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INVARIANT SETS AND THE HUKUHARA-KNESER 
PROPERTY FOR SYSTEMS OF PARABOLIC 

PARTIAL DIFFERENTIAL EQUATIONS 
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1. Introduction. During the past few years much work has been 
devoted to the problem of characterizing sets which are invariant 
with respect to a given ordinary differential equation. More recently 
the papers [ 2] , [ 15] have addressed themselves to the same question 
for nonlinear parabolic differential equations. 

The purpose of this paper is twofold. First we provide some exten
sions of invariance results (for parabolic equations) (sections 3 and 4) 
and secondly show that the assumptions which are sufficient for a 
given region to be invariant also yields existence of solutions of initial 
boundary value problems. We further show that the systems con
sidered have the classical Hukuhara-Kneser property, i.e., the set of 
solutions of a given initial boundary value problem is a continuum in 
an appropriate function space; we thus provide an extension of a 
result of [5] to a large class of systems of parabolic differential 
equations. 

Our invariance results were motivated by a result of [ 1], where 
certain geometric conditions were given to establish the solvability 
of two point boundary value problems for systems of second order 
ordinary differential equations; the type of result given there is the 
following: Given a nonempty bounded open convex set such that the 
vector field defined by the nonlinear terms in the differential equation 
never points into the interior of the convex set, then for any two points 
in the convex set there exists a solution of the equation connecting the 
two points and which has values in that set. 

It is precisely these conditions that were adopted in [15] to show 
that they implied invariance for a system of parabolic equations. 
Under somewhat weaker assumptions than in [ 15] we not only prove 
invariance of that convex region but also demonstrate existence of 
solutions. Using some ideas suggested by [11] we further show that 
essentially the same type of result holds for convex sets with empty 
interior. 

In order to establish the Hukuhara-Kneser property for systems of 
parabolic equations satisfying our conditions we rely on results and 
ideas about the structure of the set of fixed points of completely con-
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tinuous operators mapping a Banach space into itself which may be 
approximated by a family of completely continuous operators certain 
perturbations of which have a (locally) unique fixed point. Such 
results have a long history (see e.g., [3], [5], [9], [12], [14]), and 
the version we shall be using is most closely related to that of [ 3]. 

2. Definitions and Notation. Let Rn denote n-dimensional real 
Euclidean space and let ft be a bounded domain in Rn whose boundary 
dft is an n — 1 dimensional manifold of class C2+a, a G (0,1). Let 
n = ft x (o, » ), n r = ft x (0, T), r = an, and rT = (aft x 
[0,71)U(f tX {0}). 

For an arbitrary bounded domain D C B " X R1, let C(D) be the 
Banach space of continuous functions with domain D and range in 
Rn ^endowed wi th jhe usual maximum norm. Let Cl'°(D) = {u G 
C(D) : duldXi G C(D), l g i g n } with norm \u\x = maxxGD\u(x, t)\ 
+ 

HiaxX£.D,i^{^n|dti/dXj|, ano* l^t C*'^2 denote the Holder spaces ([8, 
page 7] ), i.e., the set of u G C(D) such that u belongs to class C[l] 

( [£] — the greatest integer not exceeding £) with respect to x and the 
[£] -th partial derivatives of u with respect to the components of x are 
Holder continuous with exponent £ — [£] and further u belongs to 
class C[ll2] with respect to t and d[* /2Wd£u/2] is Holder continuous 
with exponent £/2 — [£/2]. The norms used in these spaces are the 
Holder norms (see [8] ). 

For u = (tii, • -, um) : UT -> Rm define Lu by 

(Lu)(x, t) = ± fly(x, t) - ^ - + ± bt(x, t) -fjf-

+ c{x, t)u — 
at 

where aijy bh c G Ca^2(fïT), a Ë ( 0 , l ) , l ^ i , j g n, and c(x, f) = 0 on 
nT . We assume that L is a uniformly parabolic operator, i.e., there 
exist constants fx, A, 0 < A < fi, such that for all f = (£1? • •- ,£„) and 
(x, t) G fïT 

*lfl2^ S fly(*,*)6£i^Mlfl2-

Forw = (ul9 ' - -,um) £ R m , p = (p1? • • -,pm) G R™, p4 G R M ^ i 
= ^ > / = (/i, • • • , / m ) G H m , l e t / : n r X R™ X R™-> R", (x, t, u, p) 
-> f(x, t, u, p) be locally Holder continuous with Holder exponents 
a, a/2, a, a in the respective variables x, t, u, p. 

