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SEVEN DIFFERENT PROOFS THAT L°7tf °° 
IS NOT SEPARABLE 

EARL BERKS ON AND LEE A. RUBEL1 

Although one would have no difficulty in conjecturing that L00///00 

is not separable, there is no proof of this fact in general circulation. 
The space L°7H°° is interesting because it is isometrically isomorphic 
to the dual of H1. In this didactic paper, we present seven different 
proofs that it is not separable. Their variety affords possible lines of 
generalization as well as the framing of related questions, and displays 
the state of the art of Hp spaces today. The first two proofs are the 
authors', and the remaining are due to B. A. Taylor, C. L. Fefferman, 
Joel Shapiro, A. Pelczynski, and J. Garnett, respectively. We thank 
them for permission to present their proofs here. It is likely that other 
proofs will be found. Indeed, we have been informed that H. S. Shapiro 
and A. L. Shields are preparing a joint manuscript containing a general 
result that implies our estimate on ||A — g|| oo in the first proof. At 
the end of the paper, we prove a related theorem to our title theorem. 

An immediate corollary of the title theorem is that Hl is not homeo-
morphic, as a topological space, to its second dual. In particular, Hl 

is not reflexive, as was shown in [9, §7] and subsequently in [8, 
§ 2.11-2.12]. 

The first of the seven proofs is based on the theory of cluster sets, 
and explicitly exhibits in L°7ff °° a collection of disjoint open balls 
which has the cardinality, c, of the continuum. Our second proof gives 
no information beyond the assertion of the theorem, and relies on the 
known non-reflexivity of H1 and a Banach space lemma from [5]. 
For completeness, we include a condensed proof, based entirely on 
[9, § 7] that Hl is not reflexive. Our third proof is due to B. A. Taylor, 
and uses the same construction as Proof 1, but shows directly why it 
works by means of the conjugate Poisson integral. The fourth proof 
is due to C. L. Fefferman, and uses the linear homeomorphism [3], 
[4] of the space of functions of bounded mean oscillation (BMO) onto 
the normed conjugate space of H1. The fifth proof is due to Joel 
Shapiro, and uses interpolation sequences for the pair (H1,^1). This 
proof seems the most likely to extend the statement that Hl is not reflex
ive to more general domains than the unit disc, a problem that was 
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mentioned in f 8] . The sixth proof is due to A. Pelczynski and exhibits 
a subspace of Hl that is isomorphic to Ä1. The final proof is due to J. 
Garnett and involves function algebra techniques. 

As conventions, unless specified otherwise, we mean by L00, H°°, and 
ff1, respectively, the spaces L°°(T\ Jf°°(T), and Hl(T)9 where T = 
{z: |z| = 1}. We let D = {z : \z\ < 1} and freely identify functions 
in LX(T) with their Poisson integrals, which are, of course, bounded 
harmonic functions in D. 

PROOF 1. For / G L 0 0 , denote by (/) the coset f+H°°. For 
0 ^ « ^ 2 7 T , l e t 

Ue-)= {I 
otherwise. 

We claim that, in the norm of L00///00, \\(fa) - (f/>)|| = 1/2 when 
a ^ ß. Now for a<ß, 

W)=fß(e<)-fa(e') = {J a<ß^ß, 
otherwise. 

We claim that for any function A G L00 that is zero everywhere in an 
interval to the left of e*ö<> (as viewed from inside the disc), and 1 every
where in an interval to the right of eie<>, where these intervals have 
ëdo as common endpoint, we have ||A — g||«, = 1/2 for any g £ H ° ° . 
Without loss of generality, we take 60 = 0. Suppose, by way of con
tradiction, that || A — g || « = e < 1/2. We require some results from 
the theory of cluster sets, adapted to the case at hand, and we use 
[1] as reference. For the definition of the cluster set, let / be a func
tion defined in D, with values in the complex plane d, and let z0 = 
eieo G T. The cluster set C(f, z0) of / at z0 is defined as the set of 
points a of the Riemann sphere d " such that there exists a sequence 
{zn} in D with lim zn = z0 and lim/(zn) = a. It follows ([1, p. 3] ) 
that C = C(f, ZQ) is a non-empty closed set, and that if / is con
tinuous in D, then C must be connected. We now consider the 
boundary cluster set CB(f, z0) = CBi(f, z0) U CBr (f, z0). Here, 
CBi is the left boundary cluster set defined as follows: 

