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§1. Introduction. Let € stand for the set of non-negative integers 
(numbers), V for the class of all subcollections of € (sets), A for the set 
of isols, and il for the class of all recursive equivalence types (RET). 
The relation of inclusion is denoted C , a recursively equivalent to ß 
by a — ß, for sets a and ß, and the RET of a by Req (a). For the 
purpose of this paper we say a semigroup is an ordered pair (a, p), 
where (i) a C e and (ii) p is a semigroup operation (i.e., an associative 
binary multiplication) on a X a. An co-semigroup is a semigroup 
(a, p), where p can be extended to a partial recursive function of two 
variables. The concept of an co-semigroup is a recursive analogue of 
a semigroup and is a generalization of an co-group. In this paper, the 
author shows (T2), that there are co-semigroups which are groups but 
not co-groups; but that all periodic co-semigroups which are groups, 
are co-groups (Tl). Theorems T3, T5, T6, T7, and T i l give conditions 
for an co-semigroup to be an co-group. The recursive analogues of 
regular semigroup, inverse semigroup, and right group [ co-regular co-
semigroup, inverse co-semigroup, and co-right group] are studied in 
sections §5, §6, §8 respectively, with particular attention paid to 
T(a), the analogue of the regular semigroup of all mappings from a into 
a, and 1(a), the analogue of the symmetric inverse semigroup on a. 
Theorems T17 and T22 relate co-regular co-semigroups to co-groups and 
T28 relates co-regular co-semigroups to inverse co-semigroups. In T42 
and T43 we have two nice characterizations of an co-right group and 
T45 shows that a periodic co-semigroup that is a right group is an co-
right group. Finally section §7 gives a brief introduction to the co-
homomorphism theory of co-semigroups. The author wishes to thank 
the referee for his helpful suggestions. 

§2. Basic concepts and notations. The reader of this paper is 
assumed to be familiar with the notation and basic results of [2], 
[6], and [7]. 
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REMARK. We recall from [7] that an œ-group is an ordered pair 
(a, p) where (i) a C e , (ii) p is a group operation on a X a which can 
be extended to a partial recursive function of two variables, (iii) the 
function which takes x to its inverse under p has a partial recursive 
extension. 

REMARK. We recall from [6] that R = Req (c) and flR is the set of 
all regressive RETs. 

REMARK. AS for co-groups, for S = (a, p), an co-semigroup, we 
usually denote p(x, y) by x • y or just xy, for x, y G a. Also xn is defined 
by x1 = x and xn+l = xn • x, for x G a. 

DEFINITION. If S = (a, p) is an co-semigroup, then the order of S, 
[written: o(S)] is Req (a). 

DEFINITION. Let S = (a, p) be an co-semigroup. Then 
(i) S is an r.e. semigroup if o(S) = R, 

(ii) S is an isolic semigroup if o(S) G A, 

DEFINITION. A function <\> from an co-semigroup Sx onto an co-semi­
group S2 is an ^-isomorphism if <f> is a semigroup isomorphism which 
has a one-to-one partial recursive extension. 

DEFINITION. An co-semigroup Sx is w-isomorphic to an co-semigroup 
S2 [written: S 1 = W S 2 ] if there exists an co-isomorphism mapping Sx 

onto S2. 

REMARK. If SX = W S2, then o(SL) = o(S2). 

REMARK. Any subsemigroup of an co-semigroup is clearly an co-
semigroup. 

NOTATION. For an co-semigroup S, we write H ^ S to denote that 
if is a subsemigroup of S. 

DEFINITION. A subsemigroup H = (ß,q) of an co-semigroup S = 
(a, p) is a recursive subsemigroup of S [written: H ^ r e c S] if ß \ a — 
ß, i.e., if/3 is separable from a — ß. 

REMARK. We recall from semigroup theory that a semigroup S is 
periodic if every element has finite order, i.e., for every x G S, the 
cyclic semigroup generated by x is finite. We note that every isolic 
semigroup is periodic. 

§3. co-Semigroups and co-groups. 

