SINGULAR PERTURBATION OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

H. S. NUR

Abstract. Under certain assumptions on $f\left(x, y^{\prime}, y, \epsilon\right)$, this paper discusses the existence and asymptotic behavior of the solution of $\epsilon y^{\prime \prime}+f\left(x, y^{\prime}, y, \epsilon\right)=0$ with $y(0)=A$ and $y(1)$ = B.

Consider the equations
(1) $y^{\prime \prime}+f\left(x, y, y^{\prime}, \epsilon\right)=0$, with $y(0)=A$ and $y(1)=B$, where $x \in[0,1]$,
(2) $f\left(x, y_{0}{ }^{\prime}, y_{0}\right)=0$, with $y_{0}(1)=B$.

Subtract (2) from (1) and obtain
(3) $\epsilon y^{\prime \prime}+f\left(x, y^{\prime}, y, \epsilon\right)-f\left(x, y_{0}{ }^{\prime}, y_{0}, 0\right)=0$.

Using the mean value theorem for several variables, we obtain

$$
\begin{equation*}
\epsilon y^{\prime \prime}+\boldsymbol{\alpha}(x, \boldsymbol{\epsilon})\left(y^{\prime}-y_{0}{ }^{\prime}\right)+\boldsymbol{\beta}(x, \boldsymbol{\epsilon})\left(y-y_{0}\right)=0, \tag{4}
\end{equation*}
$$

where $\boldsymbol{\alpha}$ and β are continuous functions in both x and $\boldsymbol{\epsilon}$, and $\boldsymbol{\alpha}(x, \boldsymbol{\epsilon})$ is positive (or negative) on $[0,1]$.

Now we wish to impose certain conditions on $f\left(x, y^{\prime}, y, \epsilon\right)$ so that the above conditions on α and β are satisfied. Such assumptions are: f is C^{∞} in all variables, and f_{y} and $f_{y^{\prime}}$ are positive.

Subtract ($\epsilon y_{0}{ }^{\prime \prime}$) from both sides of (4), and let $y-y_{0}=u$; we obtain

$$
\begin{equation*}
\epsilon u^{\prime \prime}+\alpha(x, \epsilon) u^{\prime}+\beta(x, \epsilon) u=-\epsilon y_{0}{ }^{\prime \prime}, \tag{5}
\end{equation*}
$$

with the conditions $u(0)=A-y_{0}(0)$ and $u(1)=0$.
Since the function $y_{0}{ }^{\prime \prime}$ is independent of ϵ, then obviously it is sufficient to consider the equation

$$
\begin{equation*}
\epsilon u^{\prime \prime}+\alpha(x, \epsilon) u^{\prime}+\beta(x, \epsilon) u=0, \tag{6}
\end{equation*}
$$

$$
\text { with } u(0)=A-y_{0}(0) \text { and } u(1)=0,
$$

i.e., if (6) is stable, so is (5).

If we let $u^{[k]}=\epsilon^{k}\left(d^{k} u / d x^{k}\right)$, then (6) becomes

$$
\begin{equation*}
u^{[2]}+\alpha(x, \epsilon) u^{[1]}+\epsilon \beta(x, \epsilon) u=0 . \tag{7}
\end{equation*}
$$

Let $\omega_{1}(x)(i=1,2)$ be the roots of $\omega^{2}+\alpha(x, 0) \omega=0$.
Lemma 1. For each $i(i=1,2)$ there exists an infinite number of functions $u_{i 0}, u_{i 1}, \cdots$ continuous and with continuous derivatives of all orders such that $u_{i 0}(x)$ does not vanish at any point of $[0,1]$, and
if the functions $u_{i}(x, \epsilon)=\exp \left[(1 / \epsilon) \quad \int_{0}^{x} \omega_{i}(s) d s\right] \quad \sum_{j=0}^{m-1} u_{i j}(x) \epsilon^{j}$ are substituted in (7) for u, then the coefficients of $\exp [(1 / \epsilon)$ $\left.\int_{0}^{x} \omega_{i}(s) d s\right] \epsilon^{h}, i=1,2 ; h=0,1, \cdots, m$, vanish identically.

