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ON THE EXISTENCE OF SOLUTIONS TO 
MULTIPOINT BOUNDARY VALUE PROBLEMS 

DWIGHT V. SUKUP 

ABSTRACT. We are concerned with the nth order differen­
tial equation t/(n) = f(x, y, t/, •••, t/ (n -1 )) where it is assumed 
throughout that / is continuous on [ a, ß) X fln, « < ß ^ oo f 

and that solutions of initial value problems are unique and 
exist on [a,ß). Our main concern will be to show that under 
certain conditions the uniqueness of solutions of multipoint 
boundary value problems implies the existence of solutions of 
such problems. 

1. Introduction. We will consider the following nonlinear differen­
tial equation in this work: 

(Li) y{n) = f(x,y,y', -;y{n-l\ 
where x G I = [a, 0), a < 0 è + <» . 

The following assumptions are assumed to be satisfied throughout 
this work: 

(A) fis continuous on [a, ß) X Rn, and 
(B) solutions of initial value problems (IVP's) are unique and extend 

throughout [a9 ß). 

DEFINITION 1.1. We say that y G. Cn[a, ß) has an (i1? • •* , t m ) -
distribution of zeros, O g i f c â n , ^JT=i h= n> o n [c> d] C [a, ß) 
provided there are points c = x x < • • • < xm = d such that y(x) has a 
zero of order at least ik at xk, k = 1, • • -, m. 

DEFINITION 1.2. Let R = {r>t: there exist distinct solutions u(x) 
and v(x) of equation (1.1) such that u(x) — v(x) has an (ily • • *,im)-
distribution of zeros, O â i f c ^ n , ^/ï=i h = n, on [t, r] }. If R ^ 0 , 
s e t r i l . . . f m ( t )= in fR If R = 0 , set r, r . .im(t) = + «>. 

REMARK 1.3. If £ â xx < • • • < xm < riy. .im(t) g +<», then solu­
tions of equation (1.1) satisfying the boundary conditions 

y«>-lKx,)=CJJj;CJ,iì G # = ( - » , oo); 

(1.2) 
lj= 1, • • -,ij;j = 1, • • -,m, 

when they exist are unique. 
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Equation (1.1) along with boundary conditions (1.2) is called an 
(h> * ' S tm)-boundary value problem (BVP) and will be referred to in 
this paper as the (il9 • • -,tm)-BVP (1.1), (1.2). In the linear case it is 
well known that if t S xx < • • • < xm < riv . .im (t) ^ 4- oo, then for 
the given linear equation there always exists a unique solution satisfy­
ing the boundary conditions (1.2). Uniqueness implies existence results 
of this type for the nonlinear case is what this paper is primarily 
concerned with. 

DEFINITION 1.4. The first conjugate point i)\(t)9 for the nonlinear 
equation (1.1) is defined by 

{ TO ~ 

V--.'m('): S ** = n t 
k=l J 

DEFINITION 1.5. If / is an interval and I C [a, ß), then we say that 
I is an interval of disconjugacy for equation (1.1) provided there do 
not exist distinct solutions y(x)9 z(x) of equation (1.1) such that y(x) — 
z(x) has at least n zeros, counting multiplicities, on I. It is clear from 
Definition 1.4 that if / C [t9r)i(t))9 then I is an interval of discon­
jugacy and that [t9i)i(t)) is a maximal half open interval of discon­
jugacy. 

REMARK 1.6. It is possible that r)i(t) = t for the nonlinear equation 
(1.1). For example, if n = 2 and we consider the equation 

y" = -y3, 
it was shown in [9] that for this equation r)i(t) = ty for all t. However, 
i f / satisfies a uniform Lipschitz condition with respect to y, y', • • -, 
yin~l) on compact subintervals of [a, ß)9 then , using estimates for the 
Green's function ([3]) and the fact that rj^t) = r1...1(f), ([2]), one 
can use standard fixed point arguments to prove that r)i(t) > t for all 
t G [tt,/3). In particular, if equation (1.1) is a linear differential equa­
tion, then, as is well known, T|1(f) > t, for all t. Some of the results of 
this paper require the hypothesis that 171(f) > * f° r some t G [a, ß). 
In [11] estimates for bounds on the Green's function for the 
(n — 1,1)-BVP (1.1), (1.2) and standard fixed point arguments were 
used to prove that rn_ll(t) > t for all t G. [a, ß) in a special case. In 
particular it was assumed that / satisfies a uniform Lipschitz con­
dition with respect to t/, y', • • ',y{n~l) on each compact subinterval 
of [a, ß) to establish lower bounds for rn_il(t). 

DEFINITION 1.7. Let y(x) be a solution of equation (1.1), and let 
f = Xi < • • • < xm < rh.. .im (t). Define 
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S(y(x); *i''i, • • -,**'*, • • -,xm
im) = 

{u ('^'(a*) : u(x) is a solution of equation (1.1) such that 

u{lHxj) = «/";>(*,), lj = 0, • • -,i, - l;j = 1, • • ;m;j ? k, 

u^(xk) = yM(Xk),lk = 0,--;ik-2 

(Ifik = 1, there is no boundary condition at xk)}. 

If the superscript ij is 1, then the superscript will be omitted and under­
stood tobe 1. 

Lasota and Opial ([6] ) showed that if t ^ xx < x2 < i?i(£)> the n f°r 

any solution y(x) of equation (1.1) S(y(x); xly x2) = R1. For n = 3, 
Jackson and Schrader ([4] ) showed that if t ^ xx < x2 < x3 < rji(t), 
then for any solution y(x) of equation (1.1), S(y(x); xh x2, £3) = S(y(x); 
xi9 £2, x3) = R1 which is equivalent to the existence of all (1,1,1)-
BVFs (1.1), (1.2) in this case. They also showed that S(y(x); xx\ x2) = 
S(t/(x); Jcb x2

2) = R1 for all solutions y(x) of equation (1.1) which is 
equivalent to the existence of all (2,1)- and (1, 2)-BVFs (1.1), (1.2) in 
the case where t â xl < x2 < 7}i(t). Klaasen ([5] ) see also Hartman 
[1] ) showed that if in addition to (A) and (B) the compactness condi­
tion defined in Chapter 2 of this paper is assumed to be satisfied, then, 
if t â Xi < - - - < xm< rii(t), then for any solution y(x) of equation 
(1.1) S(y(x); ac î, • • -, xk^, • • -, xm

im) = R1, k = 1, • • -, m. Peterson 
([7]) has obtained similar results for the fourth order equation (1.1) 
not assuming uniqueness of solutions of initial value problems. 

