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§1. Introduction. Let € stand for the set of non-negative integers
(numbers), V for the class of all subcollections of € (sets), A for the set
of isols, and () for the class of all recursive equivalence types (RET).
The relation of inclusion is denoted C, a recursively equivalent to 8
by a==p, for sets @ and B, and the RET of a by Req (a). For the
purpose of this paper we say a semigroup is an ordered pair (a, p),
where (i) @ C € and (ii) p is a semigroup operation (i.e., an associative
binary multiplication) on @ X a. An w-semigroup is a semigroup
(a, p), where p can be extended to a partial recursive function of two
variables. The concept of an w-semigroup is a recursive analogue of
a semigroup and is a generalization of an w-group. In this paper, the
author shows (T2), that there are w-semigroups which are groups but
not w-groups; but that all periodic w-semigroups which are groups,
are w-groups (T1). Theorems T3, T5, T6, T7, and T11 give conditions
for an w-semigroup to be an w-group. The recursive analogues of
regular semigroup, inverse semigroup, and right group [ w-regular w-
semigroup, inverse w-semigroup, and w-right group] are studied in
sections §5, §6, §8 respectively, with particular attention paid to
T(c), the analogue of the regular semigroup of all mappings from & into
a, and I(a), the analogue of the symmetric inverse semigroup on a.
Theorems T17 and T22 relate w-regular w-semigroups to w-groups and
T28 relates w-regular w-semigroups to inverse w-semigroups. In T42
and T43 we have two nice characterizations of an w-right group and
T45 shows that a periodic w-semigroup that is a right group is an -
right group. Finally section §7 gives a brief introduction to the -
homomorphism theory of w-semigroups. The author wishes to thank
the referee for his helpful suggestions.

§2. Basic concepts and notations. The reader of this paper is
assumed to be familiar with the notation and basic results of [2],
[6],and [7].
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Remark. We recall from [7] that an w-group is an ordered pair
(e, p) where (i) a C ¢, (ii) p is a group operation on a X a which can
be extended to a partial recursive function of two variables, (iii) the
function which takes x to its inverse under p has a partial recursive
extension.

Remark. We recall from [6] that R = Req (€) and Qj is the set of
all regressive RET's.

REMARK. As for w-groups, for S= (e, p), an w-semigroup, we
usually denote p(x, y) by x - y or just xy, for x, y € a. Also x" is defined
by x! = xand x"*! = x" - x, forx € a.

DerFiNtTiON. If S = (@, p) is an w-semigroup, then the order of S,
[written: o(S)] is Req (a).

DEeFINITION. Let S = (a, p) be an w-semigroup. Then
(i) Sisan r.e. semigroup if o(S) = R,
(ii) S is an isolic semigroup if o(S) E A,

DeFiNITION. A function ¢ from an w-semigroup S; onto an w-semi-
group S, is an w-isomorphism if ¢ is a semigroup isomorphism which
has a one-to-one partial recursive extension.

DEFINITION. An w-semigroup S, is w-isomorphic to an w-semigroup
Sy [written: §; =, S,] if there exists an w-isomorphism mapping S,
onto S,.

Remagk. IfS, = S,, then o(S,) = o(S,).

REMARK. Any subsemigroup of an w-semigroup is clearly an w-
semigroup.

NoratioN. For an w-semigroup S, we write H = S to denote that
H is a subsemigroup of S.

DeFiNITION. A subsemigroup H = (B, q) of an w-semigroup S =
(e, p) is a recursive subsemigroup of S [written: H =, S] if B |a —
B, i.e., if B is separable from a — B.

ReMark. We recall from semigroup theory that a semigroup S is
periodic if every element has finite order, i.e., for every x € S, the
cyclic semigroup generated by x is finite. We note that every isolic
semigroup is periodic.

§3. w-Semigroups and w-groups.

Tueorem T1. If S is a periodic w-semigroup and is also a group
then S is a periodic w-group.
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Proor. Since S = (a, p) is an w-semigroup and a group then a C e
and p is a group operation on a X a which can be extended to a
partial recursive function of two variables. Thus it suffices to show
that the function mapping x to its inverse under p, x~}, for x € a has
a partial recursive extension. But, S is a periodic group. Therefore
given x Ea, x# e, there exists n Ee — {0} such that x" =g,
where e is the identity of S. Hence x~! = x"~1. We can now easily
see that x ~! has a partial recursive extension.

CoroLLARY. If S = (a, p) is an isolic semigroup which is a group
then S is an isolic group.

Proor. This is immediate from the fact that every isolic semigroup
is periodic.
The statement of Theorem 1 leads one to ask if every w-semigroup

which is a group is also an w-group. The answer to this question is no
as is shown by Theorem 2 which is due to Hassett.

ReEMark. We need the recursive mappings j, k, £ defined by:
jx,y)=x+ (x + y)x + y + 1)2, j[k(n),&(n)] = n. We recall that
j maps €2 one-to-one, onto €.

Tueorem T2. There exists an w-semigroup that is a group but not
an w-group.

Proor. Let a be an r.e. set which is not recursive and a(x) be a one-
to-one recursive function ranging over a. Assume without loss of
generality that a¢(0) = 0 and a(1) = 1. For each number n > 1, we
define a cyclic group C,, as follows:

(a) If n € o, (3k)[a(k) = n]. Let C, be a cyclic group of order k,
{x, + - -, k"1, xk = e} and encoded by:

x ©j(n,0)
x? o j(n, 2)
x*-1 e j(n, 2k — 4)
eel]

(b) If n $ a, C, is an infinite cyclic group w1th generator z and
encoded by:
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& <> j(n, 2m = 1)

22 < j(n,2)
2 < j(n, 0)
ee]

z7lejn, 1)

z~2 e j(n, 3)

z:"" ©j(n,2m — 1)

Let G be a recursive direct product of the C,, i.e., G= ®, c_10,1; Ca
where x € G if and only if x is a Godel number of a member of the
direct product of the C,’s which has only a finite number of coor-
dinates which are different from 1. If we can show that the mulitplica-
tion in G is effective we will be done, since then G will be an -
semigroup that is a group but not an w-group. For, we have forn > 1,

n € a < the inverse of j(n, 0) is not j(n, 1).

Thus if we could effectively find inverses for elements in G, we could
effectively decide if n € a, for n E €. This is impossible since « is
not recursive.