Given \fß : TT -» Rm, consider the initial boundary value problem 
(IBVP) 
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(1) Lu = f(x,t,u,Vu), ( M ) E n T , 

(2) u = 0, (x, 0 G rT, 

where ifß satisfies compatibility conditions appropriate to the problem, 
i.e., \\t is continuous on TT and may be extended to HT so as to belong 
to class C2+*>1+a/2(nr). 

3. Invariance and Existence. A set S C Rm is called positively 
invariant relative to IBVP's for (1) in case given any \)ß, with ifß(x, t) 
G S, (x,t) G r r , then every solution u G C2>l(ÜT) of (1), (2) is such 
that u : n r —> S. A set S is called weakly positively invariant relative 
to (1) if given any I/J : rT—> S there exists at least one solution u of (1), 
(2) of class C2 1(nT) such that u : I I r -+ S. 

THEOREM 1. Let there exist a nonempty, open, bounded, convex 
neighborhood S o/O G Rm such that for each u G SS there exists an 
outer normal vector n(u) to S at u such that 

(3) n(u) -f(x9t,u,p)>0, 

forallp = (px, - - -,pn),pi G Rm, 1 ^ i ^ n, withn(u) • p{ = 0,1 ^ i ^ 
n, and (x, t ) Ê f i r . Turther let \fß :FT - » S . T/ien if u G C2 1(nT) 
is a solution o / ( l ) , (2), if is the case that u : n r - » S, i.e., S is positively 
invariant. 

PROOF. Assume not. Then for some (x0, t0) G ÌÌX (0, T), u(x, t) G S 
for (x, O G f l X (0, <o) and u0 = u(x0, t0) E. dS. 

By assumption there exists an outer normal n(u0) to S at u0 such 
that 

S Ç {yGR™:(y-u0) • n(w0) g 0}. 

Put o>(*, t) = (u(x, 0 - II0) • n(u0). Then a?(x, t)^0 on tlX [0, *0] 
and u;(x0, t0) = 0. So u;(x, t) attains its maximum on O X [0, t0] and 
hence (11 is open) at (x0, £0), we have dwldti^ 0, dw/dxi = 0, and 
(dholdXidXj) negative semidefinite. We thus conclude that 
(Lw)(x0, t0) ^ 0. On the other hand, since dw(x0, t0)ldXi = 0 implies 
n(u0). du(x0, t0)ldXi = 0 we compute 

(Lw)(x0, to) = (f(x0, t0, M0, VM(X0, *0)) • n(iio) - c(x0, t0) u0 ' n(u0) > 0 

(where we have used the fact that c ë O and u0 • n(w0) > 0). This, 
however, is incompatible with (Lw)(x0, t0) ë 0. The result thus follows. 

Using the preceding invariance result we obtain the following exis
tence theorem. 



560 J. W. BEBERNES AND K. SCHMITT 

THEOREM 2. Let the hypotheses of Theorem 1 hold and let there 
exist a nondecreasing positive continuous function <p(s) satisfying 
s2l<p(s)~* oo Ö Ä 5 ^ O O and \f(x, t, u, p)\ ^ <p(\p\)for « G S , (x, t)_E. flT. 
Then for every ip : rT—> S the IBVP (1), (2) has a solution u : JÏT-* S. 

PROOF. For u G Cl>0(ÜT) define Fu by 

(Fu)(x, 0 = /(x, t, u(x, t), Vi*(x, *))• 

Then F : C 1 0 ( n T ) ^ C(IlT) is a continuous mapping taking bounded 
sets into bounded sets. For v G Caa/2(I1T) let Kv denote the unique 
solution in C2 + a ' 1 + Ö / 2 ( I IT) of the linear problem 

(4) 
Lu = v, (x, t) G nT 

« = o, (i,t)err , 

and let (for «/> given) g be the unique solution in C2+al+a/2(Ilr) of 

Lg = 0, (x, t) G fiT 

g = *, (*, t) G rT. 
(5) 

Then K is a linear operator and u = Kt> + g G C2 + a l + a / 2(r iT) is a 
solution of 

(6) 
Lu = v, (x, t) G nT 

u = t/f, (x, t) G rT. 