Spencer ([10]) has obtained several ordering relations between 
the boundary value functions, r,v . .im(t). This type of result is useful in 
proving uniqueness of solutions of BVP's implies existence of solutions. 

2. Main Results. In addition to (A) and (B) we will assume the com­
pactness condition 

(C) If {yj(x)} is a sequence of solutions of equation (1.1) which is 
uniformly bounded on a nondegenerate compact subinterval [c, d] 
contained in [a, ß), then there is a subsequence tyj (x)} of {t//(x)} such 
that {y {i)(x)} converges uniformly on each compact subinterval of 
[a, /3)Jori= 0, • • -, n - 1. 

The following lemma is Corollary 3.22 in [8]. 

LEMMA 2.1. (BROUWER'S INVARIANCE OF DOMAIN THEOREM). Let U 
be an open set in Rn and <f>: U-± Rn a continuous and one-to-one 
mapping. Then <f> is an open mapping. 
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DEFINITION 2.2. Let t=i a. If r ir .im (s) = +00 for all s > t, then we 
set riY.. .im (t+ ) = + °°, otherwise riy.. .im (t+ ) is defined by 

rir.-in(t+) = inf{ril...im(s):s>t}. 

The following lemma is Lemma 2.3 in [9]. 

LEMMA 2.3. Assume a^ t < rir •im(t+ ) ^ + » , and let A = 
{(*!, • • • , x r o ) G f f » : f < x 1 < • • • < A C m < r i l ...<m (*+)}. Defined : à 
X Rn -» Rm+nby 

(xl5 • • •,*m ,y(xi),y'(*i), • • •,y( , ' l"1)(*i)J 

t/(x2), • • -,t/(xm), • • -, (/('--D (x j ) , 

where y(x) is the solution of (1.1) satisfying y(l\x0) = j / j + 1 , I = 0, 
• -, n — 1, where x0 is a fixed point in (t9 riy . .im (t+)). Then <f> : A 
X Rn -»</>( A X Rn) is a homeomorphism, and <j>(k X Rn) is open. 

Motivated by Lemma 2.3 we have the following important modifica­
tion of that result. 

LEMMA 2.4. Assume a ^ t < rir. .im(i) = + °°, and let A = 
{(*!, ' ' -,*m) G R™ : t^ x, < • • • < x B < rir.im(t)}. Define $: A X 
Rn _* R™+nby 

(xx, • • 'tX^yixùy'fa), • • sy«!"1) fo), 

y(*2), * * s y(xm), • • •,y ('*-1)(*m))> 

where y(x) is the solution of (1.1) satisfying yil\t) = yi+i9 1 = 0, • • -, 
n — 1. T/ien <£ : A X Rn —><J>(A X Rn) is a homeomorphism, and 
<f>( A X Rn) is a relatively open subset of A X Rn. 

PROOF. Let /ut = £ and v = r i r . Im (*). Set Ä = {(xl9 • • -, xm)_£ Km : 

2 fjb — x2 < Xi < v and fi < x2 < * * * < xm < v}. Define <f> : A X Rn 

-> R m + n by 

$(xl9 • • •,xm,y1, • • -,!/„) = 

t/(*2)> ' • *>!/(*m), ' * ->!/(lW)(*m)), 

if (xl5 • • -, xm, yl9 • • -, yn) G A X R». 
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(xl9 • • % xm, t/(2 » - Xl), t / ,(2^ - xx)9 • • -, y «i-i)(2 p - xx)9 

if(xx, • • ',xm,yl9 • • -,t/n) G A X Rn ~ A X Rn, where t/(x) is the solution 
of (1.1) satisfying yM(t) = yl+l, I = 0, • • -, n - 1. 

Note that if (xl9 • • -, xm, yh • • -, t/n) G Ä X Rn — A X Rn then 
2 /x — x2 < xx < \i < x2 < - - - < xm< v, and hence fi < 2 /ut — xx 

< JC2 < * * • < xm < v. The function </> is one-to-one, since, if two 
points of A X Rn have the same image under </>, then the first m coor­
dinates of the two points must agree, and hence, by the uniqueness of 
solutions of the (iu • • -, im)-BVP, the remaining n coordinates of these 
two points must agree. It follows from continuity of solutions of IVP's 
with respect to initial conditions that <f> is continuous. It is clear that 
Â X Rn is an open subset of BT1*", hence by Lemma 2.1, J> : Â X Rn 

_^ fim +n j s a n open mapping. By the way we have defined <j>, it follows 
that 0(A X Rn) = $(A X Rn) Pi [fji,v) X R™+"-i, hence <J>(A X Rn) 
is a relatively open subset of [fi,v) X R™+n~i? and <f> : A X Rn onto 
<£(A X Rn) is a homeomorphism. 

The following corollary to Lemma 2.4 shows that uniqueness of the 
(<!, • • -, im)-BVP (1.1), (1.2) on an interval J = [/x, v) implies "local" 
existence of solutions of the (il9 • • -, im)-BVP (1.1), (1.2). 

Corollary 2.5 indeed provides a powerful tool with which to attack 
the uniqueness implies existence problem that concerns us in this 
chapter. Frequent reference will be made to this important corollary. 

COROLLARY 2.5. Let t ^ xY < • • • < xm < rir..im(t)9 and let y(x) 
be a solution of the (il9 • • -, im)-BVP (1.1), (1.2). Then for 8 > 0 suffici­
ently small, t^z «! < - • - < sm< rir..im(t)> \ôj,ij \ < 8 and \SJ — Xj\ 
< 8, lj = 1, • • -, ij-,j = 1, • • *, m, there exists a (unique) solution z(x) of 
(1.1) satisfying 

z«J-V(8j) = Cjjj + tjjj Jj=h" ', ipj = 1, • • -, m. 

Furthermore, given any compact subset KG [a,ß) and e > 0, S may 
be picked small enough that \z{i)(x) — y(i)(x)\ < €, i = 0, • • -, n — I, for 
allxGK. 

PROOF. The function <f> defined in Lemma 2.4 is an open map, and 
<£(A X Rn) is a relatively open subset of A X Rn. Since the point 
(xl9 • • ',xm,Cul9 ' ' ' ,C l f i l ,C2 f i , - • ',Cm,im ) is in the open set <£( A X Rn), 
there exists an open neighborhood, relative to A X Rn, contained in 
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</>(A X Hn). Hence for 8 sufficiently small, the set 

S = {($i, * * % sm, C l s l + 8 U , • * -, Cmjm + 8m,im) : 

t ^ S l < • • • < Sm < TV , m (£ ) , | 5 j - Xj\ < 8, 

\tj,ij\<à>lj= h '-,if,j= h -',m} 

is contained in 0(A X fln). By the way (f> is defined, for each point of 
S there exists a corresponding solution of equation (1.1) which deter­
mines that point. The last statement of the conclusion of this corollary 
is a consequence of the continuity of <f>~l and the continuous depen­
dence of solutions on initial conditions. 