In order to show multiplication is effective in G, it suffices to con-
sider the effectiveness of coordinate multiplication, i.e., it suffices to
show that multiplication is effective in C,, for an arbitrary n. Thus
let j(n, k) and j(n, w) be given:

(a) If k is even and w is odd we know that we are in a C, which
is infinite cyclic. Then j(n, k) © z¥2 and j(n, w) < z~@+V2 and
the product of j(n, k) and j(n, w) is the code number of zlk—@+D)2,

(b) If both k and w are odd, then C, is infinite cyclic and we pro-
ceed as in (a).

(c) If both k and w are even, then no matter whether C, is finite or
infinite, j(n, k) © z¥2 and j(n, w) © z*/2, where z is the generator
of C,. Thus j(n, k) - j(n,w) is the code number of z**wV2; but if
C, is finite we might have to reduce (k + w)/2 modulo the order of
C,. However, this is easy. We just compute a(0), * - *, a((k + w)/2).
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If n does not appear in this list, the product is j(n, (k + w)/2), since
order (C,) > (k + w)l2. If n does appear, n= a(j) for some j<
(k + w)i2 and j= order C,. Then we reduce (k + w)/2 modulo j.
In either case we can effectively compute j(n, k) * j(n, w).

Since multiplication is effective in C, and the Godel numbering
in G is effective and one-to-one, it follows that the multiplication in
G can be extended to a partial recursive function of two variables.
Hence G is an w-semigroup that is a group but not an w-group.

DerFINITION. An element i of a semigroup S is an idempotent if
i2=i.

ReEmark. By [8, p. 113], every element x of a periodic semigroup
has a power of itself, x", such that x" is an idempotent.

DerFiniTION. A semigroup S is a left (right) cancellation semigroup if
forx,y,z€8,x y=x-z2=>y=2(y -x=2z x=y=2z). Asemi-
group S is a cancellation semigroup if it is both a left and right can-
cellation semigroup.

Tueorem T3. A periodic w-semigroup with left cancellation is an
w-group if and only if it has a single idempotent.

Proor. Let S be a periodic w-semigroup with left cancellation. If
S is an w-group then S has only one idempotent, namely its identity.
Conversely if S has a single idempotent then by [8, p. 113], S is a
group. Hence by T1, S is an w-group.

CoroLLary 1. An isolic semigroup with left cancellation is
an isolic group if and only if it has a single idempotent.

CoroLLARY 2. A periodic w-semigroup which is not an w-group
cannot be embedded in an w-group.

Proor. Let S be a periodic w-semigroup. Thus S has an idempotent.
If S has more than one idempotent then any group that S is embedded
in has more than one idempotent. This is impossible since a group
has only one idempotent. Hence if S has more than one idempotent
S cannot be embedded in an w-group. Also if S has a single idem-
potent then by T3, since S is not an w-group, S is not left cancellative.
Hence there exist x,y,2 € S such that x *y=x -z but y 7‘ z. But
then if S is embedded in an w-group the above will violate the can-
cellation property in that w-group. This completes the proof.

The following three examples of w-semigroups which are not w-
groups together show that the conditions of T3 are all necessary.
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ExampLes. (1) (€, +) is a non-periodic w-semigroup which is can-
cellative and contains a single idempotent.

(2) Define S = (a, p) for « C € by p(x, y) = k for k a fixed element
of @ and x,y € § is a periodic w-semigroup with a single idem-
potent, but S does not have a left cancellation property.

(3) Define S = (a,p) for aCe by p(x,y) =y forx,yEa Sisa
periodic w-semigroup with left cancellation. But S has no unique
idempotent, since every element of § is an idempotent.

ReMark. Every w-semigroup of the form of example (3) is called a
right zero w-semigroup.

ReEMark. In [7], Hassett showed that there are continuum many
(c) RET’s which are not the order of an w-group. This is not the case
for w-semigroups.

TuEOREM T4. For every A € (), there exists an w-semigroup S such
that o(S) = A.

Proor. Examples (2) and (3) above are such w-semigroups.

Remark. Since every periodic cancellation semigroup is a group,
T1 allows us to prove the following theorem.

Tueorem T5. Every periodic cancellation w-semigroup is an -
group.
CoroLrary. Every cancellation isolic semigroup is an isolic group.

§4. w-Divisors.

DeFiniTION. Let S be an w-semigroup and P a property of S. We
say that an element y € S can be effectively found given x,, - - -, x,
(orfromx,, - - -, x,) such that P(x,, - - -, x,,y),forx,, - - -, x, ES,n= 1,
if there exists a function f such that:

(i) 8f is the set of all n-tuples (w, * - -, w,), wy, * - -, w, €S, such
that there exists a z € S for which P(w,, - - -, w,, 2),
(ii) forall (wy, - - -, w,) € 8f, P(wy, * - -, w,, f(w,, * * *, w,)),
(lll) f(xl, v 'axn) = y,

(iv) f can be extended to a partial recursive function of n variables.

Remark. The purpose of the above definition is to allow us to talk
about certain effective properties of individual n-tuples of elements of
S in such a way that if the property holds for all n-tuples of elements
of S then it holds uniformly for S. The need for the definition should
become clear to the reader as he proceeds through this paper.
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Remark. If the property P is clear from the context, we may just
say an element y € S can be effectively found givenx,, - - -, x,.

DEFINITION. An element b of an w-semigroup S is called a right
w-divisor of the element a € § if there exists an x € S which can be
effectively found from @ and b such that x - b= a. An element b € S
is called a left w-divisor of a € S if there exists a y € S which can be
effectively found from a and b such thatb ‘- y = a.

Noration. If b is a right (left) w-divisor of a, we say a is -
divisible on the right (left) by b.

ReMark. The following three theorems relate w-divisibility to -
groups.

TueoreM T6. An w-semigroup S is an w-group if and only if each
of its members is w-divisible both on the right and the left by every
element of S.

Proor. Left to the reader.

RemMark. The conditions in T6 for S to be an w-group can be weak-
ened as follows.

Tueorem T7. If an w-semigroup S possesses an element which is
both a right and left w-divisor of every element of S and at the same
time, itself is w-divisible both on the right and left by every element
of S, then S is an w-group, and conversely.

Proor. See [8, p. 46].