K may be extended as a bounded linear operator to Lq(HT), the 
extension being again denoted by K Further K : L q(n r) —» 
Wq

2 '1(n r) (see [8], p. 343) which for q sufficiently large is embedded 
in C1 + a a / 2(nT). Hence K : Cl>°(JÌT)-* C(ÏÏT) is a compact linear 
operator. 

For t; G C ^ f i r ) , g G C ^ ^ ^ f i r ) the_ element w = KFv + g be
longs to C1+«^2(nT). Thus if for w G C1 0(nT) 

(7) M = XKFu + Xg, 

X G [0,1] , it follows that M G C 1 + ^ 2 ( f ï T ) and Fuj=. C™/2(fir) J o r 
some y G (0,1), where in general y < a and Ca^2(IlT) C C™/2(I1T); 
however, if y ^ a, then Fw G Caa /2(Il r). Thus the IBVP associated 
with (7) may be considered to have coefficients in CÔS/2(I1T) where 
Ô = y, if y < a and 8 = a if y = a and the basic existence _uniqueness 
theorem for linear equations guarantees that u G C2+ô '1+s/2(nT)._ 

Summarizing, we have that for any X G [0,1] , if u G C1 0(nT) is a 
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solution of the operator equation (7), then u G C2 + ô l + s / 2(II r) and u 
is a solution of 

Lu = \f(x, t, u, Vu), (x, t) G UT 

\ u = kijß, CM) G rr, 
V 

and conversely. 
If u G C2+ô '1+*2(fï r) is a solution of (8) for some X with u : fiT^ S, 

then by the growth condition imposed on / w i t h respect to V«, it fol
lows that there exists M > 0 (independent of X) (see [8, p. 589] ) such 
that | V i*| ^ M . 

Let £>= {u GCl>°(llT):u:IlT-*S,\Vu(x±t)\ < M + l},then (Dis 
a nonempty bounded open subset of C 1 0 (n r ) containing the iden
tically zero function in its interior. 

In Cl>0(ïlT), consider the completely continuous perturbation of the 
identity map 

(9) I-k(KF + g ) , 0 g X g l . 

The proof will be complete once we show that the Leray-Schauder 
degree of I — (KF + g) at the point 0 and relative to O is nonzero, be
cause this property (see [3] ) implies that the operator KF + g has a 
fixed point in Q and thus by the arguments above (1), (2) has a solution 
u G C2+6>1+ô/2(nT) such that u : fiT~> S. To verify this claim we use 
the homotopy-invariance property of Leray-Schauder degree (see 
[3] ), i.e., we show that the vector field defined by (9) does not vanish 
on d O for any X G [0,1] . This is clear for X = 0. If, on the other 
hand, there exists X0 G (0,1] and u0 G d O such that 

u0 = Xo(KFt/0 + g), 

then u0(x91) G S and | Vu(z, t)\ g M < M -h 1, (*, t) G fïT. Thus 
there exists (x0, t0) G fì X (0, T] such that u0(x0, t0) G d S. By 
Theorem 1 (with / replaced by X0/ and \fß by X0^) this is impossible. 

Therefore the Leray-Schauder degree 

d ( Z - X ( K F + g), (D,0) 

is constant for 0 â X â 1 and hence equal to d(l, Ö, 0) = 1. This com
pletes the proof. 

4. Some Extensions. In this section we provide some extensions of 
the result just proved. First we weaken the outer normal requirement 
and secondly we show that convex sets S with empty interior are also 
permissible. 
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THEOREM 3. Let the hypotheses of Theorem 2 hold with (3) replaced 

by 

(10) n(u)-f(x,t,u,p)^0. 

Then for every $ : TT-» S the IBVP (1), (2) has a solution u : UT-+ S. 

