ON A CRANK-NICOLSON SCHEME FOR NONLINEAR PARABOLIC EQUATIONS

A. REYNOLDS

1. Introduction. In this paper we consider a Crank-Nicolson type scheme for the problem:

(1.1)
$$
u_t = f(t, x, u, u_x, u_{xx}) \text{ in } (0, T] \times (a, b)
$$

(1.2)
$$
u(0, x) = \varphi(x), u(t, a) = \varphi_0(t), \text{ and } u(t, b) = \varphi_1(t)
$$

where $\varphi(a) = \varphi_0(0)$ and $\varphi(b) = \varphi_1(0)$.

In [11], the author was able to obtain a convergence theorem for a set of finite difference analogues of (1.1) , (1.2) with $(0, T] \times (a, b)$ replaced by $[0, T] \times (a, b)$. For the Crank-Nicolson type scheme included among the methods in [11] a $O(\Delta t + h^2)$ convergence result was obtained. No method was given for solving the nonlinear system of difference equations.

For the Crank-Nicolson type scheme presented here, three improvements are possible. We obtain $O((\Delta t)^2 + h^2)$ convergence, we give a convergent iterative scheme for solving the nonlinear system of difference equations, and we obtain our results without assuming that the solution of (1.1) has continuous derivatives at $t = 0$.

Consideration of this iterative procedure yields an existence and uniqueness theorem for the solution of the nonlinear system of difference equations. This existence and uniqueness theorem is a slight improvement over the analogous result in **[11],** in that we obtain it by requiring that $f(t, x, z, p, r)$ satisfies certain Lipschitz conditions with respect to z , p , and r whereas in [11], we assumed f had continuous partial derivatives with respect to *z, p,* and r.

2. **Notation and Preliminary Results.** Let

(2.1)
$$
h = \frac{b-a}{n+1} \text{ and } \Delta t = T/m
$$

where *n* and *m* are positive integers. Also let $x_i = a + ih$ for $i = 0, 1$, \cdots , $n + 1$ and $t_i = \overline{j} \Delta t$ for $j = 0, 1, \dots, m$.

For the remainder of the paper, we will suppose 2.1 defines a mesh on $[0, T] \times [a, b]$, and if $v(t, x)$ is any function defined on this mesh we denote $v(t_i, x_i)$ by $v_{i,i}$. For any such mesh function, we let

Received by the Editors November 23, 1973 and in revised form March 19, 1974.

Copyright © 1975 Rocky Mountain Mathematics Consortium

$$
D_{-i}v_{i,j} = \frac{v_{i,j} - v_{i,j-1}}{\Delta t}, \qquad D_0v_{i,j} = \frac{v_{i+1,j} - v_{i-1,j}}{2h}
$$

$$
D_{+}v_{i,j} = \frac{v_{i+1,j} - v_{i,j}}{h} \text{ and } D_{-}v_{i,j} = \frac{v_{i,j} - v_{i-1,j}}{h}.
$$

With this notation note that

$$
D_{+}D_{-}v_{i,j}=\frac{v_{i+1,j}+v_{i-1,j}-2v_{i,j}}{h^2}
$$

Throughout this paper, we will denote

$$
f\left(t_{j-1/2}; x_i; \frac{v_{i,j} + v_{i,j-1}}{2}; \frac{D_0v_{i,j} + D_0v_{i,j-1}}{2}, \frac{D_+D_-v_{i,j} + D_+D_-v_{i,j-1}}{2}\right)
$$

by $f(v_{i,j})$ where v is any mesh function.

In problem 1.1, 1.2, we replace u_t , u_x and u_{xx} by the appropriate difference quotients and consider the discrete problem

(2.2)
$$
D_{-t}v_{i,j} = f(v_{i,j})
$$
 for $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$

(2.3)
$$
v_{0,j} = \varphi_0(t_j); v_{n+1,j} = \varphi_1(t_j); \text{ and } v_{i,0} = \varphi(x_i)
$$

for $0 \leq i \leq n + 1$ and $0 \leq j \leq m$.

We assume there exist constants $\alpha \ge 0$, $A \ge 0$, $B \ge 0$, C' and C such that

$$
(2.4a) \ \mathbf{a}(\overline{r}-r) \leq f(t,x,z,p,\overline{r}) - f(t,x,z,p,r) \leq A(\overline{r}-r) \text{ for } \overline{r} \geq r,
$$

$$
(2.4b) \t |f(t, x, z, \bar{p}, r) - f(t, x, z, p, r)| \leq B|\bar{p} - p|, \text{and}
$$

$$
-C(\overline{z}-z) \le f(t, x, \overline{z}, p, r) - f(t, x, z, p, r) \le C'(\overline{z}-z)
$$

for $\overline{z} \ge z$.