RemMark. Suppose that G, = (ay, p;) and G, = (ap, p2) are w-groups,
and a; | . We can define an w-semigroup S = (a, p) as follows. Let
a= a; U &, and for x, y € a define p(x, y) to be p,(x,y), if x,y € ay;
pa(x,y), if x,y € @y, and if x € @, and y € a, then p(x, y) = p(y, x) =
y. It is straightforward to show that S is an w-semigroup and that S
has both left and right e-divisors. Also it is clear that if @ and a, are
non empty, that S is not a group. Let B be the set of all elements of
S that are both left and right w-divisors of every element of S, and let
C be the set of all elements of S that are w-divisible both on the right
and the left by every element of S.

TaeorReM T8. Following the above notation, G, = B and G, = C.
Proor. See [8, p. 46].

Remark. We recall from semigroup theory that for ¢, bE S, S a
semigroup, ifa - b= a (b - a = a) then a is called a left (right) zero of b
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and b is called a right (left) unit of a. Also an element of S that is a
two-sided unit (zero) of S (i.e., every element of S) is called a unit (zero)
of . The following is a theorem of semigroup theory.

TueoreM T9. A semigroup possesses at most one unit and one zero.
Remark. By T9, we also refer to a unit of S as the identity of S.

TreOREM T10. Let S be an w-semigroup which possesses left and
right w-divisors.
(i) A unit of S is a right and left w-divisor of every element of S.
(ii) Every element of S is both a right and left w-divisor of a zero
of S.
f(iii) The zero of S is neither a right nor left w-divisor of any element
of S, except itself.

Proor. Left to the reader.

Tueorem T11. The following three conditions on an w-semigroup
S are equivalent:
(i) S possesses a unit and each element x of S possesses a multi-
plicative inverse which can be effectively found given x.
(ii) S possesses a right unit i, and every element of S is a left w-
divisor of i.
(iii) Sisan w-group.

Proor. Left to the reader.
§5. w-Regular w-semigroups.

Remark. The following are analogues of the concepts of regular
semigroup and completely regular semigroup as used in [8].

DEeriniTION. Let S be an w-semigroup. An element a of S is said to
be w-regular if we can effectively find an x € S, given a, such that
a-x-a=a.

DEfFINITION. An w-semigroup S is said to be w-regular if every
element of S is w-regular.

RemMark. We see that S is w-regular if and only if there is a function
f defined on S, such that for all a €S, a - f(a) -a=a and f has
a partial recursive extension.

Remark. We also note that if S has an w-regular element, then
every regular element is w-regular.

DEerinITION. An element a of an w-semigroup S is said to be com-
pletely w-regular, if we can effectively find, given a, an x € S such that
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a * x - a = a and this x also satisfies the condition thata - x = x - a.

ReMark. The above definition of a € S being completely w-regular
is to be read so that a is w-regular and in additiona - x = x * a.

RemMark. Although this definition may seem to be unnatural and it
would appear the definition should read “an element a is completely
w-regular if we can effectively find, given @, an x € Ssuch thata - x - a
=aanda ‘- x=x - a, there is a good reason for not using this second
definition. By using the second definition, it would be possible to
have a completely w-regular element which is not w-regular. This
would occur for an w-semigroup S in which there are regular elements
a and no general effective procedure for finding an x such that
a *x - a = a, but for the restricted set of regular elements which are
completely regular there is such an effective procedure. The first
definition does not have this problem. Also, both definitions are
equivalent for w-semigroups in which all elements are completely
w-regular.

DEFINITION. An w-semigroup S is said to be completely w-regular
if every element of S is completely w-regular.

RemMarks. (i) For a commutative w-semigroup S, S is w-regular if
and only if S is completely w-regular.

(ii) An e-group is a completely w-regular w-semigroup.

(iii) Every completely w-regular element (w-semigroup) is an w-
regular element (w-semigroup).

DeFINITION. A finite partial (f.p.) function, f, is a function such
that 8f and pf are finite sets.

RemMark. It is clear that if f is an fp. function then f is a partial
recursive function.

NoraTion. Let g(n) denote the (n + 1)t odd prime, for n E €.

DeriniTION. Let a and B be sets. A function f is an fp. function
from B into a, if f is an f.p. function such that §f C B and pf C a.

NoratioN. Let aCe. &a)= {f|f is an fp. function from «
into a}. If a = ¢, then §(a) = ¢

Noramion. Let fEE If §f = P, then f*=1. Suppose &f

has n + 1 members, say {xo, - * *, %,}, then

f* = 9n+l H q(xi)f('x‘-)«f-l.
i=0
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Remark. Let f,g€ & If pfNég= P, then 8(ge f)= @P.
If pfNdg#P, then 8(ge f)=f Y pf Ndg). Hence we have
a multiplication of f, g € £by

o fie) = {ESEDExE8g ),

undefined, otherwise.

We see that g° fE€ &, if g and f are in £& If we are given g and
f we can effectively find go f. Also the above multiplication in §
is clearly associative. Given f€E€ ¢ ie., given 8f pf and f(x)
for each x € §f, we can effectively find f* and vice versa. We
see that f © f* is a one-to-one Godel numbering of €.

NoraTion. Let « Ce. We denote the semigroup (é(a), ° ) by 7(a).
Also £*a)= {f*|fE &)} and the semigroup (£*(a),°) is
denoted by T(a), where f*og*= (fog)* for f*, g* € &¥(a)

ReMark. T(e) is a universal r.e. super semigroup for all T(a), a C e.

TueoreM T12. Let a C €. T(a) is an w-regular o-semigroup.

" Proor. Multiplication in T(a) is effective since given f* g* €
T(a), we can effectively find f,g € 7(a). Then we can compute
feog in 7(a) and effectively find (f° g)*. Thus it follows that
T(a) is an w-semigroup. Given f € 1(a) we can effectively find all
of its inverse functions such that §f~! = pf, since §f and pf are
finite. We select a unique one by: f~l(y)= (ux)[x € §f&
fx)=y] for yEpf Clearly fof-lef=f for fE(a)
Thus for f* € T(a), f*o (f)*e f*= f* It follows that T(a)
is an w-regular w-semigroup.

ReMagrk. For a C ¢, 7(a) is not a group, since every partial identity
function on a, ie., f(x) = x, for x € §f C a, is an idempotent, and
there are 2Rea@ such partial identity functions. Thus T(a) is not an
w-group.

Tueorem T13. Let a C € and Req(a) = A. Theno(T(a)) = (A + 1)A.

