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SPIRAL FUNCTIONS AND RELATED CLASSES
WITH FIXED SECOND COEFFICIENT
H. SILVERMAN AND D. N. TELAGE

ABsTracT. Denote by Gp(A, o)(|A| < 7/2, 0 < a < cos ),
0=<p<=<cosx— a cos x» ¥ a) the class of functions g(z) = 1
+ 2a2z2 + -+ analytic in |z <1 for which Re(ei"g(z)) > a
with |ag| = p. We determine the largest disk [z <r =
(%, a, v, B, p) in which functions in G,(1, «) satisfy Re{e'7g(z)}
> B. By specializing our parameters and our function g(z), we
obtain results relating subclasses of spiral functions to sub-

classes of starlike functions. When p = 0 results concerning
odd functions are found.

1. Introduction. Let S be the class of functions analytic and uni-
valent in the unit disk, with f(z) in S normalized by f(0)= 0 and
f'(0) = 1. A function f(z) is said to be in S(A, &) if

(1) Re {e"* —zf—(’z()i } > of|z| < 1, |A| <™ 0=a<cosh).

f 2’

The class S(A,a) of A-spiral functions of order a was introduced by
Libera [4]. For a = 0 we have the so called “spiral-like” functions,
defined and shown to be in S by Spacek [9].

In [7] Robertson introduced an associated class consisting of those
functions f(z) for which zf’(z) is in S(\, &), which we shall denote
by K(A, ). In view of (1.1), a function f(z) is in K(A, ) if and only if

(2) Re{ei*<1+iff:’;—(:)l>}

> of|z] < 1, < ‘;‘ 0= a=cos\)

DeFiniTioN 1. A function f(z) = z + a,z®> + - - - analytic in |z
<1 is said to be in S,(\, @)(]A\| <7/2, |ay] = 2p, 0= p = cosA — a,
cos A\ # a) if it satisfies (1).

DeFiniTION 2. A function f(z) is in K,(\, ) if 2f'(z) is in S,(A, ).
Note that functions in K,(\, @) must satisfy (2). Although S,(\, a) C
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S, functions in K,,(A, @) need not be univalent, as is shown in [3].

In this paper we obtain bounds for these two classes, which reduce
to those of S(A, @) or K(\, ) when p = cos\ — a, and are otherwise
an improvement. Results in terms of a fixed second coefficient have
been given for various subclasses of S. Finkelstein [2] investigated
the classes S,(0, 0) and K,(0, 0), the starlike and convex functions with
preassigned second coefficient. Extensions of these results can be found

in [1] and [8].

2. Growth Estimates. The following lemma, proved in [2] and
known to Lowner [5], is used in the proof of our main theorem. It
gives a growth estimate for analytic mappings of the unit disk into itself
in terms of the second coefficient, and thus generalizes Schwarz’s
lemma.

Lemma A. If w(z) = byz + -+ - is an analytic map of the unit disk
into itself, then |b)| = 1 and

r(r + Ibll)
1+ |b|r

Equality holds at some z(#0) if and only if

lo(z)] =

(I2l = ).

e~'z(z + b,et)

+ = 0).
1+ be itz (t=0)

o(z) =
To obtain growth estimates for S,(\, @) and K,(A, @) it is useful to con-
sider the following class of functions.

DermnitioN 3. A function g(z) = 1 + 2a,z + - - -, analytic in the
unit disk, is in G,\, a)(]A\| <7/2, |a] =p, 0= p=cosA — a
cosA # a) if

Re{etrg(z)} > a(|z| < 1).
Observe that f(z) € S,(\, @) if and only if zf'(2)/f(z) € G,(\, a)

and f(z) € K,(\, a) if and only if 1+ zf"(z)/f'(z) € G,(\, a).
In the proof of Theorem 1 we shall use a result of Robertson [6] .

Lemma B. For all real p and v the following sharp inequality holds:

(1 — R%) cos u + 2R sin pcosy
1 —2Rcosv + R2

= (1 + R?)cos u — 2R
= 1- R

(0= R<1).
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TaeoreM 1. Suppose g(z) € G,(\, a), |y| < 7/2, and
U= pr+ (cosA — a)
V= (cosh — a)r + p.

Then
Re{eg(z)}
©) ‘
U2 cosy — 2r(cos A — @)UV + VZr2[cos(y — 21)— 2a cos(y — )]
U? — r2v2
(Iz| = ).
The result is sharp.

