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ON A CRANK-NICOLSON SCHEME FOR 
NONLINEAR PARABOLIC EQUATIONS 

A. REYNOLDS 

1. Introduction. In this paper we consider a Crank-Nicolson type 
scheme for the problem: 

(1.1) ut = f(t, x, u, ux, uxx) in (0, T\ X {a, b) 

(1.2) u(0, x) = <p(x), u(t, a) = <p0(t), and u(t9 b) = <px(t) 

where <p(a) = <Po(0) and <p(b) = <pi(0). 
In [11], the author was able to obtain a convergence theorem for 

a set of finite difference analogues of (1.1), (1.2) with (0, T] X (a, b) 
replaced by [0, T] X (a, b). For the Crank-Nicolson type scheme in­
cluded among the methods in [11] a 0(àt + h2) convergence result 
was obtained. No method was given for solving the nonlinear system 
of difference equations. 

For the Crank-Nicolson type scheme presented here, three improve­
ments are possible. We obtain 0((at)2 + h2) convergence, we give 
a convergent iterative scheme for solving the nonlinear system of 
difference equations, and we obtain our results without assuming 
that the solution of (1.1) has continuous derivatives at t = 0. 

Consideration of this iterative procedure yields an existence and 
uniqueness theorem for the solution of the nonlinear system of differ­
ence equations. This existence and uniqueness theorem is a slight 
improvement over the analogous result in [11], in that we obtain it 
by requiring that f(t, x, z, p, r) satisfies certain Lipschitz conditions 
with respect to z9 p, and r whereas in [11], we assumed / had 
continuous partial derivatives with respect to z, p, and r. 

2. Notation and Preliminary Results. Let 

(2.1) h= ^ - f a n d At= Tim 
n •+• 1 

where n and m are positive integers. Also let x{ = a + ih for i = 0 ,1 , 
• • -, n + 1 and tj = j Attorj = 0 ,1 , • • -, m. 

For the remainder of the paper, we will suppose 2.1 defines a mesh 
on [0, T] X [a, b], and if v(t, x) is any function defined on this mesh 
we denote v(tj, xì) by vitj. For any such mesh function, we let 
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D «i+u - «*j a n d D v % ' -»i-u 

With this notation note that 

= °« + l,i + °'-i,J ~ 2uU 
ft2 

Throughout this paper, we will denote 

f\tj-V2'> xi> 2 ; 2 

D+D_vu + D + D _ Ü ( ,_! 

) 2 

by f(Vij) where t; is any mesh function. 
In problem 1.1, 1.2, we replace ut, ux and uxx by the appropriate dif­

ference quotients and consider the discrete problem 

(2.2) D_tVij = f(vij) for i = 1,2, • • -, n and ; = 1, 2, • • -, m 

(2.3) t?oj = <Po(*j); « n + u = <Pi(tjY> a n d üi,o = <p(Xi) 

for 0 ^ i â n + 1 and 0 ^ j ^ ra. 

We assume there exist constants a ^ 0, A ̂  0, B ̂  0, C ' and C 
such that 

(2.4a) a(? — r) S /(£, x, z, p,T) — f(t, x, z, p, r) ̂  A(f — r) for? è r, 

(2.4b) \f(t, x, z, p, r) - f{t, x, z, p, r)\ g B\p - p\, and 

-C(z -z)^ f(t, x, z, p, r) - f(t, x, z, p, r) § C ' ( 2 - z) 
(2-4 c) c _ ^ 

tor z ̂  2. 

Note no restrictions are placed on the sign of C or C '. 

We now make the following assumptions on h and A t. 

(2.5b) « - - ^ 6 0, 
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(2.5c) - l ^ " 1 - - ^ -

The proofs of the following theorem and lemma are omitted since 
the techniques of proof for both are the same as the analogous theorem 
and lemma in [11]. 

THEOREM 2.6. Assume 2.4%-c and 2.5a-c holds. Let v and w be any 
two mesh functions. If D_tvifj — f(vitj) < D.tWij — f(w>ij) for i = 
1, 2, • • -, n andj = 1, 2, • • -, m, and ifv0J < w0J, vif0 < wit0 and vn+iJ 

< wn+u for O â i â n + 1 and O^j^m, then vifj < wi}j for 0 ^ 
n + 1 and O^j^m. 

2.7. For the remainder of the paper we assume that problem 1.1, 1.2 
has a unique solution u such that u^, uttt, uxxtt and uxxxx exist and are 
continuous and bounded in (0, T] X (a, b). 