Proor. We assume without loss of generality that 0 $ a. Hence
A+ 1= Req(aU {0}). We recall from [6] that (A+1)4A=
Req(a U {0})2 where (aU {0})>= {n|r, is a finite function from «
into « U {0}}. Define a map ¢ from £*(a) into (a U {0})* as follows.
Let f* € £*(a). Form the finite function r, with §., = 8f and

— flx), ifx € 8.1y,
() 0, if x $ L.
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Put ¢(f*)=n. It is easy to see that ¢ maps £*(a) one-to-one,
onto (@ U {0})~ and that ¢ and ¢ ~! have partial recursive extensions.
Hence by [5, Proposition 1], é*(a)==(aU {0})>~ Thus o(T(a)) =
(A+ 1)

THeEOREM T14. Fora,B Cee,
a=g = T(a) =, T(B).
Proor. Left to the reader.
Tueorem T15. For a, B non empty isolated sets,
o= p=T(a)=, T(B)

Proor. It suffices to show by T14 that T(a) =, T(B)=>a=8.
However it is easy to show that the function f(n) = (n + 1)" is a
one-to-one recursive combinatorial function. Hence by [4, p. 54] and

T13, if Req(a) = A and Req(B) = B, then
T@)=,TB)=(A+ 1A= (B+ 1)B=A= B=a=4.

CoroLLARY. There are ¢ non w-isomorphic w-regular isolic semi-
groups which are not isolic groups.

TueoreMm T16. LetB C . Then
T(B) =,e T(a) ifand only if B | a — B.

Proor. If B |a— B, it is clear that £*(8) | €*(a)'— €*(B). Hence
T(B) =, T(a). Conversely if £*(B)|&*(a) — £*(B), then let b be
a fixed element of B. For x € a, let f, be the f.p. function such that
8f: = pf: = {x,b} and f(b) = x, f(x) = b. But we see that x € if
and only if f,* € £*(B). It follows thatB |a — B.

Tueorem T17. If S is an w-regular w-semigroup that is a group, it
is an w-group.

Proor. Leta € S. We can effectively find x € Ssuch thata - x - a =
a. But x is clearly a~!, since § is a group. Hence S is an w-group.

CoroLLARY. If S is an w-semigroup that is a group but not an -
group, then S is a regular w-semigroup that is not w-regular.

Tueorem T18. There exist ¢ non w-isomorphic, completely -
regular, non-abelian, isolic semigroups which are not isolic groups.

Proor. Let a and B be immune, separable sets, and let y be an
infinite subset of B. For any set 7, we recall from [7] that P(r) is
the w-group of Godel numbers of finite permutations of 7 and that
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o(P(t)) = T!, where Req(r) = T. Also from the remark following T 7,
we have that if G, = (a;, p,) and G, = (ay, p2) are any two w-groups
with @, | @, then G, U G, forms an w-semigroup with the given multi-
plication p. Now, since a |y, we can effectively recode P(a) and P(y)
so that they have no elements in common, instead of having the
identity element, 1, in common. For example, let P(a)=
{2x |x € P(a)} and Py(y) = {2x + 1 |x € P(y)}, and adjust their mul-
tiplications accordingly. Let S, be the w-semigroup P;(a) U Py(y) with
the appropriate multiplication, p. Clearly S, is not abelian. Also if
2 €S, then z € Py(a) or z € Py(y). In either case, z has a group in-
verse z~! such that p(z, p(2~1, z)) = z and p(z,z27!) = p(z~1, z). Thus
S, is a completely w-regular w-semigroup. Now o(S,) = o(P(@)) +
0(Py(y)). Thus if Req(a) = A and Req(y) = C then o(S,) = Al + C!.
But A, C €A implies Al + C! € A. Therefore S, is a completely -
regular isolic semigroup. Now if y, and y, are two subsets of 8 with
Req(y,;) = C; and Req(y,) = C,, then

87 Ews = Al + Cl! = Al + Cg' =>C1! = C2!=>C1= Cz.

Hence S, =,8S, =>vy,;=1v,. But g has ¢ immune subsets which are
mutually nonrecurswely equivalent. Thus there are ¢ completely -
regular isolic semigroups of the form S,.

ReMark. The following are analogues of regular left (right, two-
sided) unit as used in [8].

DeFiniTION. Let S be an w-semigroup. An element a of S has an -
regular left (right) unit i if, given a, we can effectively find an i € S and
xESsuchthati-a=aaanda-x=i(@-i=aand x -a=1i). An
element i of S is w-regular two-sided unit of a if i is both an w-regular
left unit of @ and an w-regular right unit of a.

ReEMARk. We see that i is an w-regular left (right, two-sided) unit
implies i is a regular left (right, two-sided) unit.

Tueorem T19. (i) Every idempotent of an w-semigroup containing
w-regular elements is completely w-regular.

(ii) A regular left (right, two-sided) unit of an arbitrary element of a
semigroup is always an idempotent.

Proor. Left to the reader.

Tueorem T20. Let S be an w-semigroup.

(i) If an element a of S has either an w-regular left unit or an o-
regular right unit, then a is w-regular.

(i) An w-regular element a of S has both an w-regular left unit and
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an w-regular right unit.
(iii) An element a of S is completely w-regular if and only if a has
an w-regular two-sided unit.

Proor. (i) Let i be an w-regular left unit of a. That is, given a we
can effectively find i,x € S such that i -a=a and a - x = i. Thus
given a we can effectively find x €S such thata *x a=i-a=a
Also suppose we have a b € S for which there exists a y € S such that
b-y-b=>b. But i,=Db -y satisfies i, *b=>b and b - y = i,, and
hence given b we can effectively find j, z € S such that j - b= b and
b -z=j. However,b -z b =j b= b. In other words, given b we
can effectively find z such that b -z - b= b. Thus a is w-regular.
Similarly if i is an w-regular right unit of @ then a is w-regular.

(ii) Let a be an w-regular element. Thus given a we can effectively
find x € Ssuch thata *x *a = a. Puti, = a -x and i®= x - a. Thus
i, is a regular left unit and i® is a regular right unit. Suppose for
b €S, there exist i,y €S such that i -b= Db and b -y = i. Then,
b -y - b= band bisregular. Thus b is w-regular and given b we can
effectively find z € S such that b -z - b= b. Letting i, = b - z, we
have i, is a regular left unit of b. It follows that i, is an w-regular left
unit of a. Similarly i is an w-regular right unit of a.

(iii) See [8, p. 73].

Remark. We know from semigroup theory that an element of a
semigroup S may have no more than one regular two-sided unit, hence
an element of an w-semigroup S may not have more than one w-regular
two-sided unit.