C(J90<0-0o<v)= U C(/,e"), 

CBI (f, e*9» ) = CiC-(f,0<e-9o< v), 
r) > 0 

while the right boundary cluster set CBr is analogously defined. In 
[1, p. 82] it is shown that CBz C C, and of course CBl C C. I f / is 
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bounded, then CB , and CBz are non-empty compact sets in C. 
The one non-trivial result we use from cluster set theory is a theorem 
of Iversen [1, p. 91] that if h is analytic in D, then for every eie €E T, 
dC(h, eid) C CB(h, eid). To continue with our proof, it is easy to see 
that C B t ( A , l ) = { l } and CB£(A, 1) = {0}. It follows from a 
simple argument that CBt (g, 1) C B i and CB£(g, 1) C B&, where 
Bt = {2 : \z - 1| ^ €} and B£ = {z : |z| g e}. But Bi and Bl are a 
positive distance apart, and this contradicts dC(g, 1) C B T U B£ 
since C(g, 1) is connected, and the first proof is concluded. We have 
implicitly used the following topological lemma, whose simple proof 
we omit. 

LEMMA. Let C be a compact connected set in £, and let Bx and 
B2 be two closed convex sets such that dC C BXU B2- If C H BY 

^ 0 and C H B2 / 0 then BlHB2^ 0 . 

We say that a Banach space B is pseudo-reflexive if it is homeo-
morphic as a topological space to its second dual B**. It was shown 
in [9, § 7] that Hl is not reflexive. The next result is a corollary of 
our main theorem. 

PROPOSITION. Hl is not pseudo-reflexive. 

PROOF. AS is well-known, LXIH°° is isometrically isomorphic to 
(H1)*. Since H1 is separable, it follows that if H1 were pseudo-
reflexive, then (H1)** would be separable. But by a well-known result 
([6, p. 34]), if the dual B* of a Banach space B is separable, then 
B must be separable. Thus, we would have (H1)* separable, and 
hence L °°/H °° separable, which we have proved impossible. 

We now give the second proof of our main theorem. 

PROOF 2. We need first the following fact, which is a special case of 
[5, p. 178, par te ] . 

LEMMA. If B is a weakly sequentially complete Banach space, and 
ifB * is separable, then B is reflexive. 

Now it is well-known that Hl is weakly sequentially complete —to 
see this, just observe that Hl may be regarded as a closed subspace of 
the space of all bounded complex Borei measures on T. Hence if 
L^IH00 were separable, then H1 would be reflexive, which it is not, 
by [9, §7]. 

Incidentally, we have proved the following result. 

PROPOSITION. If the Banach space B is separable and weakly se
quentially complete, then B is reflexive if it is pseudo-reflexive. 
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PROOF THAT H 1 is NOT REFLEXIVE. (From [9,§ 7].) LetFn(z) = (1 + cn) 
• (z + l)l(cnz + 1), where — 1 < cn < 1 and cn —> — 1. We remark first 
that Fn is analytic in D = {z : |z| S i } . Let /n(z) = Fn '(z). Both 
{fn} and {Fn} converge to 0 uniformly on compact subsets of D, 
because \Fn(z)\ S 2|1 + cn|/(l — |z|), and it is an elementary fact 
that if {Fn} so converges to 0, then the same is true of {F n ' } . Now 
w = Fn(z) maps {z : |z| S 1} onto {tt> : |tt> — 1| S 1}. Computing the 
length of the image of {z : \z\ = 1}, we have 

2 , 7 = r i ^ F - ( e i 9 ) i d 0 = ir | / n ( e i e ) |dö 

so that fn lies in the unit ball of if1. We shall prove that {/n} does 
not converge weakly to 0; the same proof works for any subnet of 
{fn}, and since the only possible weak limit of any subnet of {fn} 
is 0, we will have proved that the unit ball in Hl is not weakly compact, 
so that H1 cannot be reflexive. Note now that Fn(l) = 2 for all n, but 
that if 0 < S < 2TT, then Fn(e i0)-» 0 as n - » <». Fixing such a 0, we 
have 

Fn(^)=Fn(l) + i J'/n(e")e*A. 

Since Sôi-^dtGiH1)*, if {fn} converged weakly (to 0), the 
last equation would yield the absurd conclusion 0 = 2 - 1 - 0 . 

PROOF 3. (B. A. Taylor). Analogously to the first proof, we show 
that || A — g || « = 1 for all g G H °°, where we now suppose only that 

ess lim inf {Re A(eiö) : ^ 0 + } â l 

and 

ess lim sup {Re A(eiö) : 0-> 0 - } ̂  - 1 , 

and the conclusion follows much as before. 

