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ON A CRANK-NICOLSON SCHEME FOR
NONLINEAR PARABOLIC EQUATIONS

A. REYNOLDS

1. Introduction. In this paper we consider a Crank-Nicolson type
scheme for the problem:

(L.1) u; = f(t, %, 4, Uy, Uy) in (0, T] X (a, b)
(12) u(0> x) = gO(X), U(t, d) = (pO(t)’ and “(t’ b) = ‘Pl(t)

where ¢(a) = ¢o(0) and ¢(b) = ¢,(0).

In [11], the author was able to obtain a convergence theorem for
a set of finite difference analogues of (1.1), (1.2) with (0, T] X (a, b)
replaced by [0, T] X (a, b). For the Crank-Nicolson type scheme in-
cluded among the methods in [11] a O(At + h2) convergence result
was obtained. No method was given for solving the nonlinear system
of difference equations.

For the Crank-Nicolson type scheme presented here, three improve-
ments are possible. We obtain O((At)2 + h2) convergence, we give
a convergent iterative scheme for solving the nonlinear system of
difference equations, and we obtain our results without assuming
that the solution of (1.1) has continuous derivatives at t = 0.

Consideration of this iterative procedure yields an existence and
uniqueness theorem for the solution of the nonlinear system of differ-
ence equations. This existence and uniqueness theorem is a slight
improvement over the analogous result in [11], in that we obtain it
by requiring that f(¢, x, z, p, r) satisfies certain Lipschitz conditions
with respect to z, p, and r whereas in [11], we assumed f had
continuous partial derivatives with respect to z, p, and r.

2. Notation and Preliminary Results. Let

—b—a -
(2.1) h= n+1and At = TIm

where n and m are positive integers. Alsoletx; =a + ihfori=0,1,
~+,n+ land ;= jAtforj=0,1, -, m

For the remainder of the paper, we will suppose 2.1 defines a mesh
on [0, T] X [a,b], and if v(t, x) is any function defined on this mesh
we denote v(t;, x;) by v; ;. For any such mesh function, we let
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D w.= Uij — Uij-1 Dovs = Oit1,j — Vi-1,j
—tYi,j — At > oYi,j — 2h >
O+1 . — v. . D. . — v._l .
D+v‘.,j = %& and D—Ui,j = - ld A Lam 1Y .

With this notation note that

Ui+1,L+ Vi1, — 20.'4

D+D_Ui’j = h2

Throughout this paper, we will denote

v;; + U j— Dov' ;i + D()Ui"_
f(tj—llz;xi§ - B 5 1; = 9 L l,
D+D_D"’j + D+D—Ui,j—l >
2

by f(v; ;) where v is any mesh function.
In problem 1.1, 1.2, we replace u,, u, and u,, by the appropriate dif-
ference quotients and consider the discrete problem

(22) D_w;;= f(vi;)fori=1,2, - -, nandj=12,---,m
(2.3) Vg; = ‘Po(%); Un+1,j = <P1(tj); and v; o = ¢(x;)
for0=i=n+1land0=j=m.

We assume there exist constants «a= 0, A= 0, B=0, C’' and C
such that

(2.4a) AT —1)= f(t,x,z,p,7) — f(t, %, 2,p, 1) = AF — r)for7= 1,

(2.4b) |f(t,x, 2, P, 1) — f(t,x,2,p,r)|= B|p — p|,and
-Cz—2)=ftx,z,p,r)— f(tLx,z,p, 1) = C'(z2— 2)

forz= z.

(2.4¢)

Note no restrictions are placed on the sign of Cor C'.

We now make the following assumptions on h and At.

(2.58) -A%LéL

(2.5b) a— B>



NONLINEAR PARABOLIC EQUATIONS 613

AAt _ . CAt
h2 = 2 .

(2.5¢)

The proofs of the following theorem and lemma are omitted since
the techniques of proof for both are the same as the analogous theorem
and lemma in [11].

THEOREM 2.6. Assume 2.4a—c and 2.5a-c holds. Let v and w be any
two mesh functions. If D_w;; — f(vi;) < D_qw;; — f(w;;) for i =
L2, - ,nandj=1,2, - -,m,and if vy ; < wo j, v; 0 < Wig and vy, ;
<Wyi1for0=i=n+1land 0=j=m, then v;; < w;j for 0 =
n+land0=j=m.

2.7. For the remainder of the paper we assume that problem 1.1, 1.2
has a unique solution u such that t,,, Uy, Ue and t,,,, exist and are
continuous and bounded in (0, T] X (g, b).