Note no restrictions are placed on the sign of C or C '.

We now make the following assumptions on h and Δt .

$$
\alpha - \frac{h}{2} \geq 0,
$$

(2.5c) -l^" ¹ --^ -

The proofs of the following theorem and lemma are omitted since the techniques of proof for both are the same as the analogous theorem and lemma in [11].

THEOREM 2.6. *Assume 2.4%-c and* 2.5a-c *holds. Let v and w be any two mesh functions.* If $D_{-t}v_{i,j} - f(v_{i,j}) < D_{-t}w_{i,j} - f(w_{i,j})$ for $i =$ 1, 2, \cdots , *n* and $j = 1, 2, \cdots$, *m*, and if $v_{0,j} < w_{0,j}$, $v_{i,0} < w_{i,0}$ and $v_{n+1,j}$ $\leq w_{n+1,j}$ for $0 \leq i \leq n+1$ and $0 \leq j \leq m$, then $v_{i,j} < w_{i,j}$ for $0 \leq j$ $n + 1$ and $0 \leq j \leq m$.

2.7. For the remainder of the paper we assume that problem 1.1, 1.2 has a unique solution *u* such that u_{xtt} , u_{ttt} , u_{xxtt} and u_{xxxx} exist and are continuous and bounded in $(0, T] \times (a, b)$.

LEMMA 2.8. *Assume f satisfies* 2.4a,b *and* 2.5b, *and let u(t, x) be the solution of* 1.1, 1.2. *Let p be a non-negative function defined on* $[0, T]$ *, and define* $z_{i,j} = u_{i,j} + \rho_i$ for $1 \leq i \leq n$, $0 \leq j \leq m$ and $z_{n+1,j}$ $= u_{n+1,j}, z_{0,j} = u_{0,j}$ for $0 \leq j \leq m$ where $u_{i,j} = u(t_j, x_i)$. Then

$$
f\left(t_{j-1/2}, x_i, \frac{z_{i,j} + z_{i,j-1}}{2}, \frac{D_0 z_{i,j} + D_0 z_{i,j-1}}{2}, \frac{D_+ D_- z_{i,j} + D_+ D_- z_{i,j-1}}{2}\right)
$$

\n
$$
\leq f\left(t_{j-1/2}, x_i, \frac{u_{i,j} + \rho_j + u_{i,j-1} + \rho_{j-1}}{2}, \frac{D_0 u_{i,j} + D_0 u_{i,j-1}}{2}, \frac{D_+ D_- u_{i,j} + D_+ D_- u_{i,j-1}}{2}\right).
$$

3. A Convergence Theorem. For $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$ let $\alpha_i(t_i)$ and $\beta_i(t_i)$ be defined by $u_x(t_i, x_i) = D_0 u_{i,j} + \alpha_i(t_i)$ and $u_{xx}(t_i, x_i)$ $= D_{+}D_{-}u_{i,j} + \beta_{i}(t_{j}).$ By the differentiability assumption 2.7, α_{i} and β_i are 0 (h^2). We now assume $\rho > 0$, and ω are functions defined on $[0, T]$ and $[0, T] \times R^3$ respectively such that

(3.ia) az_e^>JML sup M ^F ?Xi) [|] ,

where

 $\rho_i = \rho(t_i)$

614 **A. REYNOLDS**

$$
\frac{\rho_j + \rho_{j-1}}{2\Delta t} \ge \omega \left(t_{j-1/2'} \left| \frac{\rho_j + \rho_{j-1}}{2} + \frac{(\Delta t)^2}{8} u_{tt}(t^{(1)}, x_i) \right|, \frac{\alpha_i(t_j) + \alpha_i(t_{j-1})}{2} - \frac{(\Delta t)^2}{8} u_{xt}(t^{(2)}, x_i) \right|,
$$
\n
$$
\frac{\beta_i(t_j) + \beta_i(t_{j-1})}{2} - \frac{(\Delta t)^2}{8} u_{xxt}(t^{(3)}, x_i) \right)
$$