DeFinITION. Let S be an w-semigroup and a € S. If, given a, we
can effectively find a b € Ssuch thata b -a=aand b -a-b= b,
then b is called an w-inverse of a.

ReEMARK. (i) An element of an w-semigroup may have several w-
inverses. '

(ii) An element that possesses an w-inverse is w-regular. The con-
verse is also true,

Tueorem T21. Every w-regular element of an w-semigroup S has
an w-inverse. A completely w-regular element of S has an w-inverse
which commutes with it.

Proor. Let a be an w-regular element of S. Hence we can effec-
tively find, given a, anx € Ssuch thata - x -a=a. Putb=1x-a - x.
Thus it is easy to check that b is an w-inverse of a. Alsoifa ‘x==x - a
thena-b=a-x-a-x=x-a-x-a=b-a
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Tueorem T22. The following are necessary and sufficient conditions
that an w-semigroup S is an w-group.
(i) S has a unit which is an w-regular left unit of every element of S.
(ii) Sis w-regular and has only one idempotent.
(iii) Sis w-regular with two-sided cancellation.

Proor. The three conditions are clearly necessary. It suffices to
show they are sufficient. But (i) follows from T11, and (ii) and (iii)
follow from [8, p. 76], T17, and the fact that any w-regular w-semi-
group is a regular semigroup.

§6. Inverse w-semigroups.

DEFINITION. An inverse w-semigroup is an w-regular w-semigroup
S in which for each a € S, there exists a unique b € S such that
a‘b-a=a,b a-b= bandbisan w-inverse of a.

ReMark. (i) We see that an inverse w-semigroup is an inverse semi-
group in which each element has an w-inverse.

(ii) If an w-regular w-semigroup is also an inverse semigroup then
by T21, it is an inverse w-semigroup.

Noration. If S is an inverse w-semigroup, we denote the w-inverse

ofaESbyal

TuEOREM T23. Let S be an inverse w-semigroup.
(i) For all a,b € S, b is an w-inverse of a if and only if a is an
w-inverse of b.
(ii) Foralla€ S, (a))"1 = a.
(iii) Ifiisanidempotent of S theni~1 = i.
(iv) For all a €S, a - a! is the only w-regular left unit of a and
a~! - ais the only w-regular right unit of a.

Proor. Left to the reader.

NoraTioNn. Let aCe. {(a) = {f € §(a) |f is one-to-one on its
domain}. 7(a) is the subsemigroup of 7(a), ({(@),° ). Also {*(@) =
{f*|f E(e)} and I(a) is the w-subsemigroup of T(a), ({*(e),° ).

ReMaRk. I(a) is called the symmetric inverse w-semigroup on e
THeOREM T24. For a C €, I(a) is an inverse w-semigroup.

Proor. If f* € (@) then f-!, the inverse function of f, is the
only fp. function which satisfies feo f~le f=f and
f~le fof-l=f-1  Also (f)* is an w-inverse of
Hence I(a) is an inverse w-semigroup.
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Remark. By the remark following T12, we see that I(a) is not an
w-group.

REMARK. I(a) is not completely w-regular, since if f € {(a) and
8f#pf, then &(f'ef)=8f and &(f°f!)=pf Hence
(fre A # (fe fH%

TueoreMm T25. Fora,B Ce,a=8 — I(a) =, I(B).

Proor. Left to the reader.

Remark. We recall from [4] that po = @ and p, = {a}, " ", a,},
where n = 2% + - - - + 29z, for n = 1, is a one-to-one enumeration of
Q, the finite subsets of €.

ReMark. If ais a finite set and card (a) = n, then it is easy to show
that card I(a) = X(n), where X(n) = ¥.{_o (}) (})il. Let us define for
a € V,®(a) = {*(a). We can see that:

(1) a€Q —>®(a) € Q,

(2) & 8 € Qanda~ f — &(a) ~ D(B)

(3) @ € Q and card () = n — card ®(a) = X(n).

To prove that ® is a combinatorial operator which induces X(n), it
only remains to show that ® has a quasi-inverse. Clearly @<= {*(e).
Consider the function m(x) with domain {*(€) such that if f € {(e)
and x = f* m(x) is the unique canonical index such that ppy =
8f U pf. Thus fora € Vand x € {*(e),

x € P(a)e=pmu C a

/
Hence p,,, is a quasi-inverse for @ and @ is a combinatorial operator.
Also the function g(n) such that ®(p,) = pgn, is recursive so that ®
is a recursive combinatorial operator which induces the recursive
combinatorial function X(n). Letfor A € Q, Cx (A) = Req ®(a),a € A,
be Myhill’s canonical extension of X(n) to . We now have the fol-
lowing theorem.

TueoreM T26. o(I(a)) = Cx (X),a€E X, X € Q.
TueoremM T27. For a, B nonempty isolated sets a=g < I(a)
=_I(B).
Proor. By [4,p. 54] and T26, fora € Aand B € B, A, B €A,
Ka) =, I(B) — o(I(a)) = o(I(B)) — Cx (A)
= Cy(B)=A= B=a=8.
Thus we are done by T25.



612 C. H. APPLEBAUM

CoroLLaRY. There exist ¢ non w-isomorphic inverse isolic semi-
groups, which are not completely w-regular.

Lemma 1. [3, vol. 1, p. 28]. Let S be a semigroup. Then S is an
inverse semigroup if and only if S is regular, and any two idempotent
elements of S commute with each other.

TueoREM T28. Let S be an w-semigroup. Then S is an inverse -
semigroup if and only if S is w-regular and any two idempotent ele-
ments of S commute with each other.

Proor. If S is an inverse w-semigroup, then S is w-regular and §
is an inverse semigroup. Thus by lemma 1, any two idempotents of
S commute with each other. Conversely if S is w-regular and any two
idempotents commute with each other, then by lemma 1, S is an
inverse semigroup. Hence by a previous remark, S is an inverse w-
semigroup.

CoroLLARY 1. A mapping of an inverse w-semigroup S onto itself,
which carries every element a of S onto its w-inverse a~, is an w-anti-
automorphism.

Proor. See [8, p. 80].

CoroLLARY 2. If S is an inverse w-semigroup and a,b € S, then
(ab)~'=b-1-a"L

CoroLLARY 3. If S is an inverse w-semigroup and H is a subsemi-
group of S such that if a € H then a~! € H, it follows that H is an
inverse w-semigroup.

Proor. If a € H then we can effectively find a~! € H, given a.
Hence H is an w-regular w-semigroup. But all idempotents of H
commute since H C S. Thus H is an inverse w-semigroup.