By slightly modifying the proof of Lemma 2.4 we can show that 
Corollary 2.5 holds for any closed, open or half open interval / on 
which we have uniqueness of solutions of the (i1? • • -, im)-BVP (1.1), 
(1.2). 

REMARK 2.6. It follows from Corollary 2.5, that, if for every [c, d] 
C [a, ß) there exists a subinterval [ch dY] C [c, d], dY > c l5 such 

that there exists a unique solution to every (1,1, • • -, 1)-BVP (1.1), (1.2), 
where cY ^ xY < • • • < xn ^ dx, then the compactness condition (C) 
holds. 

THEOREM 2.7. Let 1 ^ k â m and t â xx < • • • < xm < rir. .im (t) 

where ik = 1. If (1.1) satisfies (A), (B) and (C), then for any solution 
y(x)of(l.l),S(y;xl

i^ • • -,xk, • • -,xm
im) is an open interval. 

PROOF. It follows from Corollary 2.5 that the set S = S(j/; x^i, • • -, 
*k> * ' *> xmm) is a n open subset of R1. It suffices to establish that if 
a, T G S with a < r, then [a, r] C S. Assume that <T,T Œ S, and 
let y0

 = s up{y = T : [<7,y] C S}. By Corollary 2.5, if y0 E S, then 
[^70 + €) ^ S for € > 0 sufficiently small, contrary to the defini­
tion of y0. Hence y0 ÉJï S. If y0 < r, let {yn} be a sequence of real 
numbers such that for each n, a < yn < yn+\ < y0, and {yn} con­
verges to y0. Let {un(x)} be the corresponding sequence of solutions 
of equation (1.1) satisfying 

un(h)(xj) = y^\Xjl lj = 0, • • -, ij - 1; j = 1, • • -, m;j ± k, 

"n(*fc) = Tn-

Let v(x) be the solution of (1.1) satisfying 

vdj)(Xj) = y('j)fo), lj = 0, • • -, t, - l ; j = 1, • • -, m;j ^ k, 

V(xk) = T. 
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Note that un(x) < un+l(x) for x G (xk,xk+l) for each n (where we let 
xm+i = ril...im(t) in case k = m). Similarly, un(x) < v(x) for x G 
(xk, xk + i). Since wx(x) < un(x) < v(x) for x G (xk, xk+l)y it follows from 
(C) that there exists a subsequence {un](x)} such that {un

 {i)(x)} con­
verges uniformly to a solution t*(x) of equation (1.1) on compact subsets 
of [a, ß), where u(x) satisfies 

u^\xj) = y«J>(x,), lj = 0, • • -, ij - l;j = 1, • • . , m ; j / k, 

u(xk) = y0-

But then y0 G S which is a contradiction. 

To prove Theorem 2.7 when ifc is an arbitrary positive integer we 
will use the following elementary lemma. 

LEMMA 2.8. Let u(x) and v(x) be in Cp[x0, xY], p > 0. Ifu{l\x0) = 
v{l\x0\ I = 0, • • -, p - 1, uW(xx) ^ Ü ( P )(*I) , and u^(s) < v<*>\s) for 
s G [jt0, xx), thenu{l\s) < v(l\s)for s G (*o>*i)> i = 0, • • *,p — 1. 

THEOREM 2.9. Let 1 = k =̂ m and £ = xx < • °- • < xm < r i r . im(£), 
where ik i? 2. If equation (1.1) satisfies (A), (B) and (C), then for any 
solution y(x) of (1.1), S(t/; x^1, • • -, £fc

1'*, • • -, xm
im) is an open 

interval. 

PROOF. It follows from Corollary 2.5 that the set S = S(t/; x^, • • *, 
*kik> ' ' '•> x m ' m ) i s a n open subset of R1. It suffices to establish that if 
y0 = sup{y : [y{ik~l)(xk),y] C S } and y ' > y0> then y ' ^ S, and that, 
if AO = inf{X : [X, J / ^ ' 1 ) ^ ) ] C S} and X' < X0, then X' $ S. We will 
consider here only the first of these two cases since the argument for 
the second case is similar to that of the first case. 

Suppose y ' > yo a n d y ' G S. There then must exist a solution 
u(x) of (1.1) such that 

U«J\x,) = y« \Xj), lj = 0,--;ij- \;j = 1, • • -, m;j ? k, 

f|('*-D(Xfc) = y ' . 

Let {y„} be a sequence of real numbers such that y(*k~l)(xk) <yn< 
yn+1 < y0 f° r each n ^ 1 and lim„_ Kyn = y0. Let {un(x)} be the cor­
responding sequence of solutions of (1.1) such that 

Un(liKXj) = y(h\Xj), lj = 0, • • -, ij - l;j = 1, • • -, m;j f k, 

un(k)(xk) = y(k)(Xk)Jk=0,--;ik-2, 

Un^'Hxk) = y„. 
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Assume the sequence of functions {un^
ik~^'(x)} is uniformly bounded on 

[xk, xk + €] for some € > 0. It then follows that {un(x)} is uniformly 
bounded on [xk> xk + e ] . But then since equation (1.1) satisfies (C) 
there must exist a subsequence {unj(x)} such that {wnj(x)} converges 
uniformly to a solution z(x) of (1.1) on compact subsets of [a, ß), and 
consequently y0 G S. But this leads to a contradiction. Hence 
{un

{ik~V(x)} cannot be uniformly bounded on [xk> xk + €] for any 
€ > 0 . 

Since {wn^
_1)'(x)} cannot be uniformly bounded on [xk, xk + e] , 

for any e > 0, and t/(ifc_1)(^) < wn
( ik_1)(^) < u{ik~1}(xk), it follows by 

continuity that there exists a decreasing sequence {8,} such that 
ôj > 0, l im^ „8, = 0, 

unj(^)(xk + 8j) = y ^~lK*k + dj\ or 

Un^-'Kxk + 8j) = u^~l\xk + 5,.), and 

y^-l){s) < un^~l){s) < u(i*-V(s), 

for s G (a*, xk + 8,-). We will only consider the case where, for j ^ 1, 

un.^-1)(xfc + Ô j ) = î / ^ - 1 ) f e + Ôi). 