 \mathbf{f} for any $\boldsymbol{t}^{(1)},$ $\boldsymbol{t}^{(2)}$ and $\boldsymbol{t}^{(3)}$ in $(\boldsymbol{t}_{j-1},$ $\boldsymbol{t}_{j}),$ and

$$
(3.1c) \qquad f(t, x, \overline{z}, \overline{p}, \overline{r}) - f(t, x, z, p, r) \leq \omega(t, |\overline{z} - z|, |\overline{p} - p|, |\overline{r} - r|).
$$

THEOREM 3.2. *Suppose* 2.4a-c, 2.5a-c, 2.7 *and* 3.1a-c *hold. If u is the solution of* 1.1, 1.2 *and* $w_{i,j}$ *is the solution of* 2.2, 2.3, *then*

$$
\sup_{0\leq i\leq n+1}|u(t_j,x_i)-w_{i,j}|\leq \rho(t_j) \text{ for }0\leq j\leq m.
$$

PROOF. With $u_{i,j} = u(t_j, x_i)$ we have

$$
D_{-t}(u_{i,j} + \rho_j) = \frac{u_{i,j} - u_{i,j-1}}{\Delta t} + \frac{\rho_j - \rho_{j-1}}{\Delta t}
$$

for $1 \leq i \leq n$ and $1 \leq j \leq m$.

Introducing the notation $z = (t_{j-1/2}, x_i)$ and using Taylor's Theorem and the Intermediate Value Theorem for continuous functions, we obtain:

(3.2.1)
$$
D_{-t}u_{i,j} = u_t(t_{j-\frac{1}{2}}, x_i) + \frac{(\Delta t)^2}{24}u_{ttt}(\bar{t}, x_i)
$$

where $t_{i-1} < \bar{t} < t_j$. Now since *u* is the solution of problem 1.1, 1.2, by 3.1a and 3.2.1 we have:

$$
(3.2.2) \tD_{-t}(u_{i,j} + \rho_j) > f(z, u(z), u_x(z), u_{xx}(z)) + \frac{\rho_j - \rho_{j-1}}{2\Delta t}
$$

Expanding $u(z)$, $u_x(z)$, and $u_{xx}(z)$ in appropriate Taylor Series, and letting $y = (u_{i,j} + u_{i,j-1})/2$, we obtain from 3.2.2 that:

$$
D_{-t}(u_{i,j} + \rho_j) > f\left(z, y - \frac{(\Delta t)^2}{8} u_{tt}(t^{(1)}, x_i), D_0 y + \frac{\alpha_i(t_j) + \alpha_i(t_{j-1})}{2} - \frac{(\Delta t)^2}{8} u_{xtt}(t^{(2)}, x_i), D_{+} D_{-} y + \frac{\beta_i(t_j) + \beta_i(t_{j-1})}{2} - \frac{\Delta t^2}{8} u_{xtt}(t^{(3)}, x_i) + \frac{\rho_j - \rho_{j-1}}{2\Delta t}.
$$

Applying 3.1b, 3.1c and lemma 2.8 in order we obtain from 3.2.3 that

$$
D_{-t}(u_{i,j} + \rho_j) > f\left(z, y + \frac{\rho_j + \rho_{j-1}}{2}\right)
$$

(3.2.4)

$$
D_0\left(y + \frac{\rho_j + \rho_{j-1}}{2}\right), D_{+}D_{-}\left(y + \frac{\rho_j + \rho_{j-1}}{2}\right)\right).
$$

Letting $v_{i,j} = u_{i,j} + \rho_i$, 3.2.4. becomes

$$
(3.2.5) \t D_{-t}v_{i,j} - f(v_{i,j}) > 0 \text{ for } 1 \le i \le n, 1 \le j \le n.
$$

Let $B = \{(t, x) | x = a, x = b, \text{ or } t = 0\}$. Since $\rho > 0$ on [0, T] and $u_{i,j} = w_{i,j}$ for (t_i, x_i) in B we have that

$$
(3.2.6) \t v_{i,j} = u_{i,j} + \rho_j > w_{i,j} \text{ on } B.
$$

Now from 3.2.5, 3.2.6, and theorem 2.6, we have that $w_{i,j} < u_{i,j}$ + ρ_i for $0 \le i \le n + 1$ and $0 \le j \le m$. The same argument with $-\rho$ in place of ρ yields $u_{i,j} - \rho_j < w_{i,j}$ for $0 \leq i \leq n + 1$ and $0 \leq j \leq m$ and the theorem follows.