LEMMA 2.8. Assume f satisfies 2.4a,b and 2.5b, and let u(t, x) be 
the solution of 1.1, 1.2. Let p be a non-negative function defined on 
[0, T], and define zifj = uu + pj for 1 ^ i^â n, O^j ^ m and zn+u 

= w n + i j , Zoj = uo,jfor 0 ^ j ^ m where uiyj = u(tjy x j . Then 

/ ( * • -V2>x» o > o ' o 

< J uu + pi + uu_l + f t - i P Q " U + Po»ij-i 

2 ) • 

3. A Convergence Theorem. Fori = 1, 2, • • -, nandj = 1, 2, • • •, m 
let <Xi(tj) and /3i(^) be defined by ux(tp x{) = D0uitj + a*(̂ -) and uxx(tj9 x{) 
= D+D-Uitj + &(£,). By the differentiability assumption 2.7, cç and 
ß* are 0 (h2). We now assume p > 0, and o> are functions defined on 
[0, T\ and [0, T] X R3 respectively such that 

(3.ia) az_e^>JML sup M F ? X i ) | , 

where 

Pi = p(*j)> 
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(31b) |^)+
2-(V-)-iMi„^,.»u)|, 

A(.,)+ftft-,)_(MîUim(„3U) |) 

for any *(1), £<2) and £<3) in (tj.u tj), and 

(3.1c) /(*, x, z, p,T) - f{t, x, z, p, r) g <o(t, \z - z|, |p - p\, \f - r\). 

THEOREM 3.2. Suppose 2.4a-c, 2.5a-c, 2.7 and 3.1a-c hold. If u is 
the solution of 1.1,1.2 and witj is the solution of '2.2, 2.3, then 

sup \u(tj9 Xi) - witj| ^ p(tj)forO^j^m. 
O^t^n + 1 

PROOF. With uitj = w(fj, x{) we have 

for 1 â i = nand l â j ê m , 
Introducing the notation z = (^_y2, *j) and using Taylor's Theorem 

and the Intermediate Value Theorem for continuous functions, we 
obtain: 

(At)2 

(3.2.1) D_tuKj = ut(tj_V2, x{) + ^-um(t, ja) 

where ^_j < t < tjt Now since u is the solution of problem 1.1, 1.2, 
by 3.1a and 3.2.1 we have: 

(3.2.2) D_t(uu + Pi) > f(z, u(z), ux(z), ujz)) + ßL~ff±-

Expanding u(z), ux(z), and uxx(z) in appropriate Taylor Series, and 
letting y = (uitj + Wi,j_i)/2, we obtain from 3.2.2 that: 

D-K, + p.) > /(*.y - Vf-M«",*), n* + *"'' V"'"' 

(3.2.3) - - ^ »„(,«>, „), D.D., + m+UH-ù 
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Applying 3.1b, 3.1c and lemma 2.8 in order we obtain from 3.2.3 that 

D . ( „ + Ä ^ ) , D t D . ( s + a ^ , ) ) . 
Letting Dfj = uifj + p,, 3.2.4. becomes 

(3.2.5) D-tVij - / (üy) > 0 for 1 g t ^ n, 1 ^ j ^ n. 

Let B = {(£, x) | x = a, x = b, or £ = 0}. Since p > 0 on [0, T] and 
Uij = tü4j for (£i? Xi ) in B we have that 

(3.2.6) uij = Uij + py > t^ij on B. 

Now from 3.2.5, 3.2.6, and theorem 2.6, we have that Wij < u{j + 
Pj for 0 ê i ^ n + 1 and 0 S j = m . The same argument with — p 
in place of p yields u ^ — p, < w{j for 0 ^ i â n + 1 and 0 ^§ j ' ^ m 
and the theorem follows. 

We now wish to construct functions p and co which satisfy 3.1a-c such 
thatp > 0 andp is 0(M2 + h2). Let C = max{C, C } and let 

(3.3) <o(t, z,p, r) = Cz + Bp+ Ar 

where C, C , A and B are the Lipschitz constants appearing in 2.4a-c. 
We now show that if co is defined by 3.3, then 3.1c is satisfied. We first 
write 

(3.4) /(*, x, z, p,r) - f(t, x, z, p, r)= Ex+ E2+ E3 

where Ex = f(t, x, z, p, r) - /(*, x, z, p, ?), £ 2 = f(t, x, z, p, l) 
- f(t, x, z, p ,r) , and £ 3 = f(t, xy z, p, 1) - f(t, x, zy p, r). 

From 2.4c it follows easily that 

f C ' ( Z - z) = C'\z- z\ for z^z 
E i a 

[ -C(z - z) = C|z - z| for z < z, 

hence we have that 

(3.5a) Ex^C\z- z\. 

Similarly, using 2.4a and 2.4b respectively we conclude that 

(3.5b) E3 ^ A\f - r\ and E2 ^ B|p - p| . 