By renumbering we can assume without loss of generality that 

unto-lHxk + 8n) n) = y«»-»(xk + 8n) and 

y^-V(s) < un^~V(s) < uVk-Uis), 

for 5 G (a*, xfc + 8n). By Lemma 2.8, yW(s) < un^(s) < u«\s), for 
s G (xk, xk + 8n) and i = 0, • • -, ifc — 1. By the continuity of y{i)(x) 
and w(i)(x), we have limn^ *>un

{i)(xk + 8n) = y{i)(xk), for i = 0, • • -, 
ik — 2. But then, by Corollary 2.5, it follows that limn_^ ooUn(x) = t/(x) 
uniformly on compact subintervals of [a, j8) which leads to a contra­
diction. 

REMARK 2.10. In [10] Spencer showed that if equation (1.1) satis­
fies (A) and (B) then ^..^(t) ^ r21...1(f) ^ ^ *V»-i,i(*)- T h i s r e s u l t 

will be used frequently in the remainder of this chapter. 

THEOREM 2.11. Let 3 â ) c § p + l § n and t^xx< • • • < xp + l < 
rn-i , i - iW- If equation (1.1) satisfies (A), (B) and (C), then for any 
solution y(x) of (1.1) 

S(t/; *!"-", X2, • • - , * * , • • -,Xp + 1 ) = S(t/;^1
n-p + 1 , x 3 , • • ',xk, ' • -,xp+l). 
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PROOF. By Theorem 2.8 and the fact that rn-p,i i(^) = rn-P+i,i-i(*)> 
the sets Si = S(y; x ^ , x2, ••-,**, ' * ', xp + l) and S2 = S(y; xf-v*1, 
*3> ' ' *> *fc> ' * *> * p + i ) a r e ° P e n intervals about t/(xfc). Let Si = (Xi,yi) 
and S2 = (À2, 72)- We will show that yl = y2. The case Àx = X2 fol­
lows from a similar argument. 

Suppose y ! < y2. Let v(x) be the solution of (1.1) such that 

u(*/) = £/(*;)> j = 3, 4, • • -, p + 1;j ^ K 

<*k) = ( n + y2)/2. 

Let 0 < ô < min{xfc+1 — xk> xk — x^^} (where xp + 2 = rn_p>l...l(t) in 
case fc = p -f 1). For n an integer and n > 1/(7! — Ài), there exists a 
unique solution un(x) of (1.1) such that 

uB(^) = y(x,), 7 = 2, 3, • • -, p + l ; ; 7̂  k, 

un(xk) = yi - 1/n. 

Note that {un(x)} is a strictly increasing sequence of functions on 
(Xk-i,xk+i). As in the proof of Theorem 2.7, {un(x)} cannot be uniform­
ly bounded on any compact subinterval of [a, ß), hence for n suf­
ficiently large there must exist sY €E {xk_lf xk) and s2 £ (xk, xfc+1) such 
that un(${) = v(si) and un(s2) = ufe)- This is not possible, hence 
y ! == y2. A similar argument shows that yi = y2. 

REMARK 2.12. Let 2^ k^ p e n - 1 and t ^ xY < < xp+l < 
rn-p,i •i(0- If equation (1.1) satisfies (A), (B) and (C), then for any 
solution t/(x) of (1.1) 

S(t/; x1
n_p , x2, -, xk, ' ', xp+i) = 

S(y; Xin~p , x 2 , • \%k>xk+2> ' ' ">*p+i)> 

for k = 2, • • \p — 1, and 

S( t / ; X 1
n ~ p , X2 , * * *, Xp, X p + 1 ) = 

When fc = p. The proof is similar to that of Theorem 2.11 and will be 
omitted. 

THEOREM 2.13. Let l a p ^ n and t^ xL < • • • < xp + 1 < 
rn-p,i, ,i(0- Assume fhaf equation (1.1) satisfies (A), (B) and (C), and 
tef C u G H1, / = 1, • • -, n - p and Cifl G R1, 7 = 2, • • -, p + 1. / / 
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S(z; Xin~l, xk) = R1 for k = 2, • • -, p + 1 for every solution z(x) of 
(1.1) such that z{l~l)(xl) = C^i, Z = 1, - - -, n — p, then there exists a 
unique solution y(x) of (1.1) such that 

t/(1)(xi) = ClMl= 1, • • - , n - p , 

y(*>) = c i f l j = 2, • • • , p + i . 

PROOF. By Remark 2.10 we have rn_P}l...l(t) ë rn_p_h l l . . .1(f) ^ • • • 
= rn-i, iW> hence, by Theorem 2.11 and Remark 2.12, 

o(Z; Xin , ^2, * * ', £fc? * * % ACp+1) 

= b(z; Xin p+ , x3, • •, Xfc, • * ' , x p + 1 ) 

= o(%; Xj" , x^, • • m,xp+i) 

= S(Z; Xin~p+ ~ ,Xk>xk + 2> ' ' ">*p+l) 

= S(z;x1
n~\xk) = R1, 

for 2 = J ; â p + l and for every solution z(x) of (1.1) such that 
z«~»(xl)=ClMl=h ••;n-p. 

Let P(q), 2 =] q =] p, be the proposition: 

There exists a solution yq(x) of (1.1) such that 

y,^-1)(x1)= C u , J = l , ' " , n - p , 

Î / A ) = Cifi, j= 2, • • - ,9, 
&(*ï) = !fo-i(a*)> ,/ = 9 + 1, • • - , p + 1, 

and S(yq; xf-*, x2, ' ' -, *d + i> * * % *P+i) = R1-

We will show by induction on ^ that P(q) is true for q = 2, • • *, p. 
Assume q = 2. Let t/x(x) be a solution of (1.1) which satisfies t/i(*~1} 

(*i) = Ci,i, 1=1, ' ' *> n - p. Since S(j/i; xx
n-p , x2, • • -, xp+1) = fl1, 

there exists a solution t ^M of (1.1) such that 

y2{l-l)(x1) = j ^ - 1 ^ ) = C u , I = 1, • • -, n - p, 

y2\x2) ~ c2 i i , 

y2(xj) = yi(Xj), j=3, • • -,p + l. 

