
exp[iW] and so poles in R(E). To do it properly, one needs a complete 
classification of the classical periodic orbits. 

Extension to Field Theory [4], [5], [6]. Imagine a system with a large 
number of degrees of freedom. To get to Field Theory let the number 
become unbounded. When dealing with many degrees of freedom, an 
additional concept enters, the notion of stability angles. Briefly, 
tr exp[ — iHT], after stationary phase approximation and rewriting in a 
Hamiltonian form becomes: 

tr exp( - iHT) = f & P&X 
(47) r r ( 1 

Xexp[t J0 (̂  I f ^ - ^ X ) ) ^ J 
where P and X are generic labels for generalized momenta and coordi
nates, explicitly depending on t. H is the Hamiltonian corresponding to 
the quadratic Lagrangian form obtained by evaluating the integral 
around its stationary point. 

Since the integral is gaussian, it is proportional to the inverse square 
root of the determinant of the operator in the exponential (see Section 
1), a differential operator with periodic boundary conditions. To find 
the determinant, we must find the eigenvalues of this operator. These 
are given by the solutions to Hamilton's equations X(t) — èa(t), P(t) — 
-qa(t), where i\a and £ a satisfy the functional form rja(f + T) = 
exp[ — iva]ria(t), va real and ¥* 0. These are not eigenfunctions, but since 
the system is first order, the periodic eigenfunctions are: 

*nJt)= £ « « e x p [ i 1 {va + 2mr) ] , 

(4.8) 
— oo < n < -f-oo 

with eigenvalues i(va + 2n7r)T~1. 
The va's are called stability angles or Floquet indices. For stability, 

they must be real and the differential system constrains them to occur 
in pairs ± va. The condition va =£ 0 is set to remove explicitly any zero 
stability angles, which reflect the symmetry modes of the problem and 
cause the determinant to become singular. They factor out of the in
tegral exactly as in previous sections. Using the properties of the va 

spectrum we write the square root of the eigenvalue product as: 

(4-9> a a '« [ i - ( t)2 ] = Ä ( (e""/22 s i nt ) • 
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For each such factor, we can further expand its inverse as 

[ v 1 -1 pim/2p-iVe/2 
e-itf/2 2 sin -^ = — —. . 

2 J 1 - e-
%v* 

so that 

where 

tr exp[-iHT] = 2 e xP ftS + ^ A i A 2 
periodic orbits 

£ = — — 2 va> ^i~ f a c t ° r containing only zero modes 
2 PoX) 

and 

00 

A2 = I l (1 - e-*"«)-1 = Il 2 tr**: 

In general the £ function, the sum over stability angles is divergent and 
must be regulated and renormalized. This will be explained in the next 
section on the sine-Gordon system. The factor A2, if there are n dis
crete stability angles present, can be written as 

f i 1
 l . = 2 er**+Ty, 

i=i 1 - e tVi {<?,} 

(4.12) 
where {qri} is a set of integers. 

Under quantization, as before, the quantization condition on W(m) be
comes 

(4.13) W(m) = 2™ - %J(m)) + 5 qp^m)) 
i 

where W(m) = S(T(m)) + MT(m) and T(m) solves - dS(T(m))/dT = m. 
So each basic particle n = 1, 2, 3 • • • is accompanied by excited states 
labeled by the integers {9} (see Voros [9]). 

5. Quantization of the sine-Gordon Breather. We now provide a con
crete example of the technique of the previous sections in quantizing, 
in lowest non trivial approximation, the sine-Gordon soliton and breath
er. The classical Lagrangian density is: 

(5.1) y = T [ - f ( W + <™<p-i] 
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where 

(5.2) (3^)2 = (3^)2 - (9#f. 

Let us examine the soliton mode for which the classical field con
figuration is, in its rest frame 

<p8(x) = 4 tan~1exp(%). 

The classical mass, Mcl of the soliton is given directly by integrating the 
Hamiltonian density 

(5.3) ^ = X [ I (a'<p)2 + I (a^)2 - cos<P + ! ] 
hence 

(5.4) Mcl (soliton) = *g- . 