We now wish to construct functions ρ and ω which satisfy 3.1a-c such that $\rho > 0$ and ρ is $O(\Delta t^2 + h^2)$. Let $\overline{C} = \max\{C, C'\}$ and let

$$
\omega(t, z, \rho, r) = \overline{C}z + Bp + Ar
$$

where C, C', A and B are the Lipschitz constants appearing in 2.4a-c. We now show that if ω is defined by 3.3, then 3.1c is satisfied. We first write

(3.4)
$$
f(t, x, \bar{z}, \bar{p}, \bar{r}) - f(t, x, z, p, r) = E_1 + E_2 + E_3
$$

where $E_1 = f(t, x, \bar{z}, \bar{p}, \bar{r}) - f(t, x, z, \bar{p}, \bar{r}), E_2 = f(t, x, z, \bar{p}, \bar{r})$ $- f(t, x, z, p, \overline{r})$, and $E_3 = f(t, x, z, p, \overline{r}) - f(t, x, z, p, r)$. From 2.4c it follows easily that

$$
E_1 \leqq \begin{cases} C'(\overline{z} - z) = C' |\overline{z} - z| & \text{for } \overline{z} \geqq z \\ -C(\overline{z} - z) = C |\overline{z} - z| & \text{for } \overline{z} < z, \end{cases}
$$

$$
(3.5a) \t\t\t E_1 \leq \overline{C}|\overline{z} - z|
$$

Similarly, using 2.4a and 2.4b respectively we conclude that

(3.5b)
$$
E_3 \leqq A|\bar{r} - r| \text{ and } E_2 \leqq B|\bar{p} - p|.
$$

Now from 3.4 and 3.5a-b, we have that 3.1c is satisfied.

 $\frac{1}{3}$ We now show that 3.1a is satisfied for an appropriate ρ . Let $D =$ $(0, T] \times (a, b)$ and define

616 **A. REYNOLDS**

$$
K = \max \{ \sup_{D} |u_{tt}(t, x)|, \sup_{D} |u_{xtt}(t, x)|, \sup_{D} |u_{xxtt}(t, x)| \},
$$

$$
\bar{\alpha} = \max_{1 \le i \le n} |\alpha_i|, \text{ and } \bar{\beta} = \max_{i \le i \le n} |\beta_i|.
$$

From assumption 2.7 and the definition of α_i and β_i , we have that $\bar{\alpha}$ and $\bar{\beta}$ are $O(h^2)$ and hence there exists a constant $K' > 0$ such that $\overline{\alpha} \leq K'h^2$ and $\overline{\beta} \leq K'h^2$. Let $M = \max\{1, K, K', A, B, \overline{C}\}$ and define

(3.6)
$$
\rho(t) = (\Delta t)^2 \exp(8M^2t) + K'(A+B)h^2 \exp(8Mt).
$$

Then

$$
\frac{\rho_j - \rho_{j-1}}{\Delta t} \geq (\Delta t)^2 \exp(8M^2 t_{j-1}) \left(\frac{\exp(8M^2 \Delta t) - 1}{\Delta t} \right)
$$

$$
\geq (\Delta t)^2 \exp(8M^2 t_{j-1})(8M^2) \geq (\Delta t)^2 8M^2
$$

$$
\geq \frac{\Delta t^2}{12} \sup_D |u_{tt}(t, x)|,
$$

so 3.1a is satisfied when ρ is defined by 3.6.

Letting

$$
\rho^{(j)} = \frac{\rho_j + \rho_{j-1}}{2} + \frac{\Delta t^2}{4} u_{tt}(t^{(1)}, x_i),
$$

\n
$$
\alpha^{(j)} = \frac{\alpha_i(t_j) + \alpha_i(t_{j-1})}{2} - \frac{\Delta t^2}{4} u_{xtt}(t^{(2)}, x_i),
$$
 and
\n
$$
\beta^{(j)} = \frac{\beta_i(t_j) + \beta_i(t_{j-1})}{2} - \frac{(\Delta t)^2}{4} u_{xxtt}(t^{(3)}, x_i),
$$

$$
\omega(t_{j-\nu_s}, |\rho^{(j)}|, |\alpha^{(j)}|, |\beta^{(j)}|) = \overline{C}|\rho^{(j)}| + B|\alpha^{(j)}| + A|\beta^{(j)}|
$$