DeFINITION. Let S be an inverse w-semigroup and e be an idem-
potentin S. G, = {x € S | e is an w-regular two sided unit of x}.

Tueorem T29. Let S be an inverse w-semigroup. Then G, is an
w-group and G, = .. S.

Proor. Wehavee € G,. Leta € G, thena -a 1= eanda~! -a=
e by T20 and the fact that a may have only one w-regular two-sided
unit. Hence a~! € G, by T20 and the fact that (a~!)~! = a. Also if
a,b € G, then

(ab) - (ab)~'= (@ -b)b~'-aY)=a (b b 1)a!
=g-e-al=a-¢l=e

Similarly (ab)~Y(ab) = e. Thus a b € G,. Hence G, is a group.
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Therefore by T17, G, is an w-group. Finally, given e, we can effective-
ly testifa - a~!= e, fora €S. Thus G, = .. S.

§7. w-Homomorphisms of w-semigroups.

DeriniTioN. Let S; and S, be semigroups. Then ¢ is an w-homo-
morphism of S, onto S, if

(i) ¢ is a homomorphism of S, onto S,,

(ii) ¢ is an w-function from §, onto S,.

Noration. If ¢ is an w-homomorphism from S, onto S,, we say S,
is w-homomorphic to Sy, [written: S, =, S,] .

Tueorem T30. (i) Let S, = (&, p;) be an w-semigroup and ¢ be an
w-homomorphism from S, onto S,. Then S, is an w-semigroup.

(ii) If ¢, is an w-homomorphism from an w-semigroup S, onto an
w-semigroup Sy and ¢, is an w-homomorphism from S, onto an w-
semigroup Sz then ¢y ° ¢, is an w-homomorphism from S, onto S;.

(iii) If ¢ is an w-homomorphism from an w-semigroup S, onto an
w-semigroup S, and ¢ is one-to-one on S, then ¢ is an w-isomorphism.

Proor. (i) Let S, be the semigroup (ay, p2). Thus ay = ¢(a;). Also
let g be a function with a one-to-one partial recursive extension such
that 8g = a, and for all y E ay, g(y) E¢d~y). Thus py(y,,ys) =
op1(g(y1), g(ye)), for all y,, y, € ap. Hence py can be extended to a
partial recursive function of two variables. Therefore S, is an w-
semigroup.

(ii) Use [2,p.5].

(iii) Use [2,p. 4].

Tueorem T31. If S is an isolic semigroup and S, =, S, then S, is an
isolic semigroup.

Proor. Since S;= , S, then o(S;)= o(S;) by [2, p. 18]. Thus
o(S;) € A implies o(S,) € A.

Remarx. We recall that an equivalence relation p is a congruence
on a semigroup S, if for a,b €S apb implies that a-cpb-c and
c-apc-b for every c € S.

Noration. If p is a congruence on a semigroup S then [S/p] is the
factor semigroup of S induced by p. Also p b is the canonical mapping
of S onto [S/p] .

Remark. If p is a congruence on a semigroup S, then p 8§ is a homo-
morphism of S onto [S/p] .

DeFINITION. A congruence p on an w-semigroup S is an -
congruence if [S/p] is a gc-decomposition of S.
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Remark. By [2, p. 12], if m; and m, are gec-functions of [S/p] and
1 = my(S) and y, = my(S) are the associated gc-sets, then y; = y,.

DerFINITION. Let S = (e, p) be an w-semigroup and p a congruence
on S. With every choice function m of [S/p] we associate a semigroup
Cm = (¥, qm), defined by,

(i) v = m(a),8qn =y X v,
(ii) gm(x,y) = mp(x,y),forx,y Ey.

Remark. Note that (ii) can be phrased as
(iii) g [m(x), m(y)] = mp(x, y), forx,y € a

DerFntTION. If p is an w-congruence on an w-semigroup § then the
factor w-semigroup of S [written: Sfp] is C,, where m is a gc-
function of [S/p] .

ReMark. By the previous two remarks we see that S/p is a well-
defined w-semigroup.

Tueorem T32. If p is an w-congruence on an w-semigroup S and
m is a gc-function of [Slp] then m is an w-homomorphism from S
onto Sp.

Proor. Clearly for x € S, m(x) € pH(x), thus m is a homomorphism.
Further by [2, p. 9 and p. 16], m is an e-function. Thus m is an -
homomorphism from S onto S/p.

Tueorem T33. Let ¢ be an w-homomorphism of an w-semigroup
S, onto an w-semigroup S,. Define a relation p by apb if and only if
¢(a) = ¢(b), for a,b € S,. Then p is an w-congruence on S and there
exists an w-isomorphism ¢ from S,lp onto S, such that ¢ = ¢ ° f,
where f is a gc-function of [S,/p] .

Proor. We know from semigroup theory that p is a congruence.
Since ¢ is an w-homomorphism then by [2, p. 15], [S/p] is a gc-class,
i.e, p is an w-congruence, and there exists a mapping ¢ from C; onto
Sy such that ¢ = ¢ ° f, where f is a gc-function of [S,/p], and ¢
has a one-to-one partial recursive extension. Thus ¢ is an -
isomorphism from S;/p onto S,, by T32 and the fact that ¢ is an -
homomorphism.

Remark. From T32 and T33 we see that each w-congruence induces
an w-homomorphism and vice versa.

Derinrion. We call the w-congruence p associated with the w-
homomorphism ¢ in T33, the w-congruence induced by ¢. We some-
times denote p by ¢ =1 ° ¢.

TueoreM T34. Let ¢, and ¢, be w-homomorphisms of an w-semi-
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group S onto w-semigroups S, and S, respectively such that ¢,~'° ¢,
C ¢y 1o ¢y. Then there exists a unique w-homomorphism 6 of S,
onto Sy such that0° ¢, = ¢s.

Proor. For a; €S,, define 6(a,) = ¢y(a), where ¢ €S and
¢1(a) =a;. Ifa,b €S and ¢,(a) = ¢,(b) then a(p,~'° ¢,)b. Hence
by hypothesis, a(¢o='° ¢o)b and ¢y(a) = ¢o(b). Thus 6 is well-
defined. It is easy to check that @ is a homomorphism from S, onto
S,. Since ¢; and ¢, are w-homomorphisms there exists functions p,
and p, with partial recursive extensions such that 8p, = S, 8p; = S,
and for all a; €S,, p,(a;) € ¢, Ya,) and for all a; € S,, py(as) €
¢27Y(ag). Thus 6(a;) = ¢opi(a;), for all a; €S, and 6 has a partial
recursive extension. Also if a; € S, then pj(as) = ¢ipa(az) € 6~ (ay)
and p; has a partial recursive extension. Hence 6 is an w-homo-
morphism from S, onto S;. The uniqueness of @ follows immediately
from 0° ¢, = .