As explained in previous sections, the first quantum mechanical cor
rection is obtained by adding to Mcl the quantum energy of fluctuations 
around it, computed in the linear approximation. One must solve 

(5.5) ( 3 (
2 - d*)8<p-cos <ps8<p = 0. 

Separating out time dependence in the form 

Sep = e-^% 8q)(o), x), co ^ 0 

one finds the Schrödinger equation 

dx
2Scp(o), x) — 2 sech x ô<p(co, x) — (1 — co2)S<p(co, x). 

There is one bound state solution at co = 0 

(5.6) W>=db 
and, for co > 1 

ôqp(co, x) — eifcar(tanh x — ik), k2 = co2 — 1. 

The first quantum mechanical correction to the energy is |- of the sum 
of all values of co. This is of course divergent, due to the infinite num
ber of modes of a field theory. The divergences are removed in a phys
ically sensible way by the standard procedures of subtracting the vac
uum energy and performing a mass renormalization (which turns out, 
even in higher orders, to be the only manipulations necessary to make 
the quantum sine-Gordon theory finite). These procedures are now ex
plained on this example: 
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Since subtraction of infinities is performed, we must be very careful 
not to miss any finite terms. This is done by first putting cutoffs in the 
theory, so that everything is finite, and the number of modes is finite, 
then performing the subtractions, and only then removing the cutoffs. 
This procedure has been made mathematically rigorous by constructive 
field theorists, to whom we refer the reader. 

The simplest cutoff method is to approximate the theory by a finite 
lattice with appropriate boundary conditions (periodic, say). This pro
vides an ultraviolet cutoff, of order A = ir/a in momentum space 
(a = lattice spacing), and an infrared cutoff proportional to the length 
L of the lattice. It would be very convenient to have a lattice version 
of the sine-Gordon equation that would preserve the infinite set of con
servation laws. Fortunately, for our limited purpose in these lectures, it 
is not needed, and any crude cutoff will do. 

One has to count modes of the linearized equation (5.5), and of the 
same equation with <f>s replaced by the vacuum state, that is with <|>s re
placed by 0 (mod27r). When the soliton is introduced in the box of 
length L, each mode shifts slightly in frequency (hence energy) from its 
frequency in the vacuum. Taking the difference between the two sub
tracts the infinite vacuum energy. The box has made the modes dis
crete, so that one can count them and follow what happens when one 
goes from the vacuum to the one-soliton sector. 

Subtracting the vacuum energy cancels the main (quadratic) diver
gence in the quantum correction. It then turns out that a logarithmic 
divergence remains. It is cancelled by the mass renormalization 
counterterm, as explained in [6]. The Lagrangian density (5.1) as such 
does not lead to finite quantum mechanical results when one computes 
in perturbation in h (or in X/m2). Instead, one must start from the 
Lagrangian density 

- ^ = X [ " I ( W + COSÇ.-1 ] 

(5-7) 
+ — ôm2(cos <p — 1) 

A 

where 8m2 is a power series in X/m2 whose coefficients are logarith
mically divergent. These divergent coefficients are chosen in precisely 
such a way that they will cancel, order by order in X/m2, the divergen
ces that arise in perturbation theory. They are obtained by computing 
the Feynman diagrams of Figure 1, which turn out to be all the diver
gent diagrams in this simple two-dimensional theory: the interpretation 
is that the divergent quantity (m2 + 8m2)1/2 is the unobservable bare 
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mass, which, after quantum corrections becomes the renormalized, fi
nite mass, m. It is then explained in [6] how, in leading order in 
À/m2,the first term of 8m2 cancels the remaining logarithmic diver
gence in the quantum soliton mass. The result is 

8m3 

(5.8) M (soliton) = - ^ mir + 0(A/m2) 
A 

The 0(A/m2) terms require much more work than simple linearized 
oscillations around the soliton. They have not yet been computed ana
lytically. 

We now turn to the quantization of the breather mode, with classical 
field configuration (in its rest frame): 

(5-9) » = 4 t a n ( * cosh <*/(! + e W • 

This mode provides an ideal illustration of the quantization method 
of Section 4: it is a solution of finite spatial extent, of finite energy, pe
riodic in time, with period T = 2ir(l + e2)1/2

 € being arbitrary. It is also 
a classical soliton-antisoliton bound state. Quantum-mechanically, the 
energy of such a bound state must come out quantized. The quan
tization method of Section 4 leads to formula (4.13). To apply this 
quantization formula, we must again solve the linearized equation, anal
ogous to (5.5), which describes the behavior of small perturbations of 
the breather. 