PROOF. For 0 < e ^ 1 consider the IBVP 

Lu = f(x, t, u, p) + eu, (x, £) G I1T 

(11) ^ 
ti = ( i - € ) * , ( M ) 6 r , 

V 

It easily follows that Theorem 2 may be applied to conclude that for 
every e G (0,1], (11) has a solution u€ G C2+s '1+s/2(fï r) such that 
u€ : nr—» S and | Vwf(x, £)| ^ M, where M is a constant independent 
of €, not necessarily equal to the constant M of the proof of Theorem 
2. Thus {w€}o<€^iis precompact in C1 0(nT) . 

Since 
Ut = K(FU€ + €U() + (1 - €)g, 

the precompactness of {u€} and the continuity of K and F imply the 
existence of u G C10(IlT)(a limit of a subsequence of {u€}) which satis
fies 

u = KFu + g 

and M ; I I T - ^ S , |Vw(x, f ) | ^ M . Hence, as argued before, u G 
C2+M+a/2(nT) and w is a solution of (1), (2). 

REMARK. The condition that S be a neighborhood of 0 may be 
dropped. This easily follows from the preceding results and a change 
of variables argument. That S is positively invariant under the condi
tions of Theorem 3 cannot be concluded. On the other hand S is 
weakly positively invariant. 

We next consider the case where S has possibly empty interior. The 
idea of the proof was suggested by the results of [11]. 

THEOREM 4. Let S be a nonempty compact convex subset of Rm
> 

such that for every u G dS and every outer normal n(u) to S at u we 
have 

(12) n(u) -f(x9t,u,p)iîOy 

for (x, t) G n T and those p whose columns p{ satisfy n(u) • p{ = 0, 
1 ^ i ^ n. Further let there exist a positive, continuous, nondecreas-
ing function (p(s) satisfying s2l<p(s)-+ » o 5 s - > » and \f(x, t, u, p)\ ^ 
? ( |p | ) , t iES , (x , t ) en T . 

Then for any \jß : TT-» S the IBVP (1), (2) has a solution u G 
C2+5,i+6/2(nr) such thatu : fiT-» S. 
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PROOF. Let P denote the continuous projection P : Rm^> S assigning 
to each u G Rm its nearest point Pu G S, i.e., \u — Pu\ = dist(S, u) 
= inf{|</ - u\_: q G S}. 

Define h : (ì X [0, 7] X ß m X Rm n-> Rmby 

h(x, t, u, p) = f(x, t, Pu, p). 

For each e > 0, define the parallel set 

S€ = {uGRm: dist(S, t#) < €}. 

Let u Œ dS€, then M — Pu is an outer normal to Sc at u and to S at 
Pu. Thus for any (x, t) G liT, p{ G flm with (u — Pw) * p* = 0, we have 
(u - Pu) • h(x, t, u, p) = (tt - Pu) • /(x, *, Pw, p); the latter being ^ 0 
by hypothesis. Hence for any e > 0, h satisfies the hypotheses of 
Theorem 3 relative to the set Se. 

Consider the IBVP 

(13) 
Lu = h(x, t, u, Vu), (x, t) G n T 

u= \)ß, (x,t) G r r . 

Since P is uniformly Lipschitz continuous with Lipschitz constant 
1, h satisfies the same smoothness condition as f. Hence by Theorem 
3, the IBVP (13) has for every € > 0, a solution ue G C2 + ô l + ô / 2(nT) 
such that u€ : Eij —> Se. 

Thus for_0 < € g 1 the JtBVP (13) has a family of solutions {ue} C 
C 2 + ô l + ô / 2(I l r) , with u€:IlT-*Sl and there exists M > 0 (inde
pendent of€) such that | Vt*€(x, t)\ S M, 0 < e g 1. 

As in the proof of Theorem 3 we may extract a subsequence 
{ufn}n=u limn_*oo€n = 0, which converges to a solution u of (13). 
Since u(n: HT~+ S€)„ it follows that u : Ilr—» S and hence Pu(£, f) = 
w(x, £). Thus M is a solution of (1), (2). This completes the proof. 