THEOREM Tl . If S is a periodic (^-semigroup and is also a group 
then S is a periodic co-group. 
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PROOF. Since S = (a, p) is an co-semigroup and a group then a C € 
and p is a group operation on a X a which can be extended to a 
partial recursive function of two variables. Thus it suffices to show 
that the function mapping x to its inverse under p, x~\ for x G. a has 
a partial recursive extension. But, S is a periodic group. Therefore 
given x E a , x ^ e, there exists n E e - {0} such that xn = e, 
where e is the identity of S. Hence x~l = xn~l. We can now easily 
see that x _ 1 has a partial recursive extension. 

COROLLARY. If S = (a, p) is an isolic semigroup which is a group 
then S is an isolic group. 

PROOF. This is immediate from the fact that every isolic semigroup 
is periodic. 

The statement of Theorem 1 leads one to ask if every co-semigroup 
which is a group is also an co-group. The answer to this question is no 
as is shown by Theorem 2 which is due to Hassett. 

REMARK. We need the recursive mappings j , k, i defined by: 
j(x,y) = x + (x + y)(x + y + l)/2, j[k(n),l(n)] = n. We recall that 
j maps €2 one-to-one, onto c. 

THEOREM T2. There exists an (o-semigroup that is a group but not 
an (O'group. 

PROOF. Let a be an r.e. set which is not recursive and a(x) be a one-
to-one recursive function ranging over a. Assume without loss of 
generality that a(0) = 0 and a(\) = 1. For each number n > 1, we 
define a cyclic group Cn as follows: 

(a) I f n G a , (3k)[a(k) = n] . Let Cn be a cyclic group of order k, 
{x, • • -, xk~l, xk = e} and encoded by: 

x *+j{n, 0) 

x2 **j(n, 2) 

xk-l+»j(n,2k- 4) 

e <->l 

(b) If n <f a, Cn is an infinite cyclic group with generator z and 
encoded by: 
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zm <r>j(Uy 2(ra - 1)) 

z2 **j(n, 2) 

z **j(n, 0) 

z-l+*j(n,l) 

z-2«*j(n,3) 

z~m**j(n,2m — 1) 

Let G be a recursive direct product of the Cn, i.e., G = ®n e«-{o,i} Cn 

where x G G i f and only if x is a Godei number of a member of the 
direct product of the Cn's which has only a finite number of coor­
dinates which are different from 1. If we can show that the mulitplica-
tion in G is effective we will be done, since then G will be an co-
semigroup that is a group but not an co-group. For, we have for n > 1, 

n G a «==> the inverse of j(n, 0) is not j(ny 1). 

Thus if we could effectively find inverses for elements in G, we could 
effectively decide if n G a, for n E e . This is impossible since a is 
not recursive. 

In order to show multiplication is effective in G, it suffices to con­
sider the effectiveness of coordinate multiplication, i.e., it suffices to 
show that multiplication is effective in Cn, for an arbitrary n. Thus 
let^'(n, k) and j(n, to) be given: 

(a) If k is even and w is odd we know that we are in a Cn which 
is infinite cyclic. Then j(n,k)**zkl2 and j(n, w) «* £~{M;+1) /2 and 
the product of j(n, k) andj(n, to) is the code number of z^k~(~w+l^12. 

(b) If both k and to are odd, then Cn is infinite cyclic and we pro­
ceed as in (a). 

(c) If both k and to are even, then no matter whether Cn is finite or 
infinite, j(n, k) +* zkl2 and j(n, tu) ** zwl2, where z is the generator 
of Cn. Thus j(n,k) 'j(n,to) is the code number of z{k+w)l2; but if 
Cn is finite we might have to reduce (k + to)l2 modulo the order of 
Cn. However, this is easy. We just compute a(0), • • -,a((k + to)l2). 
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If n does not appear in this list, the product is j(n, (k + u>)/2), since 
order (Cn) > (k + w)l2. If n does appear, n = a(J) for some j < 
(k + ti>)/2 and j = order Cn. Then we reduce (k + u;)/2 modulo j . 
In either case we can effectively Computern, k) • j(n, w). 

