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EXTREMAL PROPERTIES OF A SUBCLASS 
OF CLOSE-TO-CONVEX FUNCTIONS 

H. SILVERMAN AND D. N . TELAGE 

ABSTRACT. Denote by H the subclass of close-to-convex 
functions f(z) for which there exists a starlike function g(z) 
satisfying Re{[zf'(z)]'lg(z)} > 0 (\z\ < 1). We find distortion 
theorems, coefficient bounds, and the closed convex hull of H. 
We also give a necessary intrinsic condition for a function to be 
inH. 

1. Introduction. Let S denote the class of functions of the form 

(1) / (* )=* + Ì>«zn 

n=2 

that are analytic and univalent in the disk \z\ < 1. A function f(z) G S 
is said to be starlike if Re{zf'(z)lf(z)} > 0(\z\ < 1), is said to be 
convex if Re{l 4- zf'(z)lf'(z)} > 0(\z\ < 1), and is said to be close-to-
convex if there exists a starlike function g(z) such that Re{zf'(z)lg(z)} 
> 0(\z\ < 1). These classes are denoted respectively by S*, K, and C. 

We denote by H the class of functions of the form (1) for which there 
exists a function g(z) G S* such that 

<2) R e { [ H f } > o ( w < i ) -
In [5] Sakaguchi shows for g(z) £ S* that Re{[zf'(z)] 7g'(*)} > 0 im­
plies Re{zf'(z)lg(z)} > 0. Thus H C C. Moreover if f(z) G K, then 

Re{[«f'(z)] '// '(*)} = Reil + */"(*)//'(*)} > °- H e n c e w e may take 
g(z) = f(z) in (2) to show that/(s) is also in H. Thus KCH. 

It is well known that K C S * C C . Since we also have the inclu­
sion relations K C H C C, it is of interest to inquire as to the relation­
ship between S* and H. In the next section, we shall show that S* is 
neither contained in nor contains H. 

Note that the result of Sakaguchi yields a quick proof that K C S * , 
forRe{[«f'(z)] ' / / ' («)} > 0 implies Re{zf'(z)lf(z)} > 0. 
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2. Distortion and Coefficient Bounds for H. 

THEOREM 1. If f(z) G H, then (3 + r2)/3(l + r)3 g | / ' ( z ) | g 
(3 + f2)/3(l — r)3(|z| = r), with equality only for functions oftheform 

(3) f{z) = 3 ( T = ^ ~ 3* l0g(1 " XZm = l)-
PROOF. We may write [zf'(z)] ' = g '(z)p(z), where p(z) is a function 

of positive real part with p(0) = 1. It is well known that 

(4) - ^ S | g ' ( * ) | S - ^ ( W - r ) 
(1 + r)3 (1 — r)3 

and 

(5) j - ^ S |p(z)| Si }4->l = ')-

Hence 

(1 - r)2 (1 + r)2 

(6) | r^^i [^(*) ] ' i^ |r3^(w = «'). 
Integrating along the straight line segment from the origin to z = reie 

in the right inequality of (6) we obtain \zf'(z)\ ^ J0
r((l+ t)2\(l - t)4) dt 

= (3r H- r3)/3(l — r)3, which proves the right inequality in the theorem. 
We now prove the left inequality. For every r choose z0, \z0\ = r, 
such that \f'(z0)\ = min|Z|=f|/'(2;)|. If L(z0) is the pre-image of the 
segment {0, Zqf'(z0)}, then 

\zf'(z)\^\z(f'(z0)\ = f \[zf'(z)]'\\dz\ 
J L(zti) 

*f. 
(1 - tf 1 3r + r3 

a£ = 
(1 + £)4 3(1 + r)3 

The result now follows. Equality in (4) holds for g(z) = zl(l — xz)2 

(1*1 = 1) and in (5) for p(z) = (1 + xz)l\ — xz(\x\ = 1) from which the 
functions in (3) may be obtained. 

