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APPROXIMATION INDUCED BY A FOURIER SERIES
CHARLES K. CHUI

1. Introduction. Let X be a normed vector space and S be a subset
of X such that the vector space generated by S is dense in X. Suppose
that f is a mapping from S into X and V(f; S) is the vector space
generated by the set {f(x):x € S}. We ask the following question:
For what S and f is V(f;S) dense in X? For instance, for the
Banach space C[0, 1] of continuous functions on the closed unit inter-

val [0, 1] with the supremum norm, we can take S = {1,¢,¢2, - - -}. If
the mapping f from S into C[0,1] is given by f(t*) = t<, k=0,
1, - - -, where a > 0, then by the Stone-Weierstrass theorem we see

that V(f; S) is dense in C[0,1]. Other sets S and other mappings f
for the Banach space C[0, 1] have been considered by Korevaar [3]
and Luxemburg [4]. In this note, we consider the Banach spaces
LP = LP(T) and C = C(T), where T will always denote the unit circle
|z] = 1 in the complex plane, and we take S = {1, e¥, e~¥, e, e 2,
*++}. Our f will be defined by some absolutely convergent Fourier
series, and in particular, some exterior conformal maps. It should be
mentioned that some related but a little different problems on Hilbert
spaces have been considered by Hilding [1, 2] and Pollard [5].

2. Approximation Induced by a Fourier Series. Let & denote the
class of all Fourier series Y, = a; et with

1) g(lakl +las) = | Jaul = Jac] |

Any Fourier series of class & converges uniformly to a continuous func-
tion on T, and we also say that this limit function belongs to class 3.
Hence,

@ fleé) =3 aen

k=—o
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belongs to & if and only if the coefficients g, satisfy (1). If fE€ 3,
we denote by V(f) the vector space of all continuous functions on
T generated by the functions 1, f(e¥), f(e7®), f(e®), f(e™i%),

For instance, if f(e*) = e®* — e~ V(f) is the space of all
odd trigonometric (or sine) polynomials; and if f(e¥) = e + e,
V(f) is the space of all even (or cosine) ones. We have

THeoREM 1. Let f € 3 be given by the Fourier series (2) and dif-
ferent from a constant and let 1= p < . Then V(f) is dense in
L» = L/(T) ifand only ifa,* a_, # 0.

If a) + a_, = 0, then a, = 0 for all n with |n|= 2, so that f(e*) =
a (e — e~*), and hence, V(f) is the space of all sine polynomials.
Similarly, if a; —a_, =0, V(f) is the space of all cosine poly-
nomials. We also remark that the above theorem does not hold for the
Banach space C(T) of all continuous functions on T with the supremum
norm, as can be seen from the following

ExampLE 1. Let

fleit) = e~it — 2.0 %ei@k—l)t.

k=1

Here, we have

o

S (ol + lash) =% = [l = lail ],
k=2 2

and hence fE€ 9. Also, a,*+a_; = —(1/2) £ 1 # 0. However,
f(1)= f(—1) so that every function g in V(f) satisfies g(1) =
g(—1), and hence, uniform limits of sequences chosen from V(f)
also satisfy this condition.

However, if we modify the proof of Theorem 1 a little, we have the
following

CoroLLARY. Let f be given by the Fourier series (2) such that

2 (ol + la—]) = af |as] = la-u| |,
k=2

for some a<1. Then V(f) is dense in C(T) if and only if a; =

a_, % 0.

We now prove Theorem 1. One direction is clear. Suppose now
a,+ a_, #0. We wish to show that V(f) is dense in L?. By the
Hahn-Banach theorem, it is sufficient to prove that every bounded
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linear functional on L? which vanishes on V(f) is the zero func-
tional; but by the Riesz representation theorem every bounded linear
functional on L? can be “represented” by a function in L7 where
l/p + 1llg = 1. Let g € L7 such that

3) [ mg=o,
for all h € V(f). It is sufficient to prove that g = O a.e. Let

(4) b= | z" eiitg(et) dt.

By the uniqueness property of the Fourier series of g, in order to
prove that g =0 a.e., it is sufficient to prove that b; =0 for all
j=0,£1,+2, - By (3) we already know that by = 0 and that
I fleig(et)dt=0 for j=1,%2 ---. Since fE I, its
Fourier series converges to f uniformly on 7. Hence, we have for
allj=x1,%2,---,

