APPROXIMATION INDUCED BY A FOURIER SERIES

CHARLES K. CHUI

- 1. **Introduction.** Let X be a normed vector space and S be a subset of X such that the vector space generated by S is dense in X. Suppose that f is a mapping from S into X and V(f; S) is the vector space generated by the set $\{f(x):x\in S\}$. We ask the following question: For what S and f is V(f, S) dense in X? For instance, for the Banach space C[0,1] of continuous functions on the closed unit interval [0, 1] with the supremum norm, we can take $S = \{1, t, t^2, \dots\}$. If the mapping f from S into C[0,1] is given by $f(t^k) = t^{ak}$, k = 0, 1, \cdots , where $\alpha > 0$, then by the Stone-Weierstrass theorem we see that V(f; S) is dense in C[0, 1]. Other sets S and other mappings f for the Banach space C[0,1] have been considered by Korevaar [3] and Luxemburg [4]. In this note, we consider the Banach spaces $L^p = L^p(T)$ and C = C(T), where T will always denote the unit circle |z|=1 in the complex plane, and we take $S=\{1,e^{it},e^{-it},e^{i2t},e^{-i2t},$ \cdots . Our f will be defined by some absolutely convergent Fourier series, and in particular, some exterior conformal maps. It should be mentioned that some related but a little different problems on Hilbert spaces have been considered by Hilding [1, 2] and Pollard [5].
- 2. Approximation Induced by a Fourier Series. Let \mathcal{D} denote the class of all Fourier series $\sum_{-\infty}^{\infty} a_k e^{ikt}$ with

(1)
$$\sum_{k=2}^{\infty} (|a_k| + |a_{-k}|) \le ||a_1| - |a_{-1}||.$$

Any Fourier series of class \mathfrak{P} converges uniformly to a continuous function on T, and we also say that this limit function belongs to class \mathfrak{P} . Hence,

(2)
$$f(e^{it}) = \sum_{k=-\infty}^{\infty} a_k e^{ikt}$$

Received by the Editors November 18, 1971.

AMS 1971 Subject classifications: Primary 4130; Secondary 3001.

Key words and phrases: Approximation, Fourier series, conformal mapping, The spaces L^p and C.

644 с. к. сни

belongs to \mathfrak{I} if and only if the coefficients a_k satisfy (1). If $f \in \mathfrak{I}$, we denote by V(f) the vector space of all continuous functions on T generated by the functions 1, $f(e^{it})$, $f(e^{-it})$, $f(e^{i2t})$, $f(e^{-i2t})$, \cdots . For instance, if $f(e^{it}) = e^{it} - e^{-it}$, V(f) is the space of all odd trigonometric (or sine) polynomials; and if $f(e^{it}) = e^{it} + e^{-it}$, V(f) is the space of all even (or cosine) ones. We have

THEOREM 1. Let $f \in \mathcal{P}$ be given by the Fourier series (2) and different from a constant and let $1 \leq p < \infty$. Then V(f) is dense in $L^p = L^p(T)$ if and only if $a_1 \pm a_{-1} \neq 0$.

If $a_1+a_{-1}=0$, then $a_n=0$ for all n with $|n| \ge 2$, so that $f(\mathrm{e}^{it})=a_1(\mathrm{e}^{it}-\mathrm{e}^{-it})$, and hence, V(f) is the space of all sine polynomials. Similarly, if $a_1-a_{-1}=0$, V(f) is the space of all cosine polynomials. We also remark that the above theorem does *not* hold for the Banach space C(T) of all continuous functions on T with the supremum norm, as can be seen from the following

Example 1. Let

$$f(e^{it}) = e^{-it} - \sum_{k=1}^{\infty} \frac{1}{2^k} e^{i(2k-1)t}.$$

Here, we have

$$\sum_{k=2}^{\infty} (|a_k| + |a_{-k}|) = \frac{1}{2} = ||a_1| - |a_{-1}||,$$

and hence $f \in \mathfrak{D}$. Also, $a_1 \pm a_{-1} = -(1/2) \pm 1 \neq 0$. However, f(1) = f(-1) so that every function g in V(f) satisfies g(1) = g(-1), and hence, uniform limits of sequences chosen from V(f) also satisfy this condition.

However, if we modify the proof of Theorem 1 a little, we have the following

COROLLARY. Let f be given by the Fourier series (2) such that

$$\sum_{k=2}^{\infty} (|a_k| + |a_{-k}|) \le \alpha |a_1| - |a_{-1}| |,$$

for some $\alpha < 1$. Then V(f) is dense in C(T) if and only if $a_1 \pm a_{-1} \neq 0$.