Let g = u + iv and suppose that ||A — g||oo = 1 — 2e < 1. Then 

ess lim inf {u(eid) : 0-» 0 + } > c > 0, 

ess lim sup {u(eie) : 0 -* 0 - } < - € < 0. 

Letv*(z) = v(z) - v(0). Then [7, p. 78] 

v*(r€ie) = - J - I* U{6- t)Qr(t) dt, 
LIT J -ir 
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where Qr(t) = 2r sin tl(l — 2r cos t + r2). Hence 

t?*(r) ^ T1 L - — - dt + const. 
v ' TT J -» 1 - 2r cos * + r2 

But 

|* sin* fi & = / l i f \ 
f J o l - 2 r c o s * + r 2 f J - i 1 - 2rs + r2 ° g \ 1 - r / ' 

which approaches + <» as r—» 1—, so that v* and hence g cannot be 
bounded. 

PROOF 4. (C. L. Fefferman) We use the result ( [3] , [4] ) that (H1)* 
is linearly homeomorphic as a Banach space to BMO. This result was 
proved for the Hardy class H 1 in a half-space, but the proof is even a 
bit simpler for the disc. (Alternatively, one knows [7, p. 130] that Hl 

of the half-plane and Hl of the disc are isometrically isomorphic.) 
We identify T with [0, 2TT] and note that a function/ G Ll(T) belongs 
to BMO when 

\\f\\BMO=snp-^-\i \f-aVlf\<co, 

where J runs over intervals in T and avj(/) = (1/|/|) ///• For 
convenience, we identify two functions in BMO whose difference is a 
constant a.e. Now consider again the function A = fß — fa of Proof 1. 
A simple estimate, choosing I as a small interval centered at a jump of 
A, shows that ||A||BMO â 1/2. The consequent non-separability of 
BMO implies that of L °°/H °°. 

PROOF 5. (J. Shapiro) F o r / G H1, and {zk} a sequence in D, define 
T(f) = {(i - W2)M)}. 

We use the result (see [2, Theorems 9.1, 9.2]) that there is a 
sequence {zk} in D such that T is a bounded linear transformation of 
Hl onto Ä1. Such a sequence is called an (H1,^1) interpolation se
quence. Using the canonical homomorphisms, we see that (Hll ker T)* 
is linearly homeomorphic to (A1)*, which is linearly isometric ( = ) to 
JT. But (HVker T)* = (ker T)1 C (H1)* = L^IH00, where 1 denotes 
the annihilator in (H1)*. Since Z°° is not separable, neither is L00///00. 

It is clear from the above considerations that if G is a Riemann 
surface, then Hl(G) will not be reflexive as soon as there exists an 
(Hl(G),Zl) interpolation sequence for a suitable operator T. It seems 
likely that this will be the case as soon as Hl(G) is not trivial, but we 
have no proof. 
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PROOF 6. (Pelczynski). This proof establishes that Hl contains a 
subspace isomorphic to ll, which implies that L°7JF/°° = (H1)* has a 
quotient space isomorphic to £°° and is consequently not separable. 
To this end, we produce a sequence {gn } of functions in H1 such 
that for every finite complex sequence aXi a2> * * *> arwe have 

z i = l ° • i = l ' j= l 

where d\(f) = {%n)~l dt. This is enough for our purpose. Let fn(t) = 
[2"1(1 + e")]n for tE. [0,2TT] and n = 1,2,3, • • \ A direct com
putation shows that for some positive constant c 

(1) l l / » l l = J 7 l/»«l ^ ( ' ) = / * | c o s ^ - | n d X ( f ) ^ C n - » 2 . 

Let us put gn = /n||/n||_1- Clearly, (1) implies that 

(2) limgn(f) = 0 

uniformly for a^t^ß, for any pair (a,ß) with 0 < a < ß < 2n. 
Furthermore, for any fixed n we have 

(3) lim fa |gn(*)| dk(t) = Hm P" \gn(t)\ dk(t) = 0. 

Using (2) and (3), we inductively define an increasing sequence {nk} 
of positive integers, and sequences {ak} and {ßk} of real numbers for 
which 

(4) 0 < ak+l < ak < ßk < ßk+l < 2TT, lim ak = 0, iimßk = 2TT, 
fc-> oo fc-> oo 

and 

(5) J * | g n . (t)| dk(t) < i-i- > for j > k, 

(6) [* | g „ J ( t ) | Ä ( t ) > | | g „ J | - 4 - * - > = l - 4 - * - i 

for; = 1,2, • • ,k. 