Proor. If g(z) € G,(A, @) we may write

e*g(z) — (@t isinh) _ 1+ oz)
COSA — a 1— w(z)’

(4)

where w(z) = bjz + - - (|b)] = plcos A — a) satisfies the hypotheses
of Lemma A. Thus

(5) lo(z)| = |z| =)

From (4) we have

eg(z) = el {(cosA - a) [1_-!-_w(_z;] +a+ isin)\}
and

Re {e""g(z)} = (cosA — a)cos (y — A) Re i i- ::g ]
®) + (cosA — a) sin (y — A) Im [HZE:;]

+ acos (y — A) — sin (y — A\)sinA.
Setting w(z) = Re'? in (6) and simplifying, we obtain
Re{eg(z)}

= (COSA — a) [

(1= R?>)cos(y — ) + 2Rsin@sin (y — A)]
(7) 1— 2Rcos@ + R?

+ acos(y — A) — sin (y — A) sinA.
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An application of Lemma B to (7) with w =y — X and v = 4 yields

(1 + R?>)cos(y —A) — 2R
1- R ]

{Re e"g(z)} = (cosA — a) [

(8) : .
+ acos(y —A) — sin(y — A) sinA.

A substitution of (5) into (8) leads to (3). The sharp function may be
obtained by combining the sharp functions of Lemmas A and B.

CoroLLary 1. If g(z) € G,(A, a), then Re{eg(z)} > B for |z| <7,
where ¥ = ¥(\, a, y, B, p) is the least positive root of

(cosy — B)(U? — V32)
— 2Vr(cosA — a)(U — Vrcos (y — A) = 0(|z] = r).

Proor. By Theorem 1, Re{e””g(z)} > B when the right side of (3)
is = B. This is equivalent to

U2 cosy — 2r(cos A — a)UV + V2r2[cos (y — 2\) — 2acos (y — )]

ZBIU? — VY

or

(cosy — B)YU? — V2¢2) — 2Vr(cos A — a)(U — Vrcos(y — A)) = 0.
The sharpness follows as in Theorem 1. »

DermviTion 4. If f(z) € S and |y| < /2, then the spiral radius of
order y and type B of f(z), written R(y, B, f(z)), is given by

R@ﬁJ@»=mm[hRe{wj%SL}>ﬁJd=q.

DerFiniTiON 5. If F is a subclass of S, then the spiral radius of order
v and type B of F, denoted R(y,B, F), is given by

(10) Riy,B,F)= inf Riy, f(2)).
flz) EF

These definitions reduce to those of Libera [4] when 8= 0. If in
addition y = 0, then the right side of (10) is the radius of starlikeness
of the family F.

Setting g(z) = zf'(z)/f(z) in Corollary 1, we see that 7=
R(y., B S,(\, @)

Now set a= vy = B = 0 in Corollary 1, so that 7 depends only on
A and p. For fixed A we put 7 = #(p, A).

We can now relate \-spiral functions to starlike functions. In the
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sequel set G,(A, 0) = G,(A), S,(A, 0) = S,(A), and K, (A, 0) = K,(\).

CoroLLARY 2. If g(z) € G,(A) and we set C = cos A + |sin )| then
Re{g(z)} > 0 for |z| < #(p, A), where

_ 1—-C)+ Vp2(1 — C)% + 4C cos® A
(1) PN = [P( ) ’2’(§ cos A ] '

Furthermore 7(p, \) is decreasing (0 = p = cos \) with

1

0= e

1
c

Proor. Set a=vy =B =10 in (9). The least positive root of this
equation is given by (11). The quantities d/dp[#(p, A)] and

#(cosA) =

(12) (1— C)[ Vp¥I — C)2+ 4Ccos\ + p(1 — C))]

have the same sign. Since

Vp3(1 = C)? + 4C cos? A Z p|1 — C|
and C = 1, (12) is nonpositive. Thus 7(p, A) is decreasing in p.

Remark. The radius of starlikeness of S,(A) is thus given by (11).
Since C is maximized at |\| = /4, for all p we have

. 2172 L <,

[sm 1 +cos4] \/.é_r(p,)\)

(13) X s
=_- i T I -
=33 sin 4 + cos 4 ] . |

The lower bound in (13) is the radius of starlikeness of A-spiral func-

tions, found by Robertson in [6]. The upper bound in (13) shows that

odd \-spiral functions are starlike for |z| < 1/ V2

In the result that follows we relate starlike to spiral functions.

CoroLLary 3. If g(z) € G,(0) and we set D = secy + |tany| then
Re {e"g(z)} > O for|z| < #(p,y), where

(14 #p, y)= [ PL=D)+ VpXA-Dp+ D]
2D
Furthermore #(p, y) is decreasing (0 = p = 1) with
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#0) =

7(l) =

>} I»-' él"“

Proor. Set a= A =B =0 in (9). The least positive root is then
given by (14). It can easily be shown that 8/dp [#(p, y)] = 0.

Remark 1. Thus if f(z) € 5,(0), then Re{e” zf'(z)/f(z)} >0
|z| < #(p,y), where 7(p,y) is defined by (14).

ReMark 2. We can obtain results about the family K,(A) from those
found for S,(A) by a simple application of Definition 2.
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