\n
$$
\leq \overline{C}\left(\frac{\rho_j + \rho_{j-1}}{2}\right) + B\overline{\alpha} + A\overline{\beta} + (\overline{C} + B + A)K \frac{(\Delta t)^2}{8}
$$

\n
$$
\leq \frac{M}{2}(\rho_j + \rho_{j-1}) + M(A + B)K'h^2 \exp(8Mt_{j-1})
$$

\n
$$
+ 3M^2 \frac{\Delta t^2}{8} \exp(8Mt_{j-1}).
$$

Now choose Δt sufficiently small such that $\exp(8M^2 \Delta t) + 1 \leq 6$, then we have that

(3.8)

 $(\rho_j + \rho_{j-1}) \leq (\Delta t^2) \exp(8M^2 t_{j-1})(6) + K'(A + B)6h^2 \exp(8Mt_{j-1}).$ Using (3.8) in (3.7) yields

$$
\omega(t_{j-\frac{1}{2}}, |\rho^{(j)}|, |\alpha^{(j)}|, |\beta^{(j)}|) \le 4M^2(\Delta t)^2 \exp(8M^2 t_{j-1}).
$$

+
$$
4M(A + B)K'h^2 \exp(8Mt_{j-1})
$$

$$
\le \Delta t \exp(8M^2 t_{j-1}) \left(\frac{\exp(8M^2\Delta t) - 1}{2\Delta t}\right)
$$

+
$$
(A + B)K'h^2 \exp(8Mt_{j-1}) \left(\frac{\exp(8M\Delta t) - 1}{2\Delta t}\right)
$$

=
$$
\frac{\rho_j - \rho_{j-1}}{2\Delta t}.
$$

Hence 3.1b is satisfied.

Since ρ is $O(\Delta t^2 + h^2)$, an application of theorem 3.2 yields

THEOREM 3.9. Suppose 2.4a-c and 2.5a-c hold. Let $u(t, x)$ be the *solution of* 1.1, 1.2 and $w_{i,j}$ be the solution of 2.1, 2.2. Then

$$
\sup_{\substack{0 \le i \le n+1 \\ 0 \le j \le m}} |u(t_j, x_i) - w_{i,j}| = O(\Delta t^2 + h^2).
$$

4. **Iterative Solution of the Discrete Problem.** In this section we show problem 2.2, 2.3 has a unique solution by developing a convergent iterative procedure for solving the system of difference equations. To show that 2.2, 2.3 has a unique solution, we need only show that if $v_{i,j-1}$ for $1 \leq i \leq n$ is known then the problem

(4.1)
$$
v_{i,j} = v_{i,j-1} + \Delta t f(v_{i,j}) \text{ for } i = 1, 2, \dots, n
$$

(4.2)
$$
v_{0,j} = \varphi_0(t_j), v_{n+1,j} = \varphi_1(t_j)
$$

has a unique solution.

We note that $v_{i,j}$ is a solution of 4.1, 4.2 if and only if $v_{i,j}$ is a solution of

$$
(4.1') \t2v_{i,j} = v_{i,j} + v_{i,j-1} + \Delta t f(v_{i,j}) \text{ for } 1 \le i \le n
$$

(4.2')
$$
v_{0,j} = \varphi_0(t_j), v_{n+1,j} = \varphi_1(t_j).
$$

Hence 4.1, 4.2 has a unique solution if and only if 4.1', 4.2' has a unique solution. We now define an iterative procedure for solving 4.1', 4.2'. Let ξ_i^0 be arbitrary for $i = 1, 2, \dots, n$. For each $i, 1 \leq i \leq n$, let

 $2\xi_i^{\beta+1} = \xi_i^{\beta} + v_{i,j} + \Delta t f \quad (t_{j-i/2}, x_i, \frac{\xi_i^{\beta} + v_{i,j-1}}{2},$

$$
^{(4.3)}
$$

$$
\frac{D_0\xi_i^{\beta}+D_0v_{i,j-1}}{2},\frac{D_+D_-\xi_i^{\beta}+D_+D_-v_{i,j-1}}{2}
$$

for $\beta = 0, 1, 2, \cdots$ where

$$
\xi_0^{\beta} = \varphi_0(t_j) \text{ and } \xi_{n+1}^{\beta} = \varphi_1(t_j) \text{ for all } \beta.
$$