©

5) 2 axby = 0.
k=—
Since f is different from a constant, |a;| + |a_,;| # 0. Let us take,
say,0 # |a_,| = |a,|. Letc, = —ai/a_,. Then we have
(6) bj = Clb_j + 2 (ckb—jk + C—kbjk)’
k=2

forallj= +1,+2, - - andsince f € 3, we have

(7) je1] + kz (el + o) = 1.
=2

Let M = sup{|b;|:j= 0, %1, %2, - - -}, and assume, on the contrary,
that M > 0. Since bj— 0 as |j|— © by the Riemann-Lebesgue
theorem, we can choose the largest [j|, say jo > 0, such that |b; | =
M. Hence, |bjx| < M for all k with [k|= 2. Suppose that ¢, # 0
for some k with |k| = 2. Then from (6) forj = j,, we get0 < M = |c, M
+ Y-z (ewb_jucl + le—kbie ) < M{ley| + 3 5-2 (Jel + lc_&])}, and
this is a contradiction to (7). Hence, ¢, =0 for k= £2 +3, - -,
That is, (6) becomes

(8) bj = Clb—j >

for all j= x1,%2, - - . Therefore, b; = c,(c,b;) = ¢,?b;. But a, %
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a_, # 0 means that ¢, # *1 or ¢;2# 1. Hence, b; = 0 for all j.
This contradicts the fact that M > 0.

3. The Exterior Conformal Mapping. Let
9) P)=pzt+ag+ a1z +apz72+ -,

p > 0, be a univalent meromorphic function in |z| > 1. We say that
® belongs to class 3 if

(10) S al =p.

(By the Area Theorem, we know that |a;| = p and |e,| = p if and
only if @, =0 for all k=2,3,---) If ® € T, the series (9) con-
verges uniformly to a continuous function ® on 1 = |z| < ; and we
extend @ to 1 = |z| < © by using this limit and call this extension
also by ®. Let G = Go be the image of |z| > 1 under ®. Then G is
a simply connected domain in the extended plane and contains the
point at infinity. We also denote by dG = 4Gy the boundary of G.

If ® as given by (9) is univalent in |z| > 1 and satisfies Y 7_ k|ax]
= p, we say that ® belongs to the class&. Hence,& C 9. We now
give some examples of functions in &. It is clear that if 4G, is an
ellipse or a straight segment, then ® € &. We also have

ExampLE 2. Let @, as given in (9), be a univalent meromorphic
function in |z| > 1 such that the coefficients a;, k = 1,2, - - -, are non-
negative. Then® €4.

Indeed, the function f(x) = ®(x) — g, is real-valued and one-one
on the interval (1, ©) and f(x)— ® as x— . Hence, it is a strictly
increasing function. Therefore, 0 < f'(x)=p — ¥ % kayx*~! on
(1, ). Takingx— 1, we see that® € G.

For a complex number gy andap > 0, welet L, = {ap + x: —2p =
x=2p} and Ly = {ap + iy: —2p = y = 2p} be the horizontal and
vertical straight line segments with center at a, and length 4p. It is
clear that if dGy = L, then ®(z) = pz + ap + pz~L; and if 0G4 = L,
then ®(z) = pz + ap — pz~!. For ® € I, we again let V(®) be the
vector space of continuous functions on T generated by 1, ®(e¥),
D(e~it), d(ei2t), P(e~*), - - -. As a consequence of Theorem 1 and its
corollary, we have

THEOREM 2. Let ® be a univalent meromorphic function in |z| > 1
as given by (9) and let G be the image of |z| > 1 under ®. If® € G
and 1 = p < © then V(®) is dense in L? if and only if 3G # L,, L,.
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If ® satisfies

(1) o] + ¥ lal =0,
k=2

for some a> 1, then V(®) is dense in C(T) if and only if 3G # L,,
L.

It is clear that V(®) cannot be dense in C(T) if ®(1) = ®(—1) or
®(i) = ®(—i). We have

TueoreM 3. Let @ be a univalent meromorphic function in |z| > 1,
given by (9) and satisfying (11) for some a > 1. Let G be the image
of |z| > 1under ®. Then

(a) if®(1) = ®(—1), G=L, and
(b) ifd(i) = ®(—i), 9G= L,

We only prove (a) since the proof of (b) is similar. Since ®(1) =
®(—1), it is clear that p + a, + a5+ a5+ - - - =0, so that |p + a,]|
=Y -2 lax| Suppose that dG # L,; then by the Area Theorem,
a, # —p, so that ¥ %_, |ax| > 0. Hence, by the Area Theorem,
la,| < p. Therefore, by (11) we have 0<p— |g,|= |p + a,| =
Y i-2lax| = (p — lay)la. This is absurd since a> 1. Hence,
G = L2.

We conclude this note with the following open problem. Let ® be
a univalent meromorphic function in |z| > 1 and let G be the image
of |z| > 1 under ®. Suppose that G is a Jordan curve. Is V(®) dense
in C(T)? Here, although ® may not be of class 3, it still satisfies

2 n-1na,|? = p?
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