LEmMa 2.8. Assume f satisfies 2.4a,b and 2.5b, and let u(t, x) be
the solution of 1.1, 1.2. Let p be a non-negative function defined on
[0, T], and define z;;=u;; + p; for 1= i=n, 0=j=m and 2, ;
= Upi1,j %0,j = Ug,jfor 0= j = mwhereu,; = u(t;, x;). Then

zijt 2i5-1 Dozij+ Dozijy D.D_z; + DD z; ,
F -y % P , 3 ) -
it et ut+pi .+ Dyt s
gf(ti—uz’xi, Yyt ppt tijort poy Dothiy + Doty
2 2
D.D_u;;+ D.D_u;;_, )
2 .
3. A Convergence Theorem. Fori = 1,2, -+ -, nandj=1,2, - -, m

let ay(t;) and By(¢;) be defined by u,(t;, x;) = Dou; ; + a;(t;) and u,(t;, x;)
= D,D_u;; + Bi(t). By the differentiability assumption 2.7, &; and
B; are 0 (h%). We now assume p > 0, and  are functions defined on
[0, T] and [0, T] X R? respectively such that

e —pi-1 _(At)? -
(3.1a) 4 > SuUp  |ue(t, %)),
At 12 0<t£T I ttt )l
1si=n
where

Pj = p(tj>’
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’?LHL.I = w (tj_”2,

I&+Pj—l+ (At)?
20t 2 8

uy(t, x;)

>

(3.lb) , a:(fz) +2ai(tj—l> _ (Agt)z um(t(z)’ x') , ,
, B.(tj) + Bi(tj_l) - (A8t)2 uxxtt(t(3), xi)l )

for any t(V), t® and ¢® in (t;_,, t;), and

(Ble)  fitx%pT) = fit525p 0= ot 2~ 2l p = pl 7 = 7).

TueorREM 3.2. Suppose 2.4a-c, 2.5a—c, 2.7 and 3.1a-c hold. If u is
the solution of 1.1, 1.2 and w;  is the solution of 2.2, 2.3, then

sup  |u(t, x;) — wij| = p(t) for0=j = m.
O=i=n+1

Proor. Withu; ; = u(t;, x;) we have

Uij —Uij1 P~ Pi-1
D_(u;+ p) = —* At =+ LAtJ

forl=i=nandl=j=m

Introducing the notatlon z = (t_y, ;) and using Taylor'’s Theorem
and the Intermediate Value Theorem for continuous functions, we
obtain:

At)? -
(321) D_tt; = o %) + ot (F, )

where t;,_; < t< t;, Now since u is the solution of problem 1.1, 1.2,
by 3.1a and 3.2.1 we have:

(322)  D_Jui;+ p) > f(z, u(z), uz), um(z) + Jﬁ.
Expanding u(z), u.(z), and u,(z) in appropriate Taylor Series, and
letting y = (u; ; + u; j_,)/2, we obtain from 3.2.2 that:

t) +

At)? ; i(t;—
Dy + ) > £ (55— Lol uy(e0, x), Dy + ST llo)

_ (A2

(3.2.3) (@, x), D, D_y + Bi(t;) +2Bi(tj—l)

At
8

uxxtt(t(S), xi) ) + _ﬁ
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Applying 3.1b, 3.1c and lemma 2.8 in order we obtain from 3.2.3 that

+ py_
D_,(u;; + p;) > f(z, y +£’-—2-2L1—
(3.2.4)

pitpi-y ) ( pi + pi-l))
Dy (y + 9 ,D.D_y + 5 .

Letting v; ; = u; ; + p;, 3.2.4. becomes
(3.2.5) D_w;; — fv;;)) > 0forl = i=nl1=j=n

Let B= {(t,x)|x=a,x= b, or t = 0}. Since p > 0 on [0, T] and
u; ; = w;; for (t;, x;) in B we have that

(3.2.6) vi; = u;; + p; > w;jon B.

Now from 3.2.5, 3.2.6, and theorem 2.6, we have that w; ; < u;; +
pjfor 0=i=n+1 and 0=j=m. The same argument with —p
in place of p yields u;; — pj<w;;for 0= i=n+1and 0= j=m
and the theorem follows.

We now wish to construct functions p and w which satisfy 3.1a-c such
thatp > 0 and p is O(A#2 + h2). Let C = max{C, C'} and let

(3.3) w(t, z,p,r) = Cz + Bp + Ar

where C, C’, A and B are the Lipschitz constants appearing in 2.4a-c. |
We now show that if w is defined by 3.3, then 3.1c is satisfied. We first
write

(3.4) ft,x,z,p,7) — f(t,x,2,p,r) = E; + E; + E;
Where El = f(t, X, 2, ’—” 7') - f(t’ X, 2, p’ 7)’ E2 = f(t’ X Z, ﬁ’ 7)

— f(t,x,2,p,7),and E; = f(t,x, 2z, p,7) — f(t,x, 2, p, 7).
From 2.4c it follows easily that

C'(z—2)=C'lz— z| forz= 2z
E =
—C(z—2)=Clz — 7| forz < z,
hence we have that
(3.5a) E,=Clz — z|
Similarly, using 2.4a and 2.4b respectively we conclude that
(3.5b) E; = A[f — r|and E; = Blp — p|.