The trick for solving the linearized problem is described in [6]: it 
was the fact that solutions of the sine-Gordon equation with an arbi
trary number of breathers have been constructed analytically [10]. One 
then takes a two-breather solution which consists of one breather as de
scribed by (5.9) coupled to another breather. This second breather is 
very weak, with amplitude TJ and velocity v. The first order term in 17 
satisfies the linearized equation. In addition, there are two bound state 
solutions, given by the time and space derivatives of (5.9), which 
merely express invariance of the sine-Gordon equations under time and 
space translations. 

The explicit formulas for the solution of the linearized problem are 
given in Appendix C of [6] and are rather lengthy and not particularly 
illuminating. Their relevant features are as follows: at oc—» — 00, 
cos <t> —+ 1, and 8<j> is of the type e~

i{oit~kx) (with co2 — k2 = 1), and at 
x—• +00, 8<f> ~ e-Hat-kx+8)t Therefore, the stability angle for such a 8<j> 
is coT. The calculation of the sum of stability angles is essentially identi
cal to the sum of frequencies for the quantum correction to the soliton 
mass. In particular, it is made finite by exactly the same subtraction 
procedure. 
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The final result is expressed by the mass formula 

w 16m . ny' 
M » = — S i n Ì 6 ' 

(5.10) n = 1, 2, 3, • • • < 8w/Y, 

m2 \ S7rm2 I 

There are no other classical particle-like solutions in the sine-Gordon 
equation. Hence, we can expect that formulas (5.8) and (5.10) give, at 
least for small coupling (y' < 1), the complete particle spectrum of the 
quantum theory. 

We now turn to the interpretation of formula (5.10), and its com
parison with results obtained by canonical methods. We first discuss 
what happens for y' < 1, which is the weak coupling region, where the 
semi-classical picture is guaranteed to be at least qualitatively correct. 

For y' < 1, we can expand (5.10) at moderate values of n: 

(5.11) Mn = nM1 - | l ( ^ A - ) V _ n) + o(A3), 

(5.12) Ml = w sm Ì = m - - ( — 2 ) + 0(A3). 

We see that Mj is, to order À2, the mass m of the "elementary" par
ticle, obtained by the conventional methods: by rescaling <j>, x and t in 
(5.1) and expanding the cosine, (5.1) can be written 

(5.13) 

2 2 4! 

Mn as given by (5.11) corresponds to a nonrelativistic (= small bind
ing energy relative to rest mass) n-body bound state made up of n par
ticles with physical mass Mr Indeed, the binding energy is exactly the 
same as one finds upon solving the n-body Schrödinger equation with 
the ô-function potential obtained from the $4 term in (5.13). 

The emergence of the "elementary'' particle as an ultra-relativistic (a 
very large binding energy) bound-state of a soliton and an anti-soliton 
suggests that there are actually two equivalent ways of looking at the 
quantum sine-Gordon equation: one in which <£ is the fundamental 
field, with mass m + 0(À2), and the soliton is a coherent, composite 
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state with a complicated structure of that field; and the other in which 
the soliton (and anti-soliton) are fundamental, and "elementary" par
ticles are actually bound states of a soliton and an anti-soliton. 

Indeed, Coleman [11] has proved that the quantum sine-Gordon 
equation is equivalent to the massive Thirring model. 

The massive Thirring model is described by the Lagrangian density 

(5.14) y = jiyj^ - ty# - \g(&^)2 

where \p is a two-component fermion field, Mf its mass, and g a dimen-
sionless coupling constant. Since fermion fields anticommute with each 
other, it is impossible to consider (5.14) classically: a fermion field is an 
intrinsically quantum-mechanical object; the fact that one cannot put 
more than one excitation in a given mode of a fermion field (the Fermi 
exclusion principle) makes it meaningless to talk about a large quantum 
number limit, i.e., a classical limit. Nevertheless, rules for computing in 
arbitrary order of ordinary perturbation theory with the Lagrangian 
density (5.14) are perfectly well-defined. 