We now prove Theorem 1. One direction is clear. Suppose now $a_1 \pm a_{-1} \neq 0$. We wish to show that V(f) is dense in L^p . By the Hahn-Banach theorem, it is sufficient to prove that every bounded

linear functional on L^p which vanishes on V(f) is the zero functional; but by the Riesz representation theorem every bounded linear functional on L^p can be "represented" by a function in L^q where 1/p + 1/q = 1. Let $g \in L^q$ such that

$$\int_{T} h \overline{g} = 0 ,$$

for all $h \in V(f)$. It is sufficient to prove that g = 0 a.e. Let

$$(4) b_j = \int_0^{2\pi} e^{ijt} \overline{g}(e^{it}) dt.$$

By the uniqueness property of the Fourier series of \bar{g} , in order to prove that g=0 a.e., it is sufficient to prove that $b_j=0$ for all $j=0,\pm 1,\pm 2,\cdots$. By (3) we already know that $b_0=0$ and that $\int_0^{2\pi} f(e^{ijt}) \bar{g}(e^{it}) dt = 0$ for $j=\pm 1,\pm 2,\cdots$. Since $f \in \mathcal{P}$, its Fourier series converges to f uniformly on T. Hence, we have for all $j=\pm 1,\pm 2,\cdots$,

$$\sum_{k=-\infty}^{\infty} a_k b_{jk} = 0.$$

Since f is different from a constant, $|a_1| + |a_{-1}| \neq 0$. Let us take, say, $0 \neq |a_{-1}| \geq |a_1|$. Let $c_k = -a_k |a_{-1}|$. Then we have

(6)
$$b_{j} = c_{1}b_{-j} + \sum_{k=2}^{\infty} (c_{k}b_{-jk} + c_{-k}b_{jk}),$$

for all $j = \pm 1, \pm 2, \cdots$, and since $f \in \mathcal{P}$, we have

(7)
$$|c_1| + \sum_{k=2}^{\infty} (|c_k| + |c_{-k}|) \le 1.$$

Let $M=\sup\{|b_j|:j=0,\pm 1,\pm 2,\cdots\}$, and assume, on the contrary, that M>0. Since $b_j\to 0$ as $|j|\to\infty$ by the Riemann-Lebesgue theorem, we can choose the largest $|j_0|$, say $j_0>0$, such that $|b_{j_0}|=M$. Hence, $|b_{j_0k}|< M$ for all k with $|k|\geqq 2$. Suppose that $c_k\ne 0$ for some k with $|k|\geqq 2$. Then from (6) for $j=j_0$, we get $0< M\leqq |c_1|M+\sum_{k=2}^\infty (|c_kb_{-j_0k}|+|c_{-k}b_{j_0k}|)< M\{|c_1|+\sum_{k=2}^\infty (|c_k|+|c_{-k}|)\}$, and this is a contradiction to (7). Hence, $c_k=0$ for $k=\pm 2,\pm 3,\cdots$. That is, (6) becomes

$$(8) b_i = c_1 b_{-i} ,$$

for all $j = \pm 1, \pm 2, \cdots$. Therefore, $b_j = c_1(c_1b_j) = c_1^2b_j$. But $a_1 \pm a_2 + a_3 + a_4 + a_4 + a_5 + a_$

646 C. K. CHUI

 $a_{-1} \neq 0$ means that $c_1 \neq \pm 1$ or $c_1^2 \neq 1$. Hence, $b_j = 0$ for all j. This contradicts the fact that M > 0.

3. The Exterior Conformal Mapping. Let

(9)
$$\Phi(z) = \rho z + a_0 + a_1 z^{-1} + a_2 z^{-2} + \cdots,$$

 $\rho > 0$, be a univalent meromorphic function in |z| > 1. We say that Φ belongs to class $\mathcal P$ if

(10)
$$\sum_{k=1}^{\infty} |a_k| \leq \rho.$$

(By the Area Theorem, we know that $|a_1| \leq \rho$ and $|a_1| = \rho$ if and only if $a_k = 0$ for all $k = 2, 3, \cdots$.) If $\Phi \in \mathcal{P}$, the series (9) converges uniformly to a continuous function Φ on $1 \leq |z| < \infty$; and we extend Φ to $1 \leq |z| < \infty$ by using this limit and call this extension also by Φ . Let $G = G_{\Phi}$ be the image of |z| > 1 under Φ . Then G is a simply connected domain in the extended plane and contains the point at infinity. We also denote by $\partial G = \partial G_{\Phi}$ the boundary of G.