In 4.3 we have used the notation

$$
D_0 \xi_i^{\beta} = \frac{\xi_{i+1}^{\beta} - \xi_{i-1}^{\beta}}{2h} \text{ and } D_+ D_- \xi_i^{\beta} = \frac{\xi_{i+1}^{\beta} + \xi_{i-1}^{\beta} - 2\xi_i^{\beta}}{h^2}
$$

We let $\xi^{\beta} = (\xi_1^{\beta}, \xi_2^{\beta}, \cdots, \xi_n^{\beta})^T$ for $\beta = 0, 1, 2, \cdots$, introduce simplifying notation, and use 2.4a-c to write algorithm 4.3 in a form from which we can deduce that $\|\xi^{\beta+1} - \xi^{\beta}\|_{\infty} < \|\xi^{\beta} - \xi^{\beta}\|_{\infty}$ and hence conclude that the iterative scheme converges. Let $z = (t_{i-1/2}, x_i)$ and $\sigma(\beta) = (\xi_i^{\beta} + v_{i,i-1})/2$. With this notation we can derive from 4.3 that

$$
2(\xi_i^{\beta+1} - \xi_i^{\beta}) = \xi_i^{\beta} - \xi_i^{\beta-1} + \Delta t [f(z, \sigma(\beta), D_0 \sigma(\beta), D_1 D_0 \sigma(\beta), D_1 D_0 \sigma(\beta)) - f(z, \sigma(\beta-1), D_0 \sigma(\beta-1), D_1 D_0 \sigma(\beta-1))]
$$

or

(4.4)
$$
2(\xi_i^{\beta+1} - \xi_i^{\beta}) = \xi_i^{\beta} - \xi_i^{\beta-1} + \Delta t (E_1 + E_2 + E_3)
$$

where

$$
E_1 = f(z, \sigma(\beta), D_0 \sigma(\beta), D_+ D_- \sigma(\beta))
$$

\n
$$
- f(z, \sigma(\beta - 1), D_0 \sigma(\beta), D_+ D_- \sigma(\beta)),
$$

\n
$$
E_2 = f(z, \sigma(\beta - 1), D_0 \sigma(\beta), D_+ D_- \sigma(\beta))
$$

\n
$$
- f(z, \sigma(\beta - 1), D_0 \sigma(\beta - 1), D_+ D_- \sigma(\beta)),
$$
and
\n
$$
E_3 = f(z, \sigma(\beta - 1), D_0 \sigma(\beta - 1), D_+ D_- \sigma(\beta))
$$

\n
$$
- f(z, \sigma(\beta - 1), D_0 \sigma(\beta - 1), D_+ D_- \sigma(\beta - 1)).
$$

If $\xi_i^{\beta} \geq \xi_i^{\beta-1}$, then by 2.4c, we have

$$
-C\frac{(\xi_i^{\beta}-\xi_i^{\beta-1})}{2}\leq E_1\leq C'\frac{(\xi_i^{\beta}-\xi_i^{\beta-1})}{2}.
$$

If $\xi_i^{\beta} < \xi_i^{\beta - 1}$, then 2.4c implies that

$$
C'\frac{(\xi_i^{\beta}-\xi_i^{\beta-1})}{2}\leq E_1\leq-C\frac{(\xi_i^{\beta}-\xi_i^{\beta-1})}{2},
$$

hence we have

$$
\begin{aligned} \text{(4.5a)}\\ \text{(4.5b)} \quad E_1 &= \begin{cases} \ (-C + \gamma_0 (C' + C)) (\xi_i{}^\beta - \xi_i{}^{\beta - 1}) / 2 \text{ for } \xi_i{}^\beta \ge \xi_i{}^{\beta - 1} \\ (C' + \gamma_0 ' (-C - C') (\xi_i{}^\beta - \xi_i{}^{\beta - 1}) / 2 \text{ for } \xi_i{}^\beta < \xi_i{}^{\beta - 1} \end{cases} \end{aligned}
$$

where γ_0 and γ_0' are in [0,1]. Similarly using 2.4b and 2.4a respectively yields

$$
\begin{aligned}\n\text{(4.6a)}\\ \mathbf{E}_2 &= \begin{cases}\n\left(-B + 2\gamma_1 B\right) D_0 \left(\frac{\xi_i^{\beta} - \xi_i^{\beta - 1}}{2}\right) \text{for } \xi_i^{\beta} \ge \xi_i^{\beta - 1} \\
\left(B - 2\gamma_1^{\prime} B\right) D_0 \left(\frac{\xi_i^{\beta} - \xi_i^{\beta - 1}}{2}\right) \text{for } \xi_i^{\beta} < \xi_i^{\beta - 1}\n\end{cases}\n\end{aligned}
$$