Let us set Bx = [außi], Bs = [a„/8,]\[oi_i,j8s_i] for s = 2,3, • • •. 
Next fix a positive integer r and any sequence {au a2, • • -, ar} of com
plex numbers. By (5) and (6), we see that if j > k, then 

f |gn i t)\dX(t)^ P |g . ( t ) | A ( t ) < 4 - J - i < 4 - * . 
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If; < k then 

i \g»,(t)\dk(t)£ J* \gnj(t)\dk(t)- \ßk-l\gnj(t)\dX(t)<4-K 
IBk / 0 J i ak_l 

But if/ = k, then 

[ |g»t(*)l Mt) = I"" \gnk(t)\ dk(t) - ï^-' |g„k,(t)| dX(t) 
'Bk '<xk * - ' « * - 1 

> i __ 4-fe-i _ 4-fc- i> JL 
- "" 8* 

(If k = 1 we could take OQ = ß0 = xr, say.) Thus for fc ̂  r 

Hence 

In the other direction since \\gn. || = 1 forj = 1, 2, 3, • • -, we get 

r I É °,gnj(t) I # ) g EN. 
This completes the proof of the desired inequality, and the rest follows. 

PROOF 7. (Garnett). This proof is based on some material in Chapter 
10 of [7]. We identify L00 with C(X), where X is the spectrum of 
L00. Then (L°7H°°)* = (H00)1 where (J/00)1 is the space of Borei mea
sures fx on X that annihilate H °°. Now suppose that L ™IH °° is separable. 
By Theorem 2.10.1 of [6] it follows that the unit ball B of (H00)1 is 
sequentially compact in the weak star topology of (L°°)*= M(X). 
Take a sequence {pj} of distinct complex numbers with \pj\ = 1, 

Let <Pj be a complex homomorphism of H°° with <pj(z) = pjf 

but <pj (£ X. For example, if {znJ} is a Blaschke sequence, £n,j—» PJ 
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as n—» oo3 then let <Pj be any cluster point of {znj} in the maximal 
ideal space of H °°. Now choose fj G H °° such that <Pj(fj) = 0 
and \fj\= 1 on X. For example, we may take fj to be the Blaschke 
product over the above sequence {zn>j}. Now let fij = f dmjf 

where rrij is the representing measure for <pj. Passing to a subsequence 
if necessary, suppose fij converges weak star to /LLQ. Choose fc£Lx 

so that h(z) = ( — l)jfj(z) almost everywhere on an arc that con
tains pj. Then / h dfjLj = (— l)j, which is a contradiction. The last 
equality uses the fact that / F dnij depends only on the values of F 
near pjy which we now prove. Let G(z) = (1 + PjZ)l2, so that 
G(pj) = 1 , and \G(z)\ < 1 for z ^ py Now 1 = / Gn dmp but as 
n—»oo? / Gn dmj^rrijipj) (where pj is the fiber at pj) by the 
dominated convergence theorem. This proof is now complete. 

Finally, we prove a rather easy result. Here, L°°(D) is the space of 
essentially bounded measurable functions in D and H°°(D) is the space 
of bounded analytic functions in D, both with the essential supremum 
norm. 

PROPOSITION. L °°(D)IH °°(D) is not separable. 

PROOF. F o r O < r< 1, let 

M ' I 0 otherwise. 

Then for 0 < r < s < 1, 

f(z)-f(z)= f * f o r ' < M = *> 
m jÄz) | 0 o t h e r w i s e < 

Let g belong to H "(D), and let A = fs - fr + g. Then by the Cauchy 
integral theorem, 

I=^\P=S \6=7T à(peie)eied6dp= rS pdp = ks+r)(s-r). 

So if € > 0 and if || ||Q denotes the norm in L00(D)/H00(D), then we 
have, for suitable g G #°°(D), 

|/|^(||(/.)-(/r)||Q + € ) r ^ f " f=7r de dpi. 
L 2TT ' p=r ' B = -TT J 

Since the expression in square brackets equals (s — r), we see that 
II (fs) ~~ ( i r ) | |o= (s "*~ r)& a n d restricting our attention, say, to 
r, s ^ 1/2, we conclude that Lcc{D)IHco(D) is not separable. 
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