Invariance results similar to those just proved may be obtained for 
certain sets A C Rn X R X Rm whose cross sections in Rm depend on 
(x, t) G Rn X fl. As an illustration of this type result, we shall state a 
theorem for A = il X (0, T) X (a, ß), where (a,/3) C Rm denotes 

(a, ß) = {u G flm : ai < Ui < ßi, i = 1, • • -, m} 

and ^ j 3 £ C 2 + 8 ' i + ^ ( n T ) sa tisfy ^ t) < ß{{x, t) for all ( x ,* )e f l T . 
For simplicity in stating the result, we assume that / is gradient inde
pendent. The proof of the result is similar to the proof above and 
hence is omitted. 
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THEOREM 5. Assume: 

(Loti)(x, t) - fi(x, t, ul9 • • -, Ui_l9 Oi(x, t), ui+l, • • • , M m ) ^ 0 g 

(14) {Lßi){x, t) - f(x, t, uly • • -, Ui_x, ßi(x, t), ui+l9 ' ' -, um\ 

for (x, t) G fîr? 

a,(x, t) ^ Uj ^ ßj(x, t \ i ^ j , l ^ i ^ m. 

Then for any ifj such that 

(15) eti(x, t) =S i^(x, t) =S ft(z, t), (x, t) G r r , 1 ^ i ^ m, 

tfie IBVP (1), (2) has a so/ufion u G C^+5>1+ô/2(fir) suc/i tfiaf afa, t) 
^ w^x, £) =̂ j8i(x, £), 1 = i ^ m, (x, £) G n T . If the inequalities in (14) 
and (15) are strict, then all solutions u of (1), (2) satisfy a^x, i) < 
Ui(x91) < fifa, t), 1 g i ^ m, ( x, *) G n T . 

For results similar to Theorem 5 proving the existence of periodic 
solutions of parabolic partial differential equations see [ 13] ; other 
results of this type are contained in [6], [7], [ 10]. 

5. The structure of the solution set. The set of solutions to the 
initial value problem for ordinary differential equations: x ' = f(t, x), 
x(t0) = x0, where / : [t0, t0 + a] X Rn—> Rn is continuous, a > 0, 
and x0 G Rn, satisfies the Hukuhara-Kneser property [4], i.e., if all 
solutions of the given initial value problem exist on [ t0, t0 + 8] , 0 < 8 
= a, then this set of solutions is a continuum in the space of continuous 
functions defined on [ t0, t0 + 8] . 

In this section we prove a similar theorem for the set of solutions 
for the class of parabolic partial differential equations considered 
above. 

This may be accomplished very elegantly by giving an abstracted 
version of the Hukuhara result for the set of fixed points of completely 
continuous operators defined in a normed linear space which also 
satisfy a certain approximation property. Since we need a modifica
tion of a known structure theorem [3; p. 89] we include it together 
with its proof for completeness' sake. Related results may be found in 
[5], [9], [12], [14]. 

THEOREM 6. Let X be a real normed linear space, HO X a non
empty, bounded, open set and T : fl—»X a completely continuous 
mapping. Assume that 

(a) d(i- T, a 0)7*0. 
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(b) There exists a sequence of completely continuous mappings 
Tn : ft-> X, such that 8n = sup{|Tnx - Tx\ : x G ft}-* 0 as n - » oo. 

(c) x = Tnx + y, where y = x0 — Tnx0, x0 any solution of x = Tx, 
satisfies \y\ < 8m has at most one solution in ft. 

Then the set of fixed points Q = {x £ (1 : ̂  = Tx} is a continuum in 
X. 

PROOF. By assumption (a) the set Q is nonempty and Q H dft = 0 . 
Since T is completely continuous Ç) is a compact subset of ft. Assume 
that Q is not connected. Then there exist nonempty compact subsets 
V and W of X with Q = V U W and V Pi W = 0 . Since the dis
tances d(V, W), rf(V, diì), and d(W, 5ft) are positive, there exist open 
neighborhoods O^ and ft2 of V and W, respectively, with ftx D ft2 

= 0 and f̂  U ft2 C ft. 
Set fì3 = tì\(Cli U ft2)

 a n d set S = Z — T. By the basic properties of 
Lerav-Schauder degree, d(S, ii±0) = d(S, fti,0) + d(S, ft2,0) since 
Sx 7^ 0 on ft3. Let a = d(0, S(ft3)) > 0. The proof will be complete 
once it is shown that d(S, ft^, 0) = 0, for i = 1, 2, which contradicts the 
fact that d(S, ft, 0) / 0. 

