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APPROXIMATION INDUCED BY A FOURIER SERIES 
CHARLES K. CHUI 

1. Introduction. Let X be a normed vector space and S be a subset 
of X such that the vector space generated by S is dense in X. Suppose 
that / is a mapping from S into X and V(f; S) is the vector space 
generated by the set {/(x) : x G S } . We ask the following question: 
For what S and / is V(f; S) dense in X? For instance, for the 
Banach space C[0,1] of continuous functions on the closed unit inter­
val [0,1] with the supremum norm, we can take S = {1, t, t2, • • •}. If 
the mapping / from S into C[0,1] is given by f(tk) = H0, k = 0, 
1, • • -, where a> 0, then by the Stone-Weierstrass theorem we see 
that V(fi S) is dense in C[0 ,1] . Other sets S and other mappings / 
for the Banach space C[0,1] have been considered by Korevaar [3] 
and Luxemburg [4]. In this note, we consider the Banach spaces 
LP = Lp(T) and C = C(T), where T will always denote the unit circle 
\z\ = 1 in the complex plane, and we take S = {1, e*', e~u, ei2t, e~m, 
• - -}. Our f will be defined by some absolutely convergent Fourier 
series, and in particular, some exterior conformai maps. It should be 
mentioned that some related but a little different problems on Hilbert 
spaces have been considered by Hilding [1, 2] and Pollard [5]. 

2. Approximation Induced by a Fourier Series. Let S? denote the 
class of all Fourier series J ) " « ak e

ikt with 

(1) î (k l+ |a -* l )â | | « i | - | « - i l l -
k=2 

Any Fourier series of class S? converges uniformly to a continuous func­
tion on T, and we also say that this limit function belongs to class *?. 
Hence, 

(2) /(e")= f «*e* 
k = — °° 
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belongs to <3 if and only if the coefficients ak satisfy (1). If / G <?, 
we denote by V(/) the vector space of all continuous functions on 
T generated by the functions 1, /(e t t), / (e"") , f(ei2t), f(e'i2t)9 

• • •. For instance, if f(eH) = eu — e~il, V(f) is the space of all 
odd trigonometric (or sine) polynomials; and if f(eu) = elt + e~ü, 
V(f) is the space of all even (or cosine) ones. We have 

THEOREM 1. Let f EL Q be given by the Fourier series (2) and dif­
ferent from a constant and let 1 ^ p < » . Then V(f) is dense in 
jj> = lp(T) if and only ifax± a_x / 0. 

If aY + a_! = 0, then an = 0 for all n with |n| ^ 2, so that f(eu) = 
ai(eu — e~u), and hence, V(/) is the space of all sine polynomials. 
Similarly, if ax — a_x = 0, V(f) is the space of all cosine poly­
nomials. We also remark that the above theorem does not hold for the 
Banach space C(T) of all continuous functions on T with the supremum 
norm, as can be seen from the following 

EXAMPLE 1. Let 

Here, we have 

f(Git) = e-it _ ^ 1 i(2k-l)t> 

fe=i 2 

S ( K | + | a _ f c | ) = - l r = | | a 1 | - | a _ 1 | | , 
k=2 Z 

and hence f E D. Also, ax ± a_x = -(1/2) ± 1 /0. However, 
f(l) — f(— 1) so that every function g in V(/) satisfies g(l) = 
g(— 1), and hence, uniform limits of sequences chosen from V(/) 
also satisfy this condition. 

However, if we modify the proof of Theorem 1 a little, we have the 
following 

COROLLARY. Let f be given by the Fourier series (2) such that 

2 ( k | + | 0 - * l ) ^ « l l « i | - | a - i l l , 
k=2 

for some a< 1. Then V(f) is dense in C(T) if and only if ax ± 
a_! ^ 0. 

We now prove Theorem 1. One direction is clear. Suppose now 
ax ± ö_! / 0. We wish to show that V(/) is dense in LP. By the 
Hahn-Banach theorem, it is sufficient to prove that every bounded 
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linear functional on Lp which vanishes on V(f) is the zero func­
tional; but by the Riesz representation theorem every bounded linear 
functional on Lp can be "represented" by a function in Lq where 
Up + IIq = 1. Let g G L« such that 

(3) J r ^ g = 0 , 

for all h G V(f). It is sufficient to prove that g = 0 a.e. Let 

(4) bj = J e^g(eu)dt 

By the uniqueness property of the Fourier series of g, in order to 
prove that g = 0 a.e., it is sufficient to prove that bj = 0 for all 
j = 0, ± 1, ± 2, • • •. By (3) we already know that b0 = 0 and that 
/oV(eiJ')g(eif) dt = ° f o r J = ± 1, ± 2 , • • •. Since / G V, its 
Fourier series converges to / uniformly on T. Hence, we have for 
allj = ± 1 , ± 2 , • • • , 

(5) J akbjk = 0. 
fc=— <» 

Since / is different from a constant, loi) + \a_x\ ^ 0. Let us take, 
say, 0 ^ | a _ ! | ê la j . Letc f c = —ak\a_v Then we have 