Lemma 2. The D.E. (7) has two linearly independent solutions:

$$
y_{i}(x, \epsilon)=u_{i}(x, \epsilon)+\epsilon^{m} E_{0}
$$

for any positive integer m where E_{0} is a bounded function.
The proofs of Lemmas 1 and 2 are in [1].
Now let $Y=c_{1} y_{1}+c_{2} y_{2}$ and apply the boundary conditions. We find

$$
c_{1}=\frac{\left[A-y_{0}(0)\right] y_{2}(1)}{-\left[u_{20}(0) u_{10}(1)+O(\epsilon)\right]} \rightarrow 0, \quad \text { as } \epsilon \rightarrow 0
$$

and

$$
c_{2}=\frac{y_{1}(1)\left(A-y_{0}(0)\right)}{u_{20}(0) u_{10}(1 ;)+O(\boldsymbol{\epsilon})}
$$

which is bounded as $\epsilon \rightarrow 0$.
Since $y_{2}(x, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$, we find that $Y(x, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$. Consequently the solution $u(x, \epsilon)$ of (5) goes to zero as $\epsilon \rightarrow 0$ which in turn shows that $y(x, \boldsymbol{\epsilon})$, the solution of (1), goes to the solution $y_{0}(x)$ of (2).

Remarks. Notice that the boundary condition $y_{\epsilon}(1)$ coincides with $y_{0}(1)$. However, if we assume $y_{\epsilon}(0)=y_{0}(0)$ instead we get $y(x, \epsilon) \rightarrow$ $y_{0}(x)+h(x)$. So it is necessary that the two solutions agree at 1 . Another point needs to be mentioned here. Since $y^{\prime}(x, \epsilon)$ may not be bounded in ϵ at $x=0$, this necessitates that we impose an extra condition on $f\left(x, y^{\prime}, y, \epsilon\right)$ or we would have some exceptions. But if it happens that $y(0, \epsilon)=y_{0}(0)$ and $y(1, \boldsymbol{\epsilon})=y_{0}(1)$, then $y^{\prime}(x, \epsilon)$ is bounded in $[0,1]$.

Now we shall apply this technique to the equation

$$
\begin{align*}
& \epsilon y^{\prime \prime}+y y^{\prime}-y=0, \text { with the conditions } \tag{8}\\
& y(0)=A>0, \text { and } y(1)=B>A+1
\end{align*}
$$

whose unperturbed equation is

$$
\begin{equation*}
y y^{\prime}-y=0 \tag{9}
\end{equation*}
$$

which has the solution $y_{0}(x)=x+B-1$.
So, subtracting (9) from (8), assuming $y_{\epsilon}-y_{0}=u$ and noticing that $y_{0}{ }^{\prime \prime}=0$, we obtain by using the mean-value theorem the following
equation,

$$
\begin{align*}
& \epsilon u^{\prime \prime}+y_{0} u^{\prime}+\left(y^{\prime}-1\right) u=0 \tag{10}\\
& \text { with } u(0)=A+1-B \text { and } u(1)=0
\end{align*}
$$

According to Lemma 2, this equation has the two linearly independent solutions

$$
\begin{aligned}
& y_{1}=u_{1}(x, \epsilon)+\epsilon^{m} E_{0} \\
& y_{2}=u_{2}(x, \epsilon)+\epsilon^{m} E_{0}
\end{aligned}
$$

where

$$
\begin{aligned}
& u_{1}=\sum_{0}^{m-1} u_{1 j}(x) \epsilon^{j}, \text { and } \\
& u_{2}=\left[\exp \left(-(1 / \epsilon) \int_{0}^{x} y_{0}(s) d s\right)\right] \quad\left[\sum_{0}^{m-1} u_{2 j}(x) \epsilon^{j}\right] .
\end{aligned}
$$

Thus, the general solution is, $Y=c_{1} y_{1}+c_{1} y_{2}$, and with the boundary conditions we obtain

$$
c_{1}=\frac{[A-B+1] y_{2}(1)}{\left[u_{20}(0) u_{10}(1)+O(\epsilon)\right]} \rightarrow 0 \quad \text { as } \epsilon \rightarrow 0
$$

and

$$
c_{2}=\frac{y_{1}(1)(A-B+1)}{u_{20}(0) u_{10}(1)+O(\epsilon)} \text { which is bounded as } \epsilon \rightarrow 0
$$

Hence we find $Y(x, \epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ which gives $y_{\epsilon}(x) \rightarrow y_{0}(x)$ as $\epsilon \rightarrow 0$.

Reference

1. H. S. Nur, Singular Perturbation of Linear P.D.E., J.D.E. 6 (1969).

California State University, Fresno, California 93710