Now from 3.4 and 3.5a-b, we have that 3.1c is satisfied.

We now show that 3.1a is satisfied for an appropriate p. Let D =
(0, T] X (a, b) and define
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K= max{sup uy(t, x)|, sup [us(t, )|, sup [uree(t, x)1},
D D D

@= max |g/,and 8= max |B;.
1sisn isisn

F rom assumption 2.7 and the definition of o and B;, we have that &
and B are O(h?) and hence there exists a constant K’ > 0 such that
a= K'h?and B = K'h% Let M = max{l, K, K’, A, B, C} and define
(3.6) p(t) = (At)? exp(8M?t) + K'(A + B)h? exp(8M¢).
Then
exp(8M2At) — 1 )

At
= (At)? exp(8M3¢;_,)(8M?) = (At)*8M?>

BBl 2 (802 exp(8M?)) (

2

= sup Ju,,(t, x)],
12 DP’ wd(t, )|
so 3.1a is satisfied when p is defined by 3.6.
Letting
. i+ pi_ At?
pY = BI—;)LI + Tutt(t(“, x;),
. () + oyt At?
a(]) = a'l—(t‘)Ta‘(td - Tuxtt(t(Z)a xi)’ and
B(j) — ﬁ,‘(t.) +2Bi(tj-—1) —(ATt)zuxxtt(t(a)’ xi)7
we have

o(ti—y, [p?), ], [BY]) = Clp¥| + Bla'| + A|BY]

= é(—”i—’%”’i) + Ba+ AB+ (C+ B+ AK %
(3.7)

= %(pj + pj—1) + M(A + B)K'h? exp(8Mt;_,)

At

2
+ 3M 3

exp (8 Mt;_,).

Now choose At sufficiently small such that exp(8M2 At) + 1 = 6, then
we have that
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(3.8)
oy + p1-1) = (M) exp(8M?,._,) (6) + K'(A + B)Gh? exp(8 M),
Using (3.8) in (3.7) yields
o(tiy, [p?], |a?), |BY]) = 4M*(At)> exp(8M>t;_y).
+ 4M(A + B)K'h? exp(8Mt;_,)

xp(8M2At) — l)
2At

= Atexp(8M2_,) (e

exp(8MAt) — l)

+ (A+ B)K'h? exp(8Mtj_l)( oAt

_ PP
oAt

Hence 3.1b is satisfied.
Since p is O(At2 + h2), an application of theorem 3.2 yields

TueoreM 3.9. Suppose 2.4a-c and 2.5a—c hold. Let u(t,x) be the
solution of 1.1, 1.2 and w; ; be the solution of 2.1, 2.2. Then
sup  |u(ty, ;) — w; ;| = O(At* + h2).
0sisn+1
0=j=m
4. Iterative Solution of the Discrete Problem. In this section we
show problem 2.2, 2.3 has a unique solution by developing a con-
vergent iterative procedure for solving the system of difference
equations. To show that 2.2, 2.3 has a unique solution, we need only
show that if v; ;_, for 1 = i = n is known then the problem

(4.1) v; ;=0 + Atf(v;)fori=1,2, -+, n

(4.2) 0g,; = @o(tj) Vus1,; = @1()

has a unique solution.
We note that v, ; is a solution of 4.1, 4.2 if and only if v, ; is a solu-
tion of

(4.1 ’) 20,"]' = D,"j + Dt',j—l + Atf(v,-,j) for1 § i é n

(4.2") 0o,; = @o(tj); Vns1,; = @1(H).

Hence 4.1, 4.2 has a unique solution if and only if 4.1’, 42’ has a
unique solution. We now define an iterative procedure for solving
4.1',42'. Let §°be arbitrary fori = 1,2, - - -, n. Foreachi,1 =i = n,
let
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B+ v,
201 = £+ vy A (4o, T
D€ + Dyv;;_, D.D_§* + D.D_v;;_, )
2 ’ 2
forg=0,1,2, - - - where
&” = @o(t;) and &5 ., = ¢,(t) for all B.