Since multiplication is effective in Cn and the Godei numbering 
in G is effective and one-to-one, it follows that the multiplication in 
G can be extended to a partial recursive function of two variables. 
Hence G is an («-semigroup that is a group but not an co-group. 

DEFINITION. An element i of a semigroup S is an idempotent if 
i2 = i. 

REMARK. By [8, p. 113], every element x of a periodic semigroup 
has a power of itself, xn, such that xn is an idempotent. 

DEFINITION. A semigroup S is a left {right) cancellation semigroup if 
for x, y, z €E S, x • y = x • z => y = z (y • x = z • x =?-1/ = z). A semi­
group S is a cancellation semigroup if it is both a left and right can­
cellation semigroup. 

THEOREM T3. A periodic co-semigroup with left cancellation is an 
(ù-group if and only if it has a single idempotent. 

PROOF. Let S be a periodic co-semigroup with left cancellation. If 
S is an co-group then S has only one idempotent, namely its identity. 
Conversely if S has a single idempotent then by [8, p. 113], S is a 
group. Hence by TI, S is an co-group. 

COROLLARY 1. An isolic semigroup with left cancellation is 
an isolic group if and only if it has a single idempotent. 

COROLLARY 2. A periodic cj-semigroup which is not an a)-group 
cannot be embedded in an o)-group. 

PROOF. Let S be a periodic co-semigroup. Thus S has an idempotent. 
If S has more than one idempotent then any group that S is embedded 
in has more than one idempotent. This is impossible since a group 
has only one idempotent. Hence if S has more than one idempotent 
S cannot be embedded in an co-group. Also if S has a single idem-
potent then by T3, since S is not an co-group, S is not left cancellative. 
Hence there exist x, y, z G S such that x - y = x • z but y ^ z. But 
then if S is embedded in an co-group the above will violate the can­
cellation property in that co-group. This completes the proof. 

The following three examples of co-semigroups which are not co-
groups together show that the conditions of T3 are all necessary. 
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EXAMPLES. (1) (e, -h) is a non-periodic co-semigroup which is can-
cellative and contains a single idempotent. 

(2) Define S = (a, p) for a C € by p(x, y) = k for k a fixed element 
of a and x9y G a. S is a periodic co-semigroup with a single idem-
potent, but S does not have a left cancellation property. 

(3) Define S = (a, p) for a C € by p(x, y) = y for x,y G a. S is a 
periodic co-semigroup with left cancellation. But S has no unique 
idempotent, since every element of S is an idempotent. 

REMARK. Every co-semigroup of the form of example (3) is called a 
right zero iùsemigroup. 

REMARK. In [7], Hassett showed that there are continuum many 
(c) RETs which are not the order of an co-group. This is not the case 
for co-semigroups. 

THEOREM T4. For every A G O , there exists an (»-semigroup S such 
that o(S) = A. 

PROOF. Examples (2) and (3) above are such co-semigroups. 

REMARK. Since every periodic cancellation semigroup is a group, 
T l allows us to prove the following theorem. 

THEOREM T5. Every periodic cancellation (û-semigroup is an co-
group. 

COROLLARY. Every cancellation isolic semigroup is an isolic group. 

§4. co-Divisors. 

DEFINITION. Let S be an co-semigroup and P a property of S. We 
say that an element t / G S can be effectively found given xl9 • • *, xn 

(orfrom Xi, • • -9xn) such that P(xl9 • • •9xn9y)9forxl9 • • -,xn G S, n ^ 1, 
if there exists a function / such that: 

(i) Of is the set of all n-tuples (wx, - • -, wn), wly - • -ywn G S, such 
that there exists a z G. S for which P(wi, * * -, wn, z), 

(ii) for all (wl9 ' • *, wn) E Ôf, P(wl9 • • -, wn,f(wl9 • • -, wn))9 

(iii) f(xl9 "'9xn) = y9 

(iv) / can be extended to a partial recursive function of