Since (/2 ( ' -1 )(*i) = C M , Z = 1, • • -, n - p , S(y2; x 1
n _ p , x2, x3, • • -, 

xp+1) = fl1. 
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Assume that 2 < ( / ë p and that P(k) is true for 2 ^ k < q. Since 
S(yq-i; *in~p , • • -, JcQ, • • -, xp+i) = fl1, there exists a solution yq(x) of 
(1.1) which satisfies P(q). This completes the induction. Finally, since 
S(j/P; *in~p , ' * ", #p+i) = R1, there exists a solution t/p+1(:x) of (1.1) 
such that 

Î /P-HI ( / ~ 1 ) (^ I )= Clfi, Z= 1, • • - , n - p, 

! / P + I ( * ; ) = Cifl, j = 2, • • -,p + 1. 

EXAMPLE 2.14. If / satisfies the hypotheses of Theorem 1.9 of 
[11], then it follows by Theorem 2.13 that, in any subinterval of 
[a, b], the uniqueness of solutions of the (n — p, 1, • • -, 1)-BVP (1.1), 
(1.2) on that subinterval implies the existence of such solutions. 

THEOREM 2.15. Let 2 ^ k ^ m and t â xx < • • • < xm < riy im(t), 
where ik = 1. Assume that equation (1.1) satisfies (A), (B), (C), and 
that every (ju • • -, jm)-BVP (1.1), (1.2), where j q = iq for q ^ k — 1 
and j k _ l = ik_l — 1 (note that 5)™=i jk= n ~ 1)> ^ ^ a solution. 
'/r*i•••**-!-Wife.•••,im(0=^ '<i •••*„,(*)> thenSiyix^i, • • -, xfe, • • •,xm

im) = 
fì1 for every solution y(x) of (1.1). 

PROOF. It follows from Theorem 2.7 that S = S(t/; x^, - - -, xk, • • -, 
xm'm) is an open interval. Let S = (À, y). We show that y = +*>•. The 
proof that \ = — oo is similar. Assume that y < + o° . Let u(x) be a 
solution of (1.1) such that 

u«%. )= y«J)(^), /, = 0, • • -, ij - l;j = 1, • • -, m;j ? k - 1, h 

u^-Hxk-i) = y(lk-lKxk-i)> k-i = o, •. -, ifc_! - 2, 
w(xfc) = pi, where / i ^ y . 

Let yn G [«/(a*), y) be such that y(xk) <yn< yn+i for each n, and 
limn_aoyn = y. Let {wn(x)} be the corresponding sequence of solu­
tions of (1.1) such that 

un(
lJ\Xj) = y(li\Xj), lj = 0, • - -, ij - l;j = 1, • • -, m; k /j, 

"n(*fc) = yn-

It follows that y(x) < un(x) < un+l(x), for all x E. (xk_ly xk+l) (where 
xm+i = r,-r . .im(t) in case fc = m), and that {wn(x)} cannot be uniformly 
bounded on [Xk-i>xk+i\- For n sufficiently large there must be an 
sY G (Xfc_i, xk) and an s2 GE (xfc, x*+i) such that un(si) = u(sx) and 
wn(52) == w(52), which is a contradiction. 
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THEOREM 2.16. Let t=xl<x2< rpq(t). Assume that equation (1.1) 
satisfies (A), (B), (C), and that every (p - 1, </)-BVP (1.1), (1.2) has a 
solution. If rpq(t) ^ min ( f p ^ . ^ ) , rp>q_ul(t), r p _ U / 7 _ u ( * ) } , then 
S(t/; Xip, %2q) == Rlfor every solution y(x) of (1.1). 

PROOF. Let y(x) be a solution of (1.1), and set S(j/; a:1
p, Jc2

q) = (A, 7). 
We will only show that y = + <» . Le£ yn be such that yiq~l\x2) < yn 

< yn+i for each n and lim^ocy« = y. Let {u„(x)} be the correspond­
ing sequence of solutions of (1.1) such that for each n 

"n(',(x1) = « / < i , ( x 1 ) J = 0 ) - - - , p - l , 

un«Kx2) = y*Kx2),l=0, ••;q-2, 

Let u(x) be a solution of (1.1) such that 

u«)(*1) = y«)(*1),i = o, • • - , ? - 2 , 

u«>(x2) = t/<'>(x2), J = 0, • • • , 9 - 2 , 

ti((7_1)(x2) = /i, where /x > y. 
We will assume that q is odd. The case where q is even is similar. 
Note that un+l(x) — un(x) and un(x) — J/(JC) have zeros of exact order 
q - 1 at x2 and y{q~l)(x2) < u^q~l\x2) < un^

q~l\x2). Since r (*) 
= rp,i,q-i(*)> w e have j/(x) < wn(x) < un+l(x) for x G (x1? x2)y and since 
rp„(£) ^ rp>Q_u(£), we have t/(x) < un(x) < un+l(x) for x G (*2, rPQ(*)). 
Also since u(x) — un(x) and w(x) — y(x) have zeros of exact order q — 1 
at x2 and t / ^ - 1 ^ ) < u^q~l\x2) < u(q-l)(x2), we have that y(x) < 
un(x) < u(x) in a deleted neighborhood of x2. The sequence of solu­
tions {un(x}} cannot be uniformly bounded on compact subsets of 
[xx, rpq(t)), hence, for n sufficiently large, there exist sx G (xux2) and 
s2 G (x2ì rpq(t)) such that w(«i) = un(si) and w(s2)

 = un(s2), which is a 
contradiction. 

The following remark is a generalization of Theorem 2.16 and the 
proof is essentially the same. 

REMARK 2.17. Let t^xx< • • • < xm < r-n.. .im(t)y where ik s= 2. 
Assume that equation (1.1) satisfies (A), (B) and (C), that y(x) 
is a solution of (1.1), and that there exists a solution to every 
0'i> * * '> 7m)-BVP (1.1), (1.2), where j q = iq, q / k and j k _ x = ifc_x 

- 1 . If fi,-..im(*)^ min {ri-!--VbUfc-i, •• Mm (*), r «i- • -ifc-i-i.Mik-i.i,- • -im(*), 
r t . .ik_Lik-u.. .«m (0}, then S(y; xxh, • • -, xk\ • • -, xm

im) = R\ 
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COROLLARY 2.18. If in addition to the hypotheses of Theorem 2.15, 
where ik = 1, or Remark 2.17, where ik è 2, we assume that there 
exists a solution to every (ju • • -, jm)-BVP (1.1), (12), where j q = iq, 
q fi k and j k = *fc — 1, then every (il9 • • -, im)-BVP (1.1), (1.2) on the 
interval [t, riv. .im(t)) has a unique solution. 