In 4.3 we have used the notation
fﬁi+1 — gﬂi—l §Bi+l + fﬁi—l — 2fiB

oh h? '

We let &€F = (€5, &F, - - €F)T for =0, 1, 2, - -, introduce
simplifying notation, and use 2.4a-c to write algorithm 4.3 in a form
from which we can deduce that ||/ +1 — £#|, < ||éf — €F| . and hence
conclude that the iterative scheme converges. Let z = (f_,,, x;) and

o(B) = (&* + v;j_1)/2. With this notation we can derive from
4.3 that

6P+ = &F) = &F — &P + At[f(z,0(B), Do (B),
D.D_o(B)) = f(z, (8 — 1), Doo(B — 1), D,D_a(B — 1))]

(4.3)

Dy = and D,D_§P =

or
(4.4) 2P+ — &F) = &P — &P+ AHE, + Ey + E;)
where
E, = f(z, o(B), Doo(B), D.D_a(B))
~ f(z o(8 — 1), Dyo(8), D, D_o(8)),
E; = f(z,0(B — 1), Doo(B), D.D_a(B))
— f(z, a(B = 1), Dyo(8 — 1), D,D_o(8)), and
Ey= f(z, o(8 — 1), Doo(g — 1), D,D_o(8))
~ f(z #(8 = 1), Doo(8 — 1), D,D_o(8 — 1))
If§F = £7-1, then by 2.4c, we have

P (Vi iy PO ( L ity

If &P < P!, then 2.4c implies that
B — £B-1 B — EB-1
T B
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hence we have
(4.5a) | (mCHy(C + ONEF — &F 2 for &F = &5
45b) 1 ] (C' H v (—C = C') &P — EP-D2 for &8 < £

where vy, and y,' are in [0,1]. Similarly using 2.4b and 2.4a respec-
tively yields

(4.6a) (=B + 2y,B)D, (%} for & = £F-!
E2 = B

(4:6b) (B~ 2, B0, (A5 Yorgr < g

and |

(4.7a) (a+ yo(A—a))D,D_ <£¥ )for EF= P
E3 = _

(4.7b) (A+ ys'(@— A)D,D_ (L_;i—l )for &F < &P

wherey,,y,’,vs, andy, ' arein [0, 1].

We now have eight possibilities for the sum E, + E, + E;. For all
eight we can show the iterative scheme 4.3 converges if we replace
the assumption 2.5a by AtC’/2 < 1. That is, we have the following
result.

THEOREM 4.8. Suppose 2.4a-c, 2.4a-b hold and let AtC'[2 < 1.
Then the iterative scheme given by 4.3 converges to a vector § which is
the unique solution of 4.1, 4.2.

Proor. We prove the theorem only in the case where E,, E,, and
E; are given by 4.5b, 4.6b, and 4.7b respectively. Then from 4.4 we
have

261 — &) = (1 +% [c'-wc +0c

- LAty an] )@ - e+

At Aty @=A) BB, e
+ (P B 2N R N — e +
At (Aty'@=A) B+w'BY,, e
+ 2 < h2 2h )(ée—l fi—l )‘
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Hence we have that

dgrr— o= |1+LEC -y (Cr + )

- Za+y'@—a) )| - e

(481) At A+ v (a— A) 2 'B
t vs' (a — 'y
+ o th + ' ll‘f 1 00+
At A+y2’(a—A)—(B—2yl’B) _
) e el At

From 2.4a and 2.4c we see thata — A= 0 and C’' + C = 0 so using
2.5¢ we obtain:
At , Py 2 ' >
1+7(C —v'(C +C)'Z2—(A+'yl (a— A)=
(4.9a)
1+ —( C)— —A> 0.

Similarly using 2.5b, it is easy to show that
A+y2'(a—A)+B erl’B>0

(4.9b) - 2
and
A+vy)'(a—A) (B—2,'B) _
Now 4.9a-c and 4.8.1 imply that:
216+ — €8 = (1 +%(C’ —y'(C'+ C >”§ﬁ — &,
At ., )
= (14500 e - el
or
1+ (At2)C’
R e Ry o B
for 1 = i = nso that
1+ (AH2)C'
fgr+ — g0 = —TEIRICT yos gy

2
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1+ (At2)C’
2
it follows in the standard way that the sequence £# converges. Noting

that the Lipschitz conditions 2.4a-c imply that f(t, x, z, p, r) is a con-
tinuous function of (z, p, r) completes the proof.

<1,

Remarks. If the parabolic equation we are solving is quasilinear,
there exist finite difference methods which give rise to a linear system
of difference equations at each time step. In particular the reader is
referred to [4], [8] and [9].

ConcLupIiNG REMaRks. To obtain the results of this paper it is only
necessary that 2.4a-c are satisfied for (2, p, r) in certain bounded sub-
sets of R3 rather than in all of R3. A detailed explanation of this is
given in [11].
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