and

(4.7a)
\n
$$
E_3 = \begin{cases}\n(\alpha + \gamma_2 (A - \alpha)) D_+ D_- \left(\frac{\xi_i^{\beta} - \xi_i^{\beta - 1}}{2} \right) & \text{for } \xi_i^{\beta} \ge \xi_i^{\beta - 1} \\
(A + \gamma_2'(\alpha - A)) D_+ D_- \left(\frac{\xi_i^{\beta} - \xi_i^{\beta - 1}}{2} \right) & \text{for } \xi_i^{\beta} < \xi_i^{\beta - 1}\n\end{cases}
$$

where γ_1 , γ_1' , γ_2 , and γ_2' are in [0, 1].

We now have eight possibilities for the sum $E_1 + E_2 + E_3$. For all eight we can show the iterative scheme 4.3 converges if we replace the assumption 2.5a by $\Delta t C'/2 < 1$. That is, we have the following result.

THEOREM 4.8. Suppose 2.4a-c, 2.4a-b hold and let $\Delta t C'/2 < 1$. Then the iterative scheme given by 4.3 converges to a vector ξ which is the unique solution of $4.1, 4.2$.

PROOF. We prove the theorem only in the case where E_1 , E_2 , and E_3 are given by 4.5b, 4.6b, and 4.7b respectively. Then from 4.4 we have

$$
2(\xi_i^{\beta+1} - \xi_i^{\beta}) = \left(1 + \frac{\Delta t}{2} \left[C' - \gamma_0'(C' + C) - \frac{2}{h^2}(A + \gamma_2'(\alpha - A))\right]\right)(\xi_i^{\beta} - \xi_i^{\beta - 1}) +
$$

+
$$
\frac{\Delta t}{2} \left(\frac{A + \gamma_2'(\alpha - A)}{h^2} + \frac{B - 2\gamma_1' B}{2h}\right)(\xi_{i+1}^{\beta} - \xi_{i+1}^{\beta - 1}) +
$$

+
$$
\frac{\Delta t}{2} \left(\frac{A + \gamma_2'(\alpha - A)}{h^2} - \frac{B + 2\gamma_1' B}{2h}\right)(\xi_{i-1}^{\beta} - \xi_{i-1}^{\beta - 1}).
$$

Hence we have that

$$
2|\xi_i^{\beta+1} - \xi_i^{\beta}| \leq |1 + \frac{\Delta t}{2} (C' - \gamma_0'(C' + C)
$$

\n
$$
- \frac{2}{h^2} (A + \gamma_1'(\alpha - A)) | |\xi_{i-1}^{\beta} - \xi_i^{\beta-1}|
$$

\n
$$
+ \frac{\Delta t}{2} |\frac{A + \gamma_2'(\alpha - A)}{h^2} + \frac{B - 2\gamma_1' B}{2h} | |\xi_{i+1}^{\beta} - \xi_{i+1}^{\beta-1}| +
$$

\n
$$
+ \frac{\Delta t}{2} |\frac{A + \gamma_2'(\alpha - A)}{h^2} - \frac{(B - 2\gamma_1' B)}{2h} | |\xi_{i-1}^{\beta} - \xi_{i-1}^{\beta-1}|.
$$

From 2.4a and 2.4c we see that $\alpha - A \leq 0$ and $C' + C \geq 0$ so using 2.5c we obtain:

$$
1 + \frac{\Delta t}{2} (C' - \gamma_0' (C' + C) - \frac{2}{h^2} (A + \gamma_1' (\alpha - A)) \ge 1 + \frac{\Delta t}{2} (-C) - \frac{2}{h^2} A \ge 0.
$$

 (4)

Similarly using 2.5b, it is easy to show that

(4.9b)
$$
\frac{A + \gamma_2'(\alpha - A)}{h^2} + \frac{B - 2\gamma_1'B}{2h} \geq 0
$$

and

(4.9c)
$$
\frac{A + \gamma_2'(\alpha - A)}{h^2} - \frac{(B - 2\gamma_1'B)}{2h} \ge 0.
$$