PROOF. We want to show that there is a solution z(x) of the (t1? • • -, im)-
BVP (1.1), (1.2). Let y(x) be a solution of (1.1) such that 

y^~l\xj) = Cj}ij,lj = 1, • • -, ifj = 1, • • -, m;j fi k, 

y(l-»(xk)=CkM,lk= 1, • • • , * * - 1. 

By Theorem 2.15, if ik = 1 or, by Remark 2.17, if ik i= 2, we have 
S(y; Xi{i, • • \&kk, * • \xm

im) = R1, hence there exists a solution z(x) 
of (1.1) satisfying (1.2). 

EXAMPLE 2.19. Let f â x ^ • • • < xm < riv--im(i). Assume that 
equation (1.1) satisfies (A), (B), (C) and that f(x, y, y', ' ' •', 
y(n-2\ 0) = 0. If for some 2 ^ k ^ m we have that fii...im 

, (t)^ril...ik_1-lA^...im(t), where ifc = 1 or r,r..im (*) ^ 
min{r,-,. -i^^ik-i- • -,<„,(*)> rn- -ifc-Lik-u- • •!•„, (*)> *V • •»*_ i-i,i,«fc-u,- • •,im(^)} 
where ifc §£ 2, then there exists a (unique) solution to the (i1? • • -, im)-
BVP (1.1), (1.2). 

PROOF. It is easy to see that every solution of the linear equation 
y(n-i) = 0 is a solution of (1.1). It follows that there exists a solution 
to every (jl9 • • -, jm)-BVP (1.1), (1.2), where j q = iq, q fi k and 
jk — h "" 1- It then follows from Corollary 2.18 that every (il5 • • -, im)-
BVP (1.1), (1.2) has a (unique) solution. 

THEOREM 2.20. Let l § ^ m and t ^ xx < - - - < xm< riy. .im(t), 
where ik = 1. Assume there is a 8> 0 sucfo £/wz£ T?I(T) >*T -f 8 for 
T Œ [t, xk+l] (where xm < xm+l < rh.. .<m(£) in case k = m). If equa­
tion (1.1) satisfies (A), (B), and (C), then for any solution y(x) of (1.1), 
u?e /iat>e £foa£ S(y; x^i, • • sa^-i**-1, s, xfc+1^+1,'• • -,xm

im) = R1 /or 
all but finitely many s G (xk-i, **+i). 

PROOF. Let y(x) be a solution of (1.1). Suppose that there exist an 
infinite number of points {sp} such that xk_l < sp < xk+l and 
S(t/; *!<!, • • -,xfc_r , »p, xfc+1'*+i, • • -, xm

im) = (Ap, yp) 7̂  H1. 
Then either Xp > — oo for infinitely many poryp< + oo for infinitely 
many p. We will consider only the case where yp < + oo for infinitely 
many p. Since [**_!, xfc+1] is compact there exists a subsequence 
{sp } converging to a point s0 G [**-i, **+i]- Without loss of gen-
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erality we will assume that lim^ooSp = s0. If s0 = xk_x, then s0 G 
[**-i>ih(**-i))- If *o = *k+i> then s0 G [xfc+1 - 8/2, ih(**+i - 8/2)). 
If s0 G (xk_l, Xfc+i), then since the collection of open intervals 
{(T>VI(T)) '• T G [xfe_1? xfc+1] } is an open cover of the compact set 
[s0, x fc+1], it follows that s0 G (T,T7 1(T))C [ IMJ^T) ) for some T £ 

[xk_i, xk+i]. In any of these cases there exists N > 0 and T £ [*fc_i, 
xfc+1] such that sp G [T, T>I(T)) for p^ N. Let o^ = sp , </ = 1, • • •, n, 
be n of these points such that T^ aY< • • • < a n < T7I(T). Since 
we are in an interval of disconjugacy, there exists ([1], [5]) a solu­
tion v(x) of (1.1) such that v(aq) = ypq, q = 1, • • *, n. Since x : < 
• • • < xm < rh...im(t), it follows that S(j/;x1

il, • • \xk^, • • ',xm
im) = 

(X, y ), — °° = X < y = oo, is an open interval. Let up(x) be the solu­
tion of (1.1) such that 

up(
lj\xj) = y'h\xj), lj = 0, • • -, ij - l;j = 1, • • -, ra; j ^ fc, 

^p(^fc) = MP> 

where f/(xfc) < fip< fip+i < y, for p = 1, 2, • • •. It follows that 
wp(x) < up+l(x), for x G (xfc_!,xfc+1), for p = 1, 2, • • -, and MP(<TC|) 

< -y/; , for q = 1, • • -, n. Furthermore wp(x) is bounded below by y(x) 
on [xfc_l5 x fc+1], for each p. But {up(x)} is not uniformly bounded on 
[<Tq,(Tq + i], 9 = 1 , * • *, n — 1. It follows that, for p sufficiently 
large, up(x) — v(x) has at least n distinct zeros on [r, T?I(T)), which is 
a contradiction. 

We will use the following lemmas in the proof of Theorem 2.23. 

LEMMA 2.21. Assume that t < xx< • • • < xm < rn_m,i,...,i(£+). 
If equation (1.1) satisfies (A) and (B), and u(x), v(x) are distinct solu­
tions of (1.1) such that 

!*<'>(*!) = v^(xx)9 I = 0, • • -, n - m - 1, 

tt(Xf) = v(xj), j = 2, • • -,ra, 

£hen M(JC) — ü(x) has a zero of exact order n — m at xl7 a zero of exact 
odd order at xjf j = 2, • • -,m, and no other zeros in (xì,rn_mì...ì(t+)). 

PROOF. It is clear that u(x) / v(x) for x ^ xjy j = 2, • • -, m, and 
X G ( X ! , ^ . ^ ! . . . ! ( * + ) ) . S i n c e r n - m + U - l ( * + ) = r n - m , l - l ( * + ) > t h e 

zero of u(ac) — t)(x) at xx is of exact order n — m. Suppose that u(x) — 
v(x) has an exact even ordered zero at xk for some k = 2, • • -, m. 
Without loss of generality we will assume that w(x) — v(x) > 0 for 
x G (xfc-i,Äfc+i), x ^ xk, (where xfc+1 = rn_m>1...1(f+) in case k = m). 
By Corollary 2.5, given e > 0, we can pick 8 > 0 sufficiently small 
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such that there exists a solution w(x) of (1.1) satisfying 

u ^ f a ) = t i^fo), I = 0, • • -, n - m - 1, 

w(xj) = u(xj), j = 2, • • -, m;j ^ k, 

w(xk) = u(xk) - Ô, . 

with \w(x) — u(x)\ < e for x (E [xÌ9 b], where xm < b < rn-m,i---i(*+)' 
However, if e is sufficiently small, then v(x) — w(x) has a zero of order 
n — m sit xi9 zeros at Xp j = 2, • • •, m; j J^ k, and two odd ordered 
zeros in a deleted neighborhood of xk. From this contradiction we 
conclude that u(x) — v(x) can have no exact even ordered zero at xj9 

7 = 2 , - -,ra. 