THEOREM 2. lff(z) G H, then 

| (ITÖi+1 log(1 + r) - l/(z)l = I ( T ^ - l l o g ( 1 - r)-
Equality holds only for functions defined by (3). 

PROOF. The result follows from the bounds of Theorem 1 just as 
Theorem 1 followed from the bounds in (6). 



CLOSE-TO-CONVEX FUNCTIONS 3 7 3 

COROLLARY. If f(z) G H, then f(z) maps the disk \z\ < 1 onto a 
domain that contains the disk \w\ < (1 + log 4)/6. 

PROOF. Let r —> 1 in the left inequality of Theorem 2. 

THEOREM 3. If f(z) = z + 2 « = 2 ^ G #> * ^ n K l = (2/3)n + 
l/3n. TTits resuZf is sharp, with equality only for functions defined by 
(3). 

PROOF. Our proof is similar to Reade's proof of the Bieberbach con­
jecture for C [4], Suppose g(z) = z + ^n=2^n^n a n d p(z) = 1 + 
2 ; . Ä Ä » . Then [*/'(*)] ' = 2 ^ Ä * " " 1 = [ 2 S=1nbn^-i] 
[1 + 2 "Wo»*"-1]> and n2an = nbn + 2 ? : ì ( n - fc)fon-fc«fe. It is 
well known that \bn\ =? n and | a j ^ 2 for all n. Hence n2\an\ =i n2 

+ 2 j * : } ( n ~ k)2 = n2 + n(n - l)(2n - l)/3, which simplifies to 
\an\ =ì (2/3)n + l/3n. Once again equality holds only for functions of 
the form (3). 

Since the bounds for the starlike Koebe function zl(l — z)2 exceed 
those of Theorems 1, 2, and 3, we see that S* (f H. Moreover H (f S*, 
as will be seen by showing that/(z) = (2/3)z/(l - z)2 - (1/3) log(l - z) 
$ S*. We have 

m gM= 3z+z" 
1 ; f(z) (l-z)[2z-(l-z)2log(l-z)]' 

Multiplying numerator and denominator in (7) by the conjugate of the 
denominator, the real part of the numerator at z = eie becomes 

nid) = 6 - 8 cos 6 + 2 cos 20 + (sin 3 0 - 3 sin ^ t a n " 1 ( , Smd ) 
w v ' \ i - cos e I 

+ ^ (10 - 15 cos 6 + 6 cos 26 - cos 36) log [2(1 - cos 6)] • 

Thus n(jrl3) = 1 - 3 • 31/2/2 tan"1 31'2 < 0, which means there is a 
Ô > 0 such that Re{zf'(z)lf(z)} < 0 (z = re*"3,1 - Ô < r < 1). 

Since the functions defined by (3) are the only functions extremal for 
Theorems 1, 2, and 3, they must also be extreme points of the closed 
convex hull of H. We now determine this closed convex hull. 

3. Convex Hull of H. In this section we determine the closed 
convex hull of H, denoted by ci co H. Letting H = {h(z)\h(z) = 
[zf(z)] \f(z) G ff}, we note that h(z) G ff if and only if there is a 
g(z) G S* for which 
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(8) Re(i |)}>0( |Z |<1)-
In the theorem that follows, we obtain the ci co H. 

THEOREM 4. Let X be the torus {(x, y) \ \x\ = \y\ = 1}, <p be the set 
of probability measures on X, and let k(z, x, y) = ((1 + xz)l(l — xz)) 
((1 + yz)l(l - yz)3)(\x\ = \y\ = 1, |z| < 1). If V is the family of func­
tions \ on \z\ < 1 defined by hj^z) = Sxk(z, x, y) d^i(x, j/)(/x, G <P), 
then 

(9) <3 = ci co H. 