Now from 3.4 and 3.5a-b, we have that 3.1c is satisfied. 
We now show that 3.1a is satisfied for an appropriate p. Let D = 

(0, T] X (a, b) and define 
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K= max{sup |t*tt(*,*)|,sup \um(t,x)\9 sup\uxxtt(t,x)\}, 
D D D 

ä = max \oti\, and ß = max \ßi\. 

Frorn_ assumption 2.7 and the definition of ĉ  and ßif we have that â 
and ß are 0(h?) and hence there exists a constant K' > 0 such that 
ä § K'h2 and J8 ̂  K'h2. Let M = max{l, K, K', A, B, C} and define 

(3.6) p(t) = (A*)2 exp(8M2*) + K'(A + B)/i2 exp(8Mf). 

Then 

A ^ t L B (^exp^V.) ( -KMff) - 1 ) 

^ (A*)2 exp(8M2^._1)(8M2) è (A*)28M2 

A*2 

1Z D 

so 3.1a is satisfied whenp is defined by 3.6. 
Letting 

0,=ft(^^-i)jM;^.3u), 
p 2 4 

we have 

»($_*, |pü) | , k » | , |/8«>|) = eipü'l + B\a^\ + A|j8«>| 

g C ( * + *~l ) +Bä+Äß+(C+B+A)K ^f-

(3.7) 

= y f a + ft-i) + M(A + B)K'h* expCSM^i) 

+ 3M2 — 5 -exp(8Mt i _ 1 ) . 

Now choose At sufficiently small such that exp(8M2 At) + 1 = 6, then 
we have that 
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(3.8) 

(pj + A - i ) ^ (At2) exp(8M2^._1) (6) + K'(A + Bßh2 exp(8 Mt,. J. 

Using (3.8) in (3.7) yields 

a>(tj_V2, |p«)|, |«tf)|, |/B«>|) ^ 4M2(Af)2 exp(8M%_1). 

+ 4M(A + B)K'/»2exp(8Mt,_1) 

+ (A+ B)K 'yexp(8M , ) . l )(
C TP ( 8^ | '

)- l) 

= Pi ~~ ft-1 
2Af 

Hence 3.1b is satisfied. 
Since p is 0(Af2 -I- to2), an application of theorem 3.2 yields 

THEOREM 3.9. Suppose 2.4a-c and 2.5a-c hold. Let u(t, x) be the 
solution of hi, 1.2 and wifj be the solution of '2.1, 2.2. TTien 

sup \u(tjy Xi) - u ^ l = 0(M2 + /i2). 
Ogt^n + l 

4. Iterative Solution of the Discrete Problem. In this section we 
show problem 2.2, 2.3 has a unique solution by developing a con­
vergent iterative procedure for solving the system of difference 
equations. To show that 2.2, 2.3 has a unique solution, we need only 
show that if vij_l for 1 Si i = n is known then the problem 

(4.1) Vij = Vij_x + btf(Vij) for f = 1, 2, • • -, n 

(4-2) % j = 9o(*j), t?n +u = <pi(tj) 

has a unique solution. 
We note that v{j is a solution of 4.1, 4.2 if and only if vifj is a solu­

tion of 

(4.1 ' ) 2vid = Vij + Vij^ + Mf(vid) for 1 ^ t ^ n 

(4-2') v0J = <p0($), ü n + 1 J = ip^tj). 

Hence 4.1, 4.2 has a unique solution if and only if 4 .1 ' , 4.2' has a 
unique solution. We now define an iterative procedure for solving 
4.1 ', 4.2 '. Let &° be arbitrary for i = 1,2, • • -, n. For each i, 1 ^ i ^ n, 
let 
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6" + « i j - i 2 f / + 1 = 6 " + « y + A*/ ( ^ . X i , -
\ 2 

( 4 ' 3 ) D p i / + P p t ^ D+D_tf + D+D-Vi,,-! \ 
2 ' 2 / 

for ß = 0 ,1 , 2, • • where 

6," = Vo(^) and # + 1 = vM) for all /8. 

In 4.3 we have used the notation 

Pß — pß pß 4- pß — OP ß 
Do6 ' = +l

2h ~l and D + D _ t f = * i + 1 + ^ * . 