LEMMA 2.22. Let t < xY < • • • < xn_i < r2\...\(t+), where n e 4. 
//* (1.1) satisfies (A), (Ë), and (C), and there is a r è t such that Xj G 
(T, T?I(T)), j = 1, * * *, n — 2, then, for every solution y(x) of (1.1), we 
have that S(y; xx

2, x2> * ' *>*n-2>£n-i) = A1« 

PROOF. Let y(ac) be a solution of (1.1). The set S = S(y; xx
2, x2, ' ' ', 

xn-2> *n-i) *s a n open interval by Theorem 2.7. Let S = (X, y). We will 
show that y = + » . The proof that X = — oo is similar and will be 
omitted. Assume that y < + oo , 

We first establish the existence of a solution z(x) of (1.1) such that 
z(xi) = y(xi) and z(xn-i) — y- Let w(x) be the solution of (1.1) such 
that 

w(*n-i) = y, 

ii</>(xn_1) = 0 , Z = l , • • • , n - l , 

Ifi/^i) = y(*i), weletz(jc) = w(x). Ifw^x) < y(jc1),letr < sl< • • • < 
*n-2 < *i < Î?I(T), or, if u(xx) > y{xY), let r < sx < • • • < sn_3 <xx< 
$n_2 < T?I(T). There exists ([1] , [5]) a solution z(x) of (1.1) such 
that 

*<>(*!) = !#*>(*!), I = 0, 1, 

*(*,.) = ti(^), j = 2, • • -,n - 2, 

Since the points 51? • • ',sn_2 are within an interval of disconjugacy, it 
follows that z(x) — u(x) must have a zero of exact order 2 at sx and 
simple zeros at sjyj = 2, • • -, n — 2. Furthermore, z(x) — u(x) has no 
other zeros in the interval (si9 r 2 1 . . . 1 (^) ) . In either case, M(X1) > j/(*i) 
or w(xx) < t/(*i); it follows that z(x) > u(x) for all x E (sn_2, 
f21...1(H)), This establishes the existence of the solution z(x) of (1.1) 
such that z(xi) = y(xl) and z(xn_i) == y. 
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Let {yp} be a sequence of real numbers such that t/(xn_i) <yp< 
y p + 1 < y for each p > 0, and lim^ooyo = -y. Let {wp(x)} be the corre­
sponding sequence of solutions of (1.1) such that 

V°(* i ) = !/(0(*i)> 1 = <U, 

Wp(̂ ) = !/(*j)> 7 = 2, • • - , n - 2, 

"p(an-i) = yp-

Since Xy, j = 1, • • -, n — 2, are points in (T, TJ^T)), UP(X) — y(x) has a 
zero of exact order 2 at xx and simple zeros at xjf j = 2, • • -, n — 2. 
We have that t/(x) =î up(x) =î up+1(x) for x G [>„_,, xn_j+1] , 7 = 2 , 4, 
• • -, n — 1 or n — 2, whichever is even. Also wp+i(x) =î up(x) =î t/(x), 
for x G [xn_j, x n _ J + 1 ] , for 7 = 3, 5, • • -, n — 1 or n — 2, whichever is 
odd. Also note that, for n odd, we have y(x) =î up(x) =î up+1(x), for 
x G (T, XI), and, for n even, we have wp+1(x) =î up(x) =? t/(x), for x G 
(r, xx). Furthermore, {wp(x)} cannot be uniformly bounded on any 
of the intervals (r, x^, (xjy xj+l),j = 1, • • -, n — 2. It follows that for p 
sufficiently large there exist £p

j,j = 2 , • • -, n — 1, such that up(J;J) = 
z(Çp

j), 7 = 2 , • • -, n - 1, and l i m p ^ = xj? 7 = 2, • • -, n - 1. It also 
follows that z'(xi} ^ y'(xi). But then, for p sufficiently large, there 
exists ^ P

1 G ( T , x2), f p 1 ^ * ! , such that up(€p
l) = z(ijp

l) and l i m ^ 1 

= xx. By renumbering the sequences {up(x)}, if necessary, we will 
assume without loss of generality that the Çj exist for each j = 1 , 
n — 1 and each p > 0. 

We will consider here only the case z '(xx) > y f(xi) and assume that 
n is even. The other three cases are handled similarly. For n even we 
have wp+i(x) < up(x) < y(x) for x G (r, xx) and ^ " ( x ^ < t/"(xi). We 
may assume that Çp

l G (r, xx) for each p and that t/(x) > wp(x) > z(x) 
for xG(f p

1 , xx). By Rolle's Theorem there exists TTPŒ ((jp
l,Xi) for 

each p such that Z'(TTP) = up'(7rp). Since limp^oo7rp = xx and \Z(TTP) — 
Wp(7Tp)| < |z(7Tp) — î/(̂ Tp)| for each p, we have by continuity that 
limp^00|z(7Tp) — up(irp)\ — |z(xx) — t/(*i)| = 0. But then by Corollary 
2.5, it follows that wp(x) converges uniformly to z(x) on compact sub-
intervals of [t, r2i...i(t+ )), which is a contradiction. 

THEOREM 2.23. Let t < xx< xn_x < r21 ...x(t+), where n=^ 4. If 
equation (1.1) satisfies (A), (B), and (C), and if there is a r =1 t such 
that Xi G (TJTJ^T)), then for every solution y(x) of (1.1), we have 
S(y; xx

2, x2, • • -, x*, • • -, xn_L) = R\ for k = 2, • • -, n - 1. 

PROOF. Let t/(x) be a solution of (1.1). The set S = S(t/; x^, x2, • • -, 
ffc, • • *, xn_!) is an open interval by Theorem 2.7. Let S = (X, y). We 
will show only that y = + o° . Assume that y < + <» . 
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Let {yp} be a sequence of real numbers such that y(xk) <yp< 
yp+i < y y for each p > 0, and limp_> Kyp = y. Let {up(x)} be the cor­
responding sequence of solutions of (1.1) such that 

V>(*i) = 2/(0(*i)> J = <U, 
WP(*/) = !/(*/)> j = 2, • • -, n - 1;j / fc, 

Wpfe) = yP. 