Coleman has proved exact equivalence between (5.14) and (5.1) pro
vided (among other things); 

(5>15) W = r^fn • 
This formula has the very interesting feature that perturbation theory 
in g corresponds to X/m2 around 477, and perturbation in X/m2 corre
sponds to the extreme strong coupling limit in the Thirring model. One 
now notices in the mass formula (5.10) that for increasing X/m2 fewer 
and fewer values of n are allowed, until, at X/m2 = AIT, n = 1 itself be
comes forbidden. But this precisely corresponds to g = 0. The inter
pretation is that the quantum sine-Gordon soliton must be identified 
with the fermion of the massive Thirring model, and, at X/m2 just be
low 47T, the "elementary" particle of the sine-Gordon theory is a weak
ly bound soliton-antisoliton pair. This coincidence is quite remarkable: 
recall that the range of validity of the approximation that leads to the 
mass formula (5.10) is only X/m2 < 1. However, it now appears that 
formula (5.10) is exact as far as mass ratios are concerned. This con
jecture is based on the above mentioned coincidence at X/m2 = 4TT, and 
on higher order exact corrections in perturbation theory for the ratios 
M2/M1 at X/m2 < 1, and Mt/Ms at g < 1. These calculations are de
scribed in [6]. This suggests that the sine-Gordon theory is similar to 
the hydrogen atom, for which the Bohr-Sommerfeld quantization rules 
give the energy levels exactly. 



QUANTUM FIELD THEORY 363 

Further remarks and problems. The quantum sine-Gordon equation 
should be a rich mine of problems in mathematical physics. We shall 
mention only a few: 

The mass formula (5.10) is only a part of the quantum theory of the 
sine-Gordon equation. The rest of the information involves processes 
somewhat more complicated to analyze, even semi-classically: these are 
all scattering processes, between all possible kinds of particles (solitons, 
anti-solitons, and bound states). This will give rise to phase shifts, and 
lead to a better understanding of the formalism for the scattering of ex
tended objects in quantum field theory. Indeed, an explicit conjecture 
for the exact soliton-soliton (and soliton-anti-soliton) S-matrix has al
ready been put forward by Faddeev et al. [12] for special values of the 
coupling constant, and has been verified in first non-trivial order by 
Gervais and Jevicki [13]. 

Another very interesting problem would be to use more thoroughly 
the infinite set of conservation laws [10] in the quantization procedure. 
Indeed, Pauli used the conservation of the Lenz vector to study the 
non-relativistic hydrogen atom before the Schrödinger equation was dis
covered. 

6. Functional WKB and the Method of Trace Identities. In this section 
we present another model in (1 -f 1) dimensions which we believe is a 
separable (perfect) system and is fundamentally non-classical. New tools 
will be used to approximate the functional integral appearing in the 
WKB method; the trace identities of an associated scattering problem. 
These are the same trace identities familiar to most readers for their 
power in constructing the invariant integrals for classical systems. What 
we are after is a way to improve the efficiency of the functional WKB, 
and a natural extension to higher dimensions. 

Some problems with the functional WKB. From the sine-Gordon sys
tem one sees that the functional WKB is a powerful approximate meth
od, but it does require a great deal of classical input. Minimally, a col
lection of classical static and time-dependent solutions have to be found 
and some knowledge of how complete a list of solutions it is. In the 
case of (1 + 1) dimensions, we have available a number of perfect (sep
arable) classical systems which are both well studied and go over to 
sensible field theories. Since they are perfect, we have complete infor
mation of the classical problem. Suppose the system is not perfect or is 
in some higher number of dimensions. At first it seems one can only 
guess at particular solutions. As the models become more complex, the 
zero mode symmetry problem becomes more acute, making the analysis 
almost intractable. There is a way out of these difficulties which is very 
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powerful in (1 -f 1) dimensions and extends in a natural way to higher 
dimensions; namely, one may use the trace identities of an appropri
ately chosen associated scattering problem. This has the following ad
vantages: 

(1) It is a method that is deductive, for rather than guessing all the 
classical solutions it involves only the choice of a clever scattering 
problem. 