00 

(6) bj = cxb_j + ^ (ckb-jk + c_fc&ifc), 
fe=2 

for all j = ± 1, ± 2 , • • -, and s ince / G *?, we have 

(7) | c , | + Ì ( | c f c | + | c _ f c | ) ^ l . 
fc=2 

Let M = s u p i n i : j = 0, ± 1 , ± 2 , • • •}, and assume, on the contrary, 
that M > 0. Since fo,-»0 as \j\-* °° by the Riemann-Lebesgue 
theorem, we can choose the largest |/0|, say j 0 > 0, such that \bJo\ = 
M. Hence, |fyofc| < M for all fc with jfc|â 2. Suppose that c f ey 0 
for some fc with |fc | = 2. Then from (6) for j = j 0 , we get 0 < M ^ |cx |M 
+ Sfc% ( M - M I + \c-kbJok |) < M{| C l | + £ 5U ( K l + \c-k\)}, and 
this is a contradiction to (7). Hence, ck = 0 for fc = ± 2 , ± 3 , • • •. 
That is, (6) becomes 

(8) bj = Clb.j , 

for all j = ± 1 , ± 2 , • • \ Therefore, bj = c^cfa) = c^fo,. But ax ± 



646 C. K. CHUI 

a_! ^ 0 means that cY ^ ± 1 or cx
2 ^ 1. Hence, bj = 0 for all j . 

This contradicts the fact that M > 0. 

3. The Exterior Conformai Mapping. Let 

(9) 4>(z) = pz + a0 + «xZ-1 + a22~2 + ' ' *> 

p > 0, be a univalent meromorphic function in |z| > 1. We say that 
<I> belongs to class ^ if 

(io) S K I ^ P -
fc = l 

(By the Area Theorem, we know that \aY\ ^ p and \ax\ = p if and 
only if ak = 0 for all k = 2,3, • • \ ) If <ï> G <?, the series (9) con­
verges uniformly to a continuous function 4> on 1 ^ |z| < oo ; and we 
extend 4> to 1 = \z\ < oo by using this limit and call this extension 
also by 4>. Let G = G$ be the image of |z| > 1 under <I>. Then G is 
a simply connected domain in the extended plane and contains the 
point at infinity. We also denote by dG = dG<j> the boundary of G. 

If 4> as given by (9) is univalent in \z\ > 1 and satisfies ^ h=ik\ak\ 
^ p, we say that 4> belongs to the class ^ . Hence, ^ C ^?. We now 
give some examples of functions in <3. It is clear that if dG^ is an 
ellipse or a straight segment, thenO G <3. We also have 

EXAMPLE 2. Let 4>, as given in (9), be a univalent meromorphic 
function in \z\ > 1 such that the coefficients afc, k = 1,2, • • -, are non-
negative. Then4> G ^ . 

Indeed, the function /(x) = <I>(x) — a0
 1S real-valued and one-one 

on the interval (1, °° ) and /(x)—» °° as x-» oo. Hence, it is a strictly 
increasing function. Therefore, 0 < / ' ( x ) = p — 5] &=i k^fc**-1 o n 

(1, oo ). Taking x—» 1, we see thatO G <^. 
For a complex number a0 and a p > 0, we let LY = {a0 + x : — 2p ^ 

x ^ 2p} and L2 = {ao + ty : — 2p = y= 2p} be the horizontal and 
vertical straight line segments with center at a0 and length 4p. It is 
clear that if dG<t> = Li then <!>(%) = pz + ö0 + pz~l; and if dG<j> = L2 

then <î>(z) = pz + a0 — pz - 1 . For $ G 9 , we again let V(4>) be the 
vector space of continuous functions on T generated by 1, <ï>(eif), 
®(e~ü), 4>(ei2f), <&(e~*'), • • •. As a consequence of Theorem 1 and its 
corollary, we have 

THEOREM 2. Let 4> be a univalent meromorphic function in \z\ > 1 
05 git>en by (9) önd Ze£ G be the image of \z\ > 1 under 4>. /f 4> G S? 
and 1 ^ p < oo then V(<&) is dense in Lp if and only if dG ^ Lx, L2. 
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If& satisfies 

(ii) kl + « 2 kl = p> 
fc=2 

for some a > 1, then V(4>) is dense in C(T) if and only if dG ^ L1? 

L2. 

It is clear that V(<I>) cannot be dense in C(T) if <I>(1) = 4>( —1) or 
4>(i) = <!>( —i). We have 

THEOREM 3. Let & be a univalent meromorphic function in \z\> 1, 
given by (9) and satisfying (11) for some a > 1. Let G be the image 
of \z\ > 1 under®. Then 

(a) i f* ( l ) = * ( - ! ) , dG = L2 and 

(b) i/*4>(i) = 4)( - i ) , d G = Li. 

We only prove (a) since the proof of (b) is similar. Since 4>(1) = 
4>( —1), it is clear that p + ax + a3 + a5 + • • • = 0, so that |p -H «i | 
— Sfe=2 \ak\- Suppose that dG ^ L2; then by the Area Theorem, 
ai^ —p, so that ^ fc=2 \ak\ > 0- Hence, by the Area Theorem, 
la j < p. Therefore, by (11) we have 0 < p — |fli| = |p + ax\ â 
S fc =2 kfcl = (p ~~ lflil)/«- This is absurd since a > 1. Hence, 
dG = L2. 

We conclude this note with the following open problem. Let <I> be 
a univalent meromorphic function in \z\ > 1 and let G be the image 
of \z\ > 1 under <E>. Suppose that dG is a Jordan curve. Is V(4>) dense 
in C(T)? Here, although <I> may not be of class <?, it still satisfies 

2S-mkl2^P2 . 
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