By Lemma 2.21, wp(x) — y(x) has a zero of exact order 2 at xl9 exact odd 
ordered zeros at Xj, j' = 2, • • -, n — 1; j ' ^ k, and no other zeros in 
(*i> r2i••• i ( ^ ))• We now consider only the case where k is even. Then 
y(x) g up(x) g up+1(x) for x G [xk-l7 xk+l] (where xn G (xn_ly 

r2 i . . .1(H)) in case k = n — 1) and also for x G [xpXJ+l],j = 1, 3, • • -, 
k — 3, k + 2, fc 4- 4, • • •, n - 1 o r n - 2, whichever is even. Also 
t*p+i(x) S tip(oc) g y(x) for x G [x,-, xj+l], j = 2, 4, • • -, fc - 2, fc + 1, 
k + 3, • • -, n — 1 or n — 2, whichever is odd. 

By Lemma 2.22 there exists a solution t>(x) of (1.1) such that 

vd)(Xl) = yfl)(Xl), I = o, 1, 

Ü(X*) = -y. 

But then for p sufficiently large it follows that up(x) — u(x) has a 
(2, 1, • • -, l)-distribution of zeros on [t, r2i..,i(t+)), which is a con­
tradiction. 

The following remarks can be proved similar to Lemma 2.22. 

REMARK 2.24. Let n = 3 and t < xY < x2 < r2l(t+). Assume that 
equation (1.1) satisfies (A), (B) and (C), and that there is a r ^ t such 
that Xi G (r,7ii(r)). Further assume that there exists a solution z(x) 
to every (1,1)-BVP (1.1), (1.2), for t < xY < x2 < r2l(t+). Then for 
every solution y(x) of (1.1) we have S(y; xx

2, x2) = R1. 

REMARK 2.25. If n e 4 and t < xY < • • • < xn_x < r2i...i(t+ ), 
then the phrase "there is a r ê t such that xx G (r, i?i(T))" can be re­
placed by "there exists a solution v(x) to every (2,1)-BVP (1.1), (1.2), 
for t < xx< x2< r2l...l(t+)" 

Theorems similar to Theorem 2.23 and Remark 2.24 can be proved to 
get the existence of (unique) solutions to the (1, • • -, 1, 2)-BVP (1.1), 
(1.2), when t < xx < • • • < xn_i < Ti...i2(t+), or, in the case n = 3, 
when t S Xi < x2 < rl2(t). 

Thus far we have established existence theorems for the (il9 • • -, fm)-
BVP (1.1), (1.2) for the third order case, much of the fourth order case 
and certain n-th order cases. The remainder of this chapter will con­
cern other fourth order cases. 
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THEOREM 2.26. Let t < xx < x2 < x3 < ri2l(t+), and assume there 
is a T ^ t such that r < xx < x2< r?i(r). If equation (1.1) satisfies 
(A), (B) and (C), then for every solution y(x) of (1.1) we have that 
S(y; *!, x2

2, x3) = S(t/; xx, x2
2, x3) = R1. 

PROOF. Let y(x) be a solution of (1.1). We first show that S(t/; 
x1? x2

2, £3) = R1. Let S(t/; xx, x2
2, x3) = (A,y). We will only show that 

y = + oo . Suppose y < + oo . Let yn be a sequence of real numbers 
such that y(x3) < yn < yn+i < y and limn_*ooyn = y. Let {un(x)} be 
the corresponding sequence of solutions of (1.1) such that 

"n(*i) = y(*i) 

un^)(x2) = y«\x2)J = 0, 1 

It is clear that y(x) < un(x) < i*n+1(x) for x EL (xb x2) U (x2, Ti2i(t+)). 
Since r < Xi < x2 < T)I(T), it follows that wn(x) — t/(x) has a zero of 
exact order 2 at x2, a simple zero at x1? and no other zeros in (TJTJ^T)), 

for each n > 0. By a method similar to the method used in the proof 
of Lemma 2.22, there exists a solution u(x) of (1.1) such that u(x2) = 
y(x2) and w(x3) = y. The sequence of solutions {wn(x)} is bounded 
above by y(x) on [r, x j and below by t/(x) on [x1? x3] . Furthermore, 
{un(x)} is not uniformly bounded on [T, XX] , [x1? x2] or [x2, x3]. It 
follows that u'(x2) ^ y'(x2). Using arguments as in the proof of 
Lemma 2.22, it can be shown that un(x) converges uniformly to u(x) 
on compact subintervals of (t,rl2l(t+)), which is a contradiction. 
Hence we conclude that S(t/; x1? x2

2, x3) = R1. 
To see that S(y; x1? x2

2, x3) = R1, we let {yn} be a sequence of real 
numbers such that y(xi) < yn < y n + 1 < y and limn_> «y« = y. Let 
{wn(x)} be the corresponding sequence of solutions of (1.1) such that 

"n(*l) = 7n 

uj\x2) = t/«>(x2), 1 - 0 , 1 

Let jx G (T, XX). Since r < /ut < xx < x2 < T?I(T), there exists ([7] ) a 
solution u(x) of (1.1) such that 

w(/x) = t/(/i) 

u(xx) = y 

u ( 0(x2) = ^>(x2) , I = 0 , 1 . 
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It follows that u(fi) < unifi) and u(xY) > un(xi), hence there exists 
5 n

1 G ( / i , Xi) such that un(sn
l) = u(sn

l), for each n. Furthermore, 
u(x) — un(x) has a zero of exact order 2 at x2. If w"(x2) < wn"(x2), then 
u(x) < unix) in a deleted right neighborhood of x2. Hence, since 
u(x)>y(x) for x E (x2, r121(£+)) and un(x3) = t/(x3), it follows by 
continuity that there exists sn

3 G (x2, x3) such that w(sn
3) = Mn(s„

3), 
which is a contradiction. Hence we may assume u"(x2) > wn"(x2). 
But, then, for n sufficiently large, it follows that u(x) — unix) has a 
(1, 2, l)-distribution of zeros on (t, rl2l(t+ )), which is a contradiction. 

The proof of the following theorem parallels that of Theorem 2.26 
and will be omitted. 

THEOREM 2.27. Let t S Xi < x2 < x3 < rl2l(t), and assume that 
there is a r ^ t such that r < x2 < x3 < ih(r). / / equation (1.1) 
satisfies (A), (B), and (C), then, for every solution y(x) of (1.1), we have 
that S(y; *!, x2

2, x3) = S(y;x1, x2
2, x3) = R1. 
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