(2) It avoids the zero eigenvalue problem. 
(3) It gives analytic conditions on the energy spectrum, in some cases 

merely a simple algebraic equation. 
(4) It reconstructs the set of classical solutions corresponding to 

stable periodic orbits (or all static ones as a special case) by the Gel-
fand-Levitan method. 

An illustration of these points is a field theory model which is used 
quite frequently as a theoretical laboratory by physicists, but is unfamil
iar to most mathematicians. It is a fermion model, and so has no clas
sical analog. Below, we define the model and outline how trace identi
ties come about and are used in the path integral. We believe this 
technique to be a rich mine for non-linear analysis and can see no oth
er practical way to higher dimensions. 

Trace Identities and the Gross-Neveu model (1 + 1) dimensions. The 
Lagrangian for this system is 

(6.1) ^ = W + f g 2 ( # ) 2 

where i\j/^l\p = 2 £ = 1 i\pki^ypk; ^ = ^k-i^k^k' g *s a dimensionless pa
rameter, and y — Y 0 9 0 — y-fi^ y's being the usual Dirac matrices. 

The vacuum functional for this system is 

(6.2) <0|0> = f 3^0^ exp(i f y) 

where it is not necessary for the argument to know what are the rules 
for integrating over anticommuting fields \p. By the rules of Section 1, 
this may be rewritten as 

(6.3) <0|0> = f 0 4 0 ^ 0 exp[i § - J - o2 + 4(W - ga)xp]. 

a is a scalar field obeying Section I rules. By introducing an additional 
"auxiliary" field a(x) and another functional integration over it, we have 
a form which is quadratic in a and \p separately. Equation (6.3) is an 
equivalent field theory to (6.2). One can go a step further and integrate 
the fermion fields out of the problem completely. This will be done in 
two ways. The first is purely formal and we just state the result: 
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§ gfyS)^ exp[i § y \ = f &o det(i? - go) exp(- i/2 a2) 

(6.4) = f ^ a e x p i [ - a 2 / 2 

+ tr ln(# - ga)]. 

The system described by (6.4) is a perfect system of a type not yet 
studied in the literature. It is an extremely complex model and has a 
rich spectrum. To see this one uses the trace identities of an associated 
scattering problem, after doing the functional fermion integration in an
other way. 

It can be shown [7] that trexp[ — iHT\, the fundamental object of the 
WKB method, can be written as: 

exp[-iHT] = 2 C(N, {n}) f Q)o exp [ i £ 
T 

dt 

(6.5) 

X+00 — a 2 1 

i00 dx — + iN<p(o) - i 2 nkak(o) J . 

where <p = 2 t a^ 0 ^ ni ^ 2N, N = number of fermion species, over 
all o(x, t + T) — o(x, t) and \o(x, t)\ —* |a0| as |x| —* oo; C(N, {m}) are 
some binomial coefficients and the ax are the Floquet indices for the 
Dirac problem: (ß — go)^j — 0 where \p-(x, t + T) = exp( — iaj)\pj(xf t). 
The problem is to find the stationary phase points of (6.5). To simplify, 
we will ask only for time independent stationary points, which means 
that we have to solve the functional equation: 

(6.6) 

8 
8a(x) 

+ N 

•{ 
00 

2 
izzO 

J— 00 

[«»(*) -

f(«V) 

- «,(0) -

-°o2)dx' 

n0Uo(°)i } 
where at = c^T, Z is some renormalization constant and the argument 
(0) refers to the vacuum solution. This is a bit schematic but serves to 
illustrate the method, since only the functional structure is important. 
The strategy for solving (6.6) and systems like it is to replace the func
tional variation on a by two independent variations on the reflection 
coefficient and bound state energies of an associated scattering prob
lem. The system will be Schrödinger, — \pxx + U(x)\p = k2\p, with the as
ymptotic data S{r(k), kp I = 1, • • -, m}. In what follows we assume the 
reader is familiar with the formalism of inverse scattering problems or 
consults [10] and [14]. 
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Trace identities and dispersion relations. In the standard notation, one 
can define the function a(k) = (l/2ik)(fxg — gj) where f; g are the solu
tions to the Schrödinger equation such that f(x, k) ~ exp(-fifac), 
(x —» -f oo), g(x, k) ~ exp( — ikx), (x —* oo). The function a(k) has a dis
persive representation: 

a(k) — exp* 

(6.7) 

and an asymptotic expansion: 