Consider d(S, ft2,0). Pick xxGV and define R,, : ft-> X by fì^ = 
Tnx — TnJC! + xx. Then R» is completely continuous, Ẑ Xx = xi9 and 
1 ^ - Tx\ g 2Sn for x G ft. Since \x - R^x) ̂  |Sx| - \RnX - Tx\ 
2^ a — 28n for * G ft3, d(Z — Rn, ft2,0) is defined. For n sufficiently 
large, x = R ^ has only the solution xx G V C ft2 by assumption (c). 
Thus, ^ ( 7 - - ^ , ft2,0) = 0. 

Let H : ft2 X [0,1] -* X be defined by H(x, t) = (Z - 7 > + *(Tx 
— RnX). H( • , t ) is zero-free on dft2 for all f G [0,1] . For, if not, 
there exists x0 G dft2, t0 G (0,1) such that i/(x0, t0) = 0. This implies 
|x0 — Tx0\ S fo ' 28n which is impossible since 8n —» 0. Thus, by homo-
topy invariance of Leray-Schauder degree, it follows that for n suf
ficiently large d(I - T, ft2,0) = d(I - Z^, ft^, 0) = 0. Similarly, 
d(S, fti, 0) = 0 and we have thus arrived at a contradiction. We con
clude that Q is connected. 

The assumption that the approximating equations x = Tnx + y have 
at most one solution for y small where y = x0 — Tnx0, x0 a fixed point 
for T is a weakening of the condition assumed in [3] and [5]. If 
one studies the original proof of Hukuhara, it is obvious that our con
dition (c) is all that was originally used and all that is needed in the 
abstracted version. Moreover, in the next theorem, the weaker assump
tion (c) is needed. 

If, instead of considering Q, the set of fixed points for T, we consider 
Qg = {x G ft : x = Tx + g, g G X, T + g : ft-> X}, the same result 
holds for Qg provided (c) is replaced by 
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(c') x = Tnx + g -f (Tx0 — Tnx0) has at most one solution in ft for 
\Tx0 — Tnx0\ < ôn, x0 any solution of x = Tx + g. 

THEOREM 7. Assume tfie hypotheses of Theorem 2. Then tfie set 
Q of solutions oflBVP (l)-(2) is a continuum in C10(I1T). 

PROOF. Using the notation of Theorem 2 and its proof, it suffices 
to prove that Ç = Ç g = {u G £ > : u = KFu + g} is a continuum in 
C^°(UT) where O = {u G C1'0 : t#(x, t) G S, | Vt*| < M + 1, u(x, i) = 
i/f (x, t) on r T } is as before. 

Let {fk} be a sequence of continuous functions on n r X Rn X Rmn 

which are locally Lipschitz continuous with respect to x, t,u, p and con
verge uniformly to / o n compact sets. 

For « e C 1 ^ ) , define Fk(u) by (Fku)(x,t) = fk(x, t, u(x,t\ 
Vw(x, t)). Then Fk : C1 0(nT) -> C(IIT) is continuous and^akes bounded 
sets into bounded sets for each k. Hence, KFfc : C

10(I1T)-^ C10(I1T) 
is completely continuous for each k. 

By Theorem 2, d(I -_(KF + g), <D, 0) ^ 0. By construction, 
sup{|KFfcu - KFu\ : u G 0} = ôfc -> 0 as fc -> oo. So to apply 
Theorem 5 (and the remark following it), it suffices to observe that 

(16) u = KFku + g + (v - KFnv - g) 

where v = KFv + g and \KFkv — KFv\ < 8k has at most one solution. 
That (16) has at most one solution in O follows, because for v G 
C 2 + M + s / 2 ( n r ) , 

f Lu = fk(x, t, u, Vu) + / ( s , t, v(x, t)9 Vt>(x, t)) 
\ - fk{x,t>v{x, t), Vt?(x, *)) 
[ w(x, f) = i/f (x, f) on r r 

has at most one solution u G O. Thus Q is a continuum in C1 0(nT) . 
A similar argument may be employed to conclude that if strict 

inequalities hold in the hypotheses of Theorem 5, then the set of 
solutions of (1), (2) is a continuum. 
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