Now 4.9a-c and 4.8.1 imply that:

$$
2|\xi_i^{\beta+1} - \xi_i^{\beta}| \leq \left(1 + \frac{\Delta t}{2} (C' - \gamma_0'(C' + C))\right) \|\xi^{\beta} - \xi^{\beta - 1}\|_{\infty}
$$

$$
\leq \left(1 + \frac{\Delta t}{2} C'\right) \|\xi^{\beta} - \xi^{\beta - 1}\|_{\infty}
$$

or

$$
|\xi_i^{\beta+1} - \xi_i^{\beta}| \leq \frac{1 + (\Delta t/2)C'}{2} ||\xi^{\beta} - \xi^{\beta-1}||_{\infty}
$$

for $1 \leq i \leq n$ so that

$$
\|\xi^{\beta+1} - \xi^{\beta}\|_{\infty} \leq \frac{1 + (\Delta t/2)C'}{2} \|\xi^{\beta} - \xi^{\beta-1}\|_{\infty}.
$$

620

$$
\frac{1+(\Delta t/2)C'}{2}<1,
$$

it follows in the standard way that the sequence ξ^{β} converges. Noting that the Lipschitz conditions 2.4a-c imply that $f(t, x, z, p, r)$ is a continuous function of (z, p, r) completes the proof.

REMARKS. If the parabolic equation we are solving is quasilinear, there exist finite difference methods which give rise to a linear system of difference equations at each time step. In particular the reader is referred to $\overline{[4]}$, $\overline{[8]}$ and $\overline{[9]}$.

CONCLUDING REMARKS. TO obtain the results of this paper it is only necessary that 2.4a-c are satisfied for *(z, p, r)* in certain bounded subsets of \mathbb{R}^3 rather than in all of \mathbb{R}^3 . A detailed explanation of this is given in [11].

ACKNOWLEDGMENTS. The author wishes to express his gratitude to his former advisor, Gerald Hedstrom, for his continued encouragement.

REFERENCES

1. L. Bers, *On mildly non-linear partial differential equations of elliptic type,* **J. Research Natl. Bur. Standards 51 (1953), 229-236.**

2. L. Collatz, *Numerical treatment of differential equations,* **Springer, 1960.**

3. J. Douglas, Jr., A *survey of numerical methods for parabolic differential equations, advances in computers,* **Vol. 2, pp. 1-52, Academic Press, 1961.**

4. J. Douglas, Jr. and B. F. Jones, *On predictor-corrector methods for nonlinear parabolic equations,* **J. Soc. Indust. Appi. Math., 11 (1963), 195-204.**

5. R. Gorenflo, Diskrete Diffusionsmodelle und monotone differenzensche*matafur parabolische differentialgleichungen,* **Methoden und Verfahren der Mathematischen Physik Band 1, Bericht über eine Tagung, Oberwolfach, 1969, 143-162.**

6. , *Monotonie difference schemes for weakly coupled systems of parabolic differential equations,* **Conf. on Numerical Solution of Differential Equations (Dundee 1969), Springer, 1969, pp. 160-167.**

7. R. Krawczyk, *Über Differenzenverfahren bei parabolischen Differentialgleichungen,* **Arch. Rational Mech. Anal. 13 (1963), 81-121.**

8. M. Lees, *Approximate solutions of parabolic equations,* **J. Soc. Ind. Appi. Math 7 (1959), 167-183.**

9. M. Lees, *A linear three-level difference scheme for quasilinear parabolic equations,* **Math. Comp. 20 (1967), 516-522.**

10. R. M. Redheffer, *Bemerkungenuber Differentialungleichungen bei abzählbaren Ausnahmemengen,* **Numer. Math 9 (1966/67), 437-445.**

11. A. Reynolds, *Convergent finite difference schemes for nonlinear parabolic equations,* **Siam J. Num. Anal. 9 (1972), 523-533.**

12. M. E. Rose, *On the integration of nonlinear parabolic equations by implicit difference methods,* **Quart. Appi. Math. 14 (1956), 237-248.**

622 **A. REYNOLDS**

13. W. Walter, *Wärmeleitung in Systemen mit mehreren Komponenten,* Numerische Mathematik. Differentialgleichungen. Approximation-theorie (Tagun**gen, Oberwolfach, 1966), 177-185 Birkhauser, Basel, 1968.**

14. W. Walter, *Die Linienmethode bei nichtlinearen parabolischen Differentialgleichungen,* **Numer. Math. 12 (1968), 307-321.**

UNIVERSITY OF TULSA, TULSA, OKLAHOMA 74104