1 
2Ì7T 

m 

<n 
c r i 

ision' 

In 

r+oo 

«y—OO 

k-
k + 

a(k)--

ln(l 
k 

00 

= 2 
n-1 

- \<q)\2 

- 9 

(lmk¥= 

Cn 

kn 

- dq 

0) 

} 

where 

(6.8) 

C 2 m = 2 ^ f_+ynn(l-\r(k)\z)dk 

9 m 

— 2 W+ 1 
2/ + 1 c=i 

where from other considerations, the first few C 2 m ' s also have the rep
resentation 

1 f+°° Ci=-2ïi.U(x)&; 
(6.9) 

i r+°° 
c , = - ^ J L "'(*)*;•••• 

The relations involving the C's are the trace identities. 
Returning to the original problem, we examine the system 

(i$ — go)^(x) — 0, a Dirac system in the potential a(x), for the moment 
unknown. Convert this to a Schrödinger problem: 

**, - [gV - °o2) ± &>,}+ = -(«2 - gVW 

Now: identify fc2 = co2 — g2a0
2 and the potential U(x) = g2(o2 — a0

2) ± 
gox with boundary condition a(x) —* a0 as |x| —* oo. Use the trace identi
ties and dispersion relation of the preceding paragraph to re-express the 
variational problem of (6.6) as a function of the scattering data for this 
Schrödinger system: 
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_ A {<J2_ 2)dx= J_ 
£ J-oo V 0 / 2 2 

(6.10) 

xj_+J\n{l-\r(k)\Z]dk+ 4*o -

It can be shown that the second piece of (6.6) is 

N jg [«,(o) - «,(0)] 

a(fc) 

Assembling the pieces of the action in (6.6), written in the new varia
bles r(k), kc and performing the variations implies (1) r(k) = 0. The sta
tionary phase points are those belonging to a potential u(x) which is re-
flectionless. This is a general feature of perfect systems. (2) Algebraic 
relations from the kc variation imply the energy spectrum 
Eno = (2/<n)go0N sin(7m0/2N) where n0 is the number of occupied fer-
mion states. Knowing that U(x) is reflectionless and the energy spec
trum, allows the reconstruction of o(x) by inverse scattering methods. 
The form is not especially illuminating, but can be found in [7]. 

Time dependent solutions to the stationary phase approximation of 
(6.9) are more difficult to find than static ones. The formalism for a Di-
rac or Schrödinger scattering problem in such a potential has not yet 
been developed, so there is no general method analogous to that of the 
last section. By considering the close relationship of static sector results 
to those of the sine-Gordon system, one looks for o fields which are re
lated analytically to the sine-Gordon doublet in the same way that the 
static a is related to the sine-Gordon soliton. These can be found, essen
tially by guess. The very simple analytic form of the results [7] leads us 
to suspect there must exist some tractable formalism for potentials that 
are reflectionless and periodic in time. The system looks completely 
separable. 

Higher Dimensions. The time dependent sector of the Gross-Neveu 
model already leads to a higher dimensional problem. It can be thought 
of as a static, two-space dimensional system, one axis of which is ordi-

(6.11) 

where 
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nary space, the other the euclidean time axis, along which the system is 

periodic. The scattering problem looks very much like scattering from a 

periodic crystal lattice. 

Trace identities for higher dimensional systems can be derived in a 

number of ways [15-20], the most efficient being either from a path in

tegral representation for the partition function of the system or a direct 

high temperature expansion of the partition function [21]. The strategy 

for analyzing such systems is the same as that for the Gross-Neveu 

model. A basic difficulty, which at present we do not know how to 

solve, is determining the independent scattering data for higher dimen

sional systems. Since remarkably simple, topologically stable " lump" so

lutions to very complex Yang-Mills systems are now known [2], we ex

pect there are simple constraints on the scattering data that determine 

them. This is the outstanding problem in the classical inverse technique 

for such complex, higher dimensional systems. 
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