SINGULAR PERTURBATION OF NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

H.S.NUR

ABSTRACT. Under certain assumptions on $f(x, y', y, \epsilon)$, this paper discusses the existence and asymptotic behavior of the solution of $\epsilon y'' + f(x, y', y, \epsilon) = 0$ with y(0) = A and y(1) = B.

Consider the equations

- (1) $y'' + f(x, y, y', \epsilon) = 0$, with y(0) = A and y(1) = B, where $x \in [0, 1]$,
- (2) $f(x, y_0', y_0) = 0$, with $y_0(1) = B$. Subtract (2) from (1) and obtain
- (3) $\epsilon y'' + f(x, y', y, \epsilon) f(x, y_0', y_0, 0) = 0.$

Using the mean value theorem for several variables, we obtain

(4)
$$\epsilon y'' + \alpha(x,\epsilon)(y' - y_0') + \beta(x,\epsilon)(y - y_0) = 0,$$

where α and β are continuous functions in both x and ϵ , and $\alpha(x, \epsilon)$ is positive (or negative) on [0, 1].

Now we wish to impose certain conditions on $f(x, y', y, \epsilon)$ so that the above conditions on α and β are satisfied. Such assumptions are: f is C^{∞} in all variables, and f_{y} and $f_{y'}$ are positive.

Subtract $(\epsilon y_0'')$ from both sides of (4), and let $y - y_0 = u$; we obtain

(5)
$$\epsilon u'' + \alpha(x,\epsilon) u' + \beta(x,\epsilon)u = -\epsilon y_0'',$$

with the conditions $u(0) = A - y_0(0)$ and u(1) = 0.

Since the function y_0'' is independent of ϵ , then obviously it is sufficient to consider the equation

(6)
$$\epsilon u'' + \alpha(x, \epsilon)u' + \beta(x, \epsilon)u = 0,$$

with $u(0) = A - y_0(0)$ and $u(1) = 0,$

i.e., if (6) is stable, so is (5).

If we let $u^{[k]} = \epsilon^k (d^k u / dx^k)$, then (6) becomes

(7)
$$u^{[2]} + \alpha(x,\epsilon)u^{[1]} + \epsilon\beta(x,\epsilon)u = 0.$$

Let $\omega_1(x)$ (i = 1, 2) be the roots of $\omega^2 + \alpha(x, 0)\omega = 0$.

LEMMA 1. For each i (i = 1, 2) there exists an infinite number of functions u_{i0} , u_{i1} , \cdots continuous and with continuous derivatives of all orders such that $u_{i0}(x)$ does not vanish at any point of [0, 1], and

if the functions $u_i(x, \epsilon) = \exp\left[(1/\epsilon) \int_0^x \omega_i(s) ds\right] \sum_{j=0}^{m-1} u_{ij}(x) \epsilon^j$ are substituted in (7) for u, then the coefficients of $\exp\left[(1/\epsilon) \int_0^x \omega_i(s) ds\right] \epsilon^h$, $i = 1, 2; h = 0, 1, \cdots, m$, vanish identically.

LEMMA 2. The D.E. (7) has two linearly independent solutions:

 $y_i(x,\epsilon) = u_i(x,\epsilon) + \epsilon^m E_0$

for any positive integer m where E_0 is a bounded function.

The proofs of Lemmas 1 and 2 are in [1].

Now let $Y = c_1y_1 + c_2y_2$ and apply the boundary conditions. We find

$$c_1 = \frac{[A - y_0(0)] y_2(1)}{-[u_{20}(0)u_{10}(1) + O(\epsilon)]} \rightarrow 0, \text{ as } \epsilon \rightarrow 0,$$

and

$$c_2 = \frac{y_1(1)(A - y_0(0))}{u_{20}(0)u_{10}(1;) + O(\epsilon)}$$

which is bounded as $\epsilon \rightarrow 0$.

Since $y_2(x, \epsilon) \to 0$ as $\epsilon \to 0$, we find that $Y(x, \epsilon) \to 0$ as $\epsilon \to 0$. Consequently the solution $u(x, \epsilon)$ of (5) goes to zero as $\epsilon \to 0$ which in turn shows that $y(x, \epsilon)$, the solution of (1), goes to the solution $y_0(x)$ of (2).

REMARKS. Notice that the boundary condition $y_{\epsilon}(1)$ coincides with $y_0(1)$. However, if we assume $y_{\epsilon}(0) = y_0(0)$ instead we get $y(x, \epsilon) \rightarrow y_0(x) + h(x)$. So it is necessary that the two solutions agree at 1. Another point needs to be mentioned here. Since $y'(x, \epsilon)$ may not be bounded in ϵ at x = 0, this necessitates that we impose an extra condition on $f(x, y', y, \epsilon)$ or we would have some exceptions. But if it happens that $y(0, \epsilon) = y_0(0)$ and $y(1, \epsilon) = y_0(1)$, then $y'(x, \epsilon)$ is bounded in [0, 1].

Now we shall apply this technique to the equation

(8)
$$\epsilon y'' + yy' - y = 0, \text{ with the conditions}$$
$$y(0) = A > 0, \text{ and } y(1) = B > A + 1,$$

whose unperturbed equation is

$$(9) yy' - y = 0,$$

which has the solution $y_0(x) = x + B - 1$.

So, subtracting (9) from (8), assuming $y_{\epsilon} - y_0 = u$ and noticing that $y_0'' = 0$, we obtain by using the mean-value theorem the following

758

equation,

(10)
$$\epsilon u'' + y_0 u' + (y' - 1)u = 0,$$

with $u(0) = A + 1 - B$ and $u(1) = 0.$

According to Lemma 2, this equation has the two linearly independent solutions

$$y_1 = u_1(x, \epsilon) + \epsilon^m E_0,$$

$$y_2 = u_2(x, \epsilon) + \epsilon^m E_0,$$

where

$$u_1 = \sum_{0}^{m-1} u_{1j}(x) \epsilon^{j}, \text{ and}$$
$$u_2 = \left[\exp(-(1/\epsilon) \int_0^x y_0(s) \, ds) \right] \left[\sum_{0}^{m-1} u_{2j}(x) \epsilon^{j} \right].$$

Thus, the general solution is, $Y = c_1y_1 + c_1y_2$, and with the boundary conditions we obtain

$$c_1 = \frac{[A - B + 1]y_2(1)}{[u_{20}(0)u_{10}(1) + O(\epsilon)]} \rightarrow 0 \quad \text{as} \quad \epsilon \rightarrow 0$$

and

$$c_2 = \frac{y_1(1)(A - B + 1)}{u_{20}(0)u_{10}(1) + O(\epsilon)}$$
 which is bounded as $\epsilon \to 0$.

Hence we find $Y(x, \epsilon) \to 0$ as $\epsilon \to 0$ which gives $y_{\epsilon}(x) \to y_0(x)$ as $\epsilon \to 0$.

Reference

1. H. S. Nur, Singular Perturbation of Linear P.D.E., J.D.E. 6 (1969).

CALIFORNIA STATE UNIVERSITY, FRESNO, CALIFORNIA 93710