We let ^ = ( £ / , £ / > ' ' ' tnß)T for j8 = 0, 1, 2, • • -, introduce 
simplifying notation, and use 2.4a-c to write algorithm 4.3 in a form 
from which we can deduce that | | f + 1 - f*||. < ||£* - f*|| « and hence 
conclude that the iterative scheme converges. Let z = (^_^, x$) and 
a(/3) = (li^ + Vij_i)l2. With this notation we can derive from 
4.3 that 

2(€iß + l - W) = tf - fiß~l + ±t[f(z,a(ß\ D«r(ßl 

D+D_a(ß)) - f(z, *(ß - l),D0<r(ß ~ 1), D+D_a(ß " 1))] 

or 

(4.4) 2(6" + 1 - 6") = 6" - 6 " - 1 + A^Ê! + E2 + E3) 

where 

El = f(z, a(ß), D0<r(ß), D+D_<r(/8)) 

- / (z , aQ3 - 1), D0<r(ß), D+DMß)), 

E2 = f(z, <x(ß - 1), D0<7(i3), D+D.a(ß)) 

- f(z, <r(ß - 1), D0a(ß - 1), D+D_<r(j8)), and 

E3 = /(z, a(/8 - 1), D0<r(ß - 1), D+D_a(ß)) 

- f(z, a(ß - 1), D0a(ß - 1), D+DMß " !))• 

If tf = iiß~\ then by 2.4c, we have 

_ c(€iß - tf-1)^ E < , (6* - 6"-1) 
2 ~ ' 2 

Iff/ < tf-1, then 2.4c implies that 

2 = 1 = = 2 
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hence we have 

(4.5a) E = {(~C + W C + C))(6" - l"-l)l2£oTli> è tf-i 

(4.5b) El [(C'+yo'i-C-C'W-tf-Wforft^tf-1 

where y0
 a n d Jo' a r e *n [0,1] • Similarly using 2.4b and 2.4a respec­

tively yields 

(4.6a) [ ( - B + 2y iB)D0 (*"* ~^~') for tf ä ^ 1 

(4.6b) [ (B - 2 7 / 6 ) 0 0 (*'"'f'1 )fortf < fi"-i 

and 

(4.7a) | (a + y2(A - a))D+D_ (^ ~ ^ )for 6 ' ^ fi""1 

E3 = 
(4.7b) [ (A + y 2 ' ( a - A))D+D_ ( g i * " )for fi" < # « -

where71 ,y1 ' ,y2> a n d y 2 ' are in [0,1] . 
We now have eight possibilities for the sum Ei + E2 + E3. For all 

eight we can show the iterative scheme 4.3 converges if we replace 
the assumption 2.5a by AfC72 < 1. That is, we have the following 
result. 

THEOREM 4.8. Suppose 2.4a-c, 2.4a-b hold and let A*C'/2< 1. 
Then the iterative scheme given by 4.3 converges to a vector i; which is 
the unique solution of 4.1, 4.2. 

PROOF. We prove the theorem only in the case where Ei9 E2, and 
E3 are given by 4.5b, 4.6b, and 4.7b respectively. Then from 4.4 we 
have 

2(6"+1-f/)= ( i + - | * [ c ' - V ( C ' + c) 

-f2(A+y2'(a-A))] )(#> - £/ - i )+ 

At/A+y2'(q-A) B-27l'B\ „_, 
2 V h2 2h yC^i+i - ^i+i 

At /A + y 8 ' (q -A) B + 2 T l ' B \ „ . 
+ 2 v A« 2^ ;(«*- i - f t - i ) -
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(4.8.1) 

Hence we have that 

2 | 6 " + 1 - 6 " | ^ \l+-f(c'-y0'(C' + C) 

-±(A + yi'(a-A)) ) | le i - i - f i"- 1! 

_A£ |A + y , ' ( « - A ) B-2yi'B\ _ 

From 2.4a and 2.4c we see that a — A ^ 0 and C ' -I- C ^ 0 so using 
2.5c we obtain: 

1 + -f(C - y0'(C + C)^(A + y i > - A)) i= 
(4.9a) 

1+f(-C)-^A=°-
Similarly using 2.5b, it is easy to show that 

and 

Now 4.9a-c and 4.8.1 imply that: 

2|6'+i - fi'l^ ( l + ^ ( C - y 0 ' ( C + C))U" - ^ " l -

^ (1 + -J-C )Mß-€ß-% 

or 

|fi'+I - 6*1 ̂  1 + (A/2)C' H^ - É'-1!!-

for 1 ̂  i ^ n so that 
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As 

1 4- (Atl2)C 

it follows in the standard way that the sequence £ß converges. Noting 
that the Lipschitz conditions 2.4a-c imply that f(t, x, z, p, r) is a con­
tinuous function of (z, p, r) completes the proof. 

REMARKS. If the parabolic equation we are solving is quasilinear, 
there exist finite difference methods which give rise to a linear system 
of difference equations at each time step. In particular the reader is 
referred to [4], [8] and [9]. 

CONCLUDING REMARKS. TO obtain the results of this paper it is only 
necessary that 2.4a-c are satisfied for (z, p, r) in certain bounded sub­
sets of R3 rather than in all of R3. A detailed explanation of this is 
given in [11]. 
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