CoroLLARY. If p; and p, are w-congruences on an w-semigroup S
such that p, C p,, then Slp, = , Slps.

Proor. Left to the reader.

LemMma. [8, p. 270]. If ¢ is a homomorphism of an inverse semi-
group S, and if for a € S, ¢(a) is an idempotent of (S), then S contains
an idempotent i for which ¢(i) = ¢(a).

ReMark. The idempotent of the above lemmaisa~! - a.

Tueorem T35. [8, p. 271]. If ¢ is a homomorphism of an inverse
semigroup S, then ¢(S) is an inverse semigroup.

Tueorem T36. If ¢ is an w-homomorphism of an w-regular -
semigroup S; onto an w-semigroup S,, then S, is w-regular.

Proor. Let p be a function associated with ¢ such that for all y € S,,
p(y) € ¢~ y) and p has a partial recursive extension. Let b € S,.
Then p(b) € S, and there exists an x € S, such that p(b) - x - p(b) =
p(b) and x can be effectively found given p(b). Thus ¢(p(b) * x - p(b))
= ¢p(b) = b. But $(p(b) * x - p(b)) = dp(b) - $(x) - dp(b) = b * $(x)
*b. Hence b - ¢(x) * b= b and given b we can effectively find ¢(x).
Therefore S, is w-regular.

Tueorem T37. If ¢ is an w-homomorphism of an inverse w-semi-
group S, then ¢(S) is an inverse w-semigroup.

Proor. Let S be an inverse w-semigroup; then by T35 ¢(S) is an
inverse semigroup. Hence by Lemma 1 of T28, all the idempotents
of ¢(S) commute. Also by T28, S is w-regular. Thus by T36, ¢(S) is
w-regular. It follows by T28 that ¢(S) is an inverse w-semigroup.
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CoroLLARY 1. If ¢ is an w-homomorphism of an inverse w-semi-
group S then for each x € S, (¢p(x)) ! = $(x 7).

Proor. Left to the reader.

CoroLLARY 2. If ¢ is an w-homomorphism of an inverse w-semigroup
S, and if ¢(a), for a €S, is an idempotent, then given ¢(a) we can
effectively find an idempotent i € S such that ¢(i) = ¢(a).

Proor. Given ¢(a) we can effectively find b € S such that ¢(a) =
¢(b). Set i = b~!-b which we can effectively find given ¢(a). By
lemma to T35, since ¢(b) is an idempotent, i is an idempotent. Also
by this lemma, ¢(i) = ¢(b) = ¢(a).

CoroLLARY 3. Suppose that ¢ is an w-homomorphism of an inverse
w-semigroup S and that A = ¢(a), a € S, is an idempotent of ¢(S).
Then the set B, of all b € S such that ¢(b) = \ is an inverse -
semigroup and B, =, S.

Proor. If by, by € B,, then ¢(b, * by) = ¢(b,) - d(bg) = X - A = A.
Thus b, - b, € B,. Hence B, is closed under multiplication. It follows
that B, = S. Furthermore x € B, © ¢(x) = A. Thus B, =,..S. Sup-
pose b € B,. Then ¢(b~1) = (¢(b))~! = A~1 = \. Therefore b= € A.
Hence by Corollary 3 of T28, B, is an inverse w-semigroup.

RemMark. We recall that for a semigroup S and an ideal I of S, the
Rees congruence modulo I, p, is defined by apb if and only ifa=b
ora,b €1 fora, b €S.

DeriniTioN. If S is an w-semigroup and I is an ideal of S, then I is
a recursive ideal of Sif I =, S.

TueoreM T38. If I is a recursive ideal of an w-semigroup S then the
Rees congruence modulo I, p, is an w-congruence.

Proor. Let a be fixed element of I. For x € S, define
_ fa, ifx€l,
o) = {x, if x € I
Then it is easy to see that [S/p] is a gc-class, with ge-function, ¢(x),
sincel |S— L
Norarion. If S is an w-semigroup, I is a recursive ideal of S, and
p is the Rees congruence modulo I, then we denote S/p by S/I.

Tueorem T39. Let A be a recursive ideal of the w-semigroup S.
Then S is an inverse w-semigroup if and only if A and S/A are both
inverse w-semigroups.
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Proor. Suppose S is an inverse w-semigroup. Since S/A is an -
homomorphic image of S, by T37, S/A is an inverse w-semigroup. Also
ifa€ A thena1-a-a"! € A, since Ais an ideal. Buta™! ra -a~!
= a~. Hence a~! € A. It follows by Corollary 3 of T28 that A is
an inverse w-semigroup. Conversely, suppose A and S/A are both
inverse w-semigroups. Let a €8S. If a € A, there exists a unique
x € Asuch thata x -a=a and x - a - x = x and we can effectively
find x given a. Further since A is an ideal, x -a - x € Aforanyx € S.
Hence there exists a unique x € Ssatisfyinga - x -a = gaandx ‘a - x =
x. If a €S — A then since S/A is an inverse w-semigroup, there is a
unique x € S/A such thata *x *a=a and x - a - x = x and we can
effectively find x given a. Furthermore any x € Ssatisfyinga x *a=a
must belong to S — A, and hence S/A, since if x € Athena -x-a=
a € A. But this contradicts a € S — A. Hence there exists a unique
xES such that a*x-a=a and x *a-x=2x. Since A|S— A it
follows that S is an inverse w-semigroup.

§8. w-Right groups.

ReMark. We recall that a semigroup S is called right (left) simple
if it contains no proper right (left) ideal. Also from [3, vol. 1, p. 37],
a semigroup S is called a right group if it is right simple and left can-
cellative. This is equivalent to the statement that for every a,b € S,
there exists a unique x € S such thata - x = b.

DEFINITION. An w-semigroup S is an w-right group if givena,b € §
there exists a unique x € S such that @ - x = b and we can effectively
find x given a and b.

ReMaRk. We see that every w-right group is a right group.

ReMark. We recall that an w-semigroup S is called a right zero
w-semigroup if x -y =y, for all x,y €S. Clearly every right zero

w-semigroup is an w-right group.