PROOF. First suppose h(z) G ft. By (8) we may write h(z)lg'(z) = 
p(z), where p(z) is a function having positive real part with p(0) 
= 1. From the Herglotz representation, there is a probability 
measure fi^x) on T = {x\ \x\ = 1} such that h(z)lg'(z) = 
J r ( l + xz)l(l — xz) dfix(x). In addition since g(z) G S* we have [1] 
g (z) = J r ( ( l + yz)l(l — yz)3) dii2(y)> where /i2(t/) is a probability 
measure on T. Thus by Fubini's theorem, h(z) = Jx((l + xz)l(l — 
xz))((l + t/z)/(l - yz)3)dn(x,y)(ii= /xx X ji2),which shows that H C 9 
Since <? is a closed convex family, we have ci co H C S?. 

Conversely, setting /i(z) = k(z, x, y) and g(z) = zl(l — yz)2 in (8), we 
see that each kernel function k(z, x, y) is in H. Hence ?̂ C ci co H, 
which proves (9). 

REMARK. In view of Theorem Id of [1], the functions {k(z, x, y), 
\x\ = \y\ = 1} are the only possible extreme points of eleo H. Since 
any real-valued continuous linear functional on H is maximized or 
minimized at an extreme point of ci co H, denoted £(cl co H), the 
bounds in (6) enable us to show that the functions (k(z, x, x)} are in 
£(cl co H). On the other hand k(z, x, -x) = 1/(1 + xz)2 = (zf (z)) ' for 
some f(z) G H. Since f(z) = x log(l + xz) is in K but not in 
£(cl co K), f(z) cannot be an extreme point of the larger family H. 
Hence k(z, x, — x) ^ £(cl co H). We are not able to determine if the 
functions k(z, x, y), x j ^ ± y, are in £(el co H). 

THEOREM 5. Let X be the torus {(x, y)\ \x\ = \y\ = 1}, <P be the sei 
of probability measures on X, and let 

f(z, x, y) = | * [l/f | o ((1 + xw)l(l - «i>))((l + «/u>)(l - y«>)3)] di 

(|*| = M = 1, |z| < 1). 

If D is the family of functions of the form fxf(z, x, y) du(x, y)(u G £P), 
f/ien ^ = ci co H. 
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PROOF. Since the operator L defined by 

L(h(z))= j*o [ l / f £ h(w)dw ] dS 

is a linear homeomorphism of H onto H, the result follows from 
Theorem 4. 

REMARK. It is interesting to note that the functions f(z, x, x), ex­
treme points of the closed convex hull of H, are actually a linear com­
bination of extreme points taken from the closed convex hulls of star­
like functions and functions convex of order 1/2. See [2]. 

4. A Necessary Intrinsic Condition for H. Kaplan [3] found a 
necessary and sufficient intrinsic condition for functions to be close-to-
convex. Following his lead, we give a necessary intrinsic condition for 
a function to be in H. We do not, however, have a sufficient condi­
tion. 

LEMMA. If f(z) G H, then there exists a function <f>(z) G K such 
that h(z) defined by 

(10) fc.(g), c / w 

is in C. 

PROOF. For f(z) defined by (2), choose <f>(z) = /0
zg(£)/£ dt Since 

g'(z) = tf>'(z){l + ( Ä * " ( Ä ) # ' ( * ) ) } , (2) is equivalent to Re Ä'(*)/*'(*) 
> 0 . 

THEOREM 6. Letf(z) be in H, and set F(z) = zf'(z). Then 

1>{'+T$}*>-* 
(0 ̂  0X < 02 g 2TT, 2 = reie). 

PROOF. By the lemma h(z), given by (10), is in C and hence 

/.. R e ( 1 + vw } d * > - , r 

( O ^ 0 ! < d 2 ^ 2TT,Z = reifl), 

or equivalently 
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J», I F'(z) J 

> / : ; - { v ^ [ i + ^ ] } * dzioZ L 1 + ~V( 

Since <J>(z) G K, Re{l + z0"(z)/<^'(z)} > 0(|z| < 1), so that 

i /:>{*!M i+f^]}<» 
= arg 1 + re*** ^ — - 7 I 6 L *'(re : t*>) J <J>'(reiö*) 

- a r g 1 - retöi , „ ' \ \ < ir. 

The theorem follows upon substituting the last inequality into (11). 
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