If Φ as given by (9) is univalent in |z| > 1 and satisfies $\sum_{k=1}^{\infty} k|a_k| \le \rho$, we say that Φ belongs to the class \mathcal{G} . Hence, $\mathcal{G} \subset \mathcal{G}$. We now give some examples of functions in \mathcal{G} . It is clear that if ∂G_{Φ} is an ellipse or a straight segment, then $\Phi \in \mathcal{G}$. We also have

EXAMPLE 2. Let Φ , as given in (9), be a univalent meromorphic function in |z| > 1 such that the coefficients $a_k, k = 1, 2, \dots$, are nonnegative. Then $\Phi \in \mathcal{G}$.

Indeed, the function $f(x) = \Phi(x) - a_0$ is real-valued and one-one on the interval $(1, \infty)$ and $f(x) \to \infty$ as $x \to \infty$. Hence, it is a strictly increasing function. Therefore, $0 < f'(x) = \rho - \sum_{k=1}^{\infty} k a_k x^{k-1}$ on $(1, \infty)$. Taking $x \to 1$, we see that $\Phi \in \mathcal{G}$.

For a complex number a_0 and a $\rho > 0$, we let $L_1 = \{a_0 + x : -2\rho \le x \le 2\rho\}$ and $L_2 = \{a_0 + iy : -2\rho \le y \le 2\rho\}$ be the horizontal and vertical straight line segments with center at a_0 and length 4ρ . It is clear that if $\partial G_{\Phi} = L_1$ then $\Phi(z) = \rho z + a_0 + \rho z^{-1}$; and if $\partial G_{\Phi} = L_2$ then $\Phi(z) = \rho z + a_0 - \rho z^{-1}$. For $\Phi \in \mathfrak{I}$, we again let $V(\Phi)$ be the vector space of continuous functions on T generated by 1, $\Phi(e^{it})$, $\Phi(e^{-it})$, Φ

Theorem 2. Let Φ be a univalent meromorphic function in |z| > 1 as given by (9) and let G be the image of |z| > 1 under Φ . If $\Phi \in \mathfrak{P}$ and $1 \leq p < \infty$ then $V(\Phi)$ is dense in L^p if and only if $\partial G \neq L_1, L_2$.

If Φ satisfies

$$|a_1| + \alpha \sum_{k=2}^{\infty} |a_k| \leq \rho ,$$

for some $\alpha > 1$, then $V(\Phi)$ is dense in C(T) if and only if $\partial G \neq L_1$, L_2 .

It is clear that $V(\Phi)$ cannot be dense in C(T) if $\Phi(1) = \Phi(-1)$ or $\Phi(i) = \Phi(-i)$. We have

Theorem 3. Let Φ be a univalent meromorphic function in |z| > 1, given by (9) and satisfying (11) for some $\alpha > 1$. Let G be the image of |z| > 1 under Φ . Then

(a) if
$$\Phi(1) = \Phi(-1)$$
, $\partial G = L_2$ and

(b)
$$if\Phi(i) = \Phi(-i)$$
, $\partial G = L_1$.

We only prove (a) since the proof of (b) is similar. Since $\Phi(1) = \Phi(-1)$, it is clear that $\rho + a_1 + a_3 + a_5 + \cdots = 0$, so that $|\rho + a_1| \le \sum_{k=2}^{\infty} |a_k|$. Suppose that $\partial G \ne L_2$; then by the Area Theorem, $a_1 \ne -\rho$, so that $\sum_{k=2}^{\infty} |a_k| > 0$. Hence, by the Area Theorem, $|a_1| < \rho$. Therefore, by (11) we have $0 < \rho - |a_1| \le |\rho + a_1| \le \sum_{k=2}^{\infty} |a_k| \le (\rho - |a_1|)/\alpha$. This is absurd since $\alpha > 1$. Hence, $\partial G = L_2$.

We conclude this note with the following open problem. Let Φ be a univalent meromorphic function in |z| > 1 and let G be the image of |z| > 1 under Φ . Suppose that ∂G is a Jordan curve. Is $V(\Phi)$ dense in C(T)? Here, although Φ may not be of class \mathcal{P} , it still satisfies $\sum_{n=1}^{\infty} n|a_n|^2 \leq \rho^2$.

REFERENCES

- 1. S. H. Hilding, On the closure of disturbed complete orthonormal sets in Hilbert spaces. Ark. Mat. Astr. Fys. 32B, No. 7, 3 pp. (1946).
- 2. —, Note on completeness theorems of Paley-Wiener type. Ann. Math. 49, 953-955 (1948).
- 3. J. Korevaar, The uniform approximation to continuous functions by linear aggregates of functions of a given set. Duke Math. J. 14, 31-50 (1947).
- **4.** W. A. J. Luxemberg, Closure properties of sequences of exponentials $\{\exp(i\lambda_n t)\}$. To appear.
- 5. H. Pollard, Completeness theorems of Paley-Wiener type. Ann. Math. 45, 738-739 (1944).

Texas A&M University, College Station 77843