We need the following lemma from [3, vol. 1, p. 37].

LemMma. Every idempotent of a right simple semigroup S is a left
unit of S.

DerFiNiTION. Let S; = (a4, p;) and Sy = (ap, p2) be w-semigroups.
We define the direct w-product of S, and S, [written: S; X , S,] as the
semigroup which consists of the set j(a; X ap) and the semigroup
operation:

J(x1 x9) * j(Y1 y2) = jlp1(x1 Y1), palxa, y2)l»

forx,, y; € oy and x5, yo € a,.
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RemMARk. It is readily seen that the direct w-product of two w-
semigroups is again an w-semigroup.

TueorREM T40. The direct w-product of two w-right groups is an
w-right group.

Proor. Left to the reader.

Tueorem T4l. An w-isomorphic image of an w-right group is an
w-right group.

Proor. Left to the reader.

TuEOREM T42. An w-semigroup S is an w-right group if and only
if S is w-isomorphic to the direct w-product G X , E of an o-group G
and a right zero w-semigroup E.

Proor. Let S be an w-right group and a €S. Then there is a
unique solution to a@ - x = a. Call this solution e. But then a - 2=
a ‘e = a. Hence by uniqueness e2=e. Now let E be the set of
idempotents of S. Since e € E, E is not empty. Also by the previous
lemma, if x € E, then x is a left unit of S. In particular e - f = f, for
all e, f € E. Hence E is a right zero w-subsemigroup of S. Also
x € Eifand only ifx2 = x,forallx €S. Thus E=_ S.

Now if e EE, S - e is an w-subsemigroup of S with unit e. Also if
a €S - e, we have a solution fora - x =e. Buta(x ¢) = e2=¢,s50a
has a right inverse x - e¢in S - e. Hence S - e is a subgroup of S. How-
ever given a and e we can effectively find a=! = x - e. Thus for fixed
e, S - eis an w-group. So let g be a fixed element of E and let G be the
o-group S -g. Next, form the direct w-product G X _ E=
{jlx,y) |*x €E G&y € E}. We define a map ¢ from G X, E into S
by ¢j(a,e) = a - e, for j(a,e) € G X, E. It is easy to check that ¢ is
a homomorphism. Also if ¢j(a,e) = ¢j(b,f) then a-e=Db"f.
But g is the identity of G. Hence

a=a-g=ale-g=@-e-g=b-f)-g=b-(frgg=b-g=h

It follows that a -e=a - f But S is left cancellative, so e = f.
Thus ¢ is one-to-one. Furthermore, if a € S then a - e = q, for some
eES. Buta ‘e2=a e = a Hencee2= eande € E. It follows that

dj(ag. e)=(a-g) re=a-e=a

Thus ¢ is onto S. Now clearly if x = j(a,e) € G X, E, then ¢(x) =
k(x) - 2(x), and ¢ has a partial recursive extension. Also if a € S, given
a, we can effectively find e € E such that a - e = a. Therefore
¢ !a) = j(a - g, e) has a partial recursive extension. It follows from
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[5, Proposition 1] that ¢ has a one-to-one partial recursive extension
andS=_G X _E. .

Conversely, the direct w-product G X , E of an w-group G and a
right zero w-semigroup E is an w-right group by T40.

CoroLLary. If S is an w-right group and e is an idempotent of S,
then S - e is an w-group.

Tueorem T43. An w-semigroup S is an w-right group if and only
if S is w-regular and left cancellative.

Proor. Let S be an w-right group; then § is a right group and hence
left cancellative. Now we can effectively find a solution toa *x = a
given a. Call this solution e. By left cancellation we get ¢2 = e. But
we can find y € S such thate - y = a. Hencee -a=¢e%-y=ey = a.
Finally, given a, we can effectively find z € S such that a -z =e.
Howevera * z - a = e - a = a. Thus S is w-regular.

Conversely, suppose S is w-regular and left cancellative. Then given
a,b €S, we can effectively find y € S such that @ - y - ¢ = a. Thus
x=y b is a solution to a -x=b. For (ay) ‘b= (aya) 'y - b=
(ay) -a -y +b. Thus by left cancellation a -y - b= b. Finally this
solution is unique by left cancellation.

Remark. If S is an w-semigroup which is a group but not an -
group, then S is right simple, left cancellative and contains a unique
idempotent. But S is not an w-right group by T17 and T43. Hence
the following theorem.

TueoreM T44. If S is an w-semigroup which is a group but not an
w-group then § is not an w-right group.

RemMark. In the case that S is a periodic w-semigroup or an r.e.
semigroup, then we have nice behavior.

Tueorem T45. The following assertions concerning an r.e. semi-
group or a periodic w-semigroup S are equivalent:
(i) Sis an w-right group,
(ii) Sis right simple and left cancellative,
(iii) S is right simple and contains an idempotent.

Proor. By [3, p. 38], (ii) and (iii) are equivalent and we already
have (i) implies (ii); hence to complete the proof, i.e., to show (ii)
implies (i), it suffices to show that if S is a right group then given
a,b € S we can effectively find the unique x € S such thata - x = b.
Clearly if S is an r.e. semigroup we can do this. So suppose S is a
periodic w-semigroup. The key to the proof is to show that given
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a,b € S, there existsann € e such thata™*! - b = b, i.e, thata - x = b,
where x = a" - b. Hence, suppose we are given a,b € S. If a is an
idempotent then by a previous lemma, a is a left unit of S, and hence
a b= b. So assume a is not an idempotent of S. But since § is right
simple and left cancellative, there is a unique idempotent e € S such
that a - e = a. However, by [3, p. 38], since e is an idempotent,
S - e is a subgroup of S. Since S is a periodic w-semigroup, S ‘e is a
periodic w-semigroup. Thus, it follows by T1, that S - e is a periodic
w-group. Hence, given a, we can effectively find the inverse of
a €S - ¢, of the form y - e, since y - e = a”, where n €E€ — {0} and
a"*2 = q. In other words, we can effectively find a”, such thata - a" =
e. Buta - (a® - b) = (a - a”) - b= e - b = b, since, as above, e is a left
unit of S. Therefore, given a, b € S, we can effectively find x = a" - b
such thata - x = b. This completes the proof.

CoroLLARY 1. An r.e. semigroup or periodic w-semigroup is an -
right group if and only if it is a right group.

CoroLLARY 2. An isolic semigroup is an isolic nght group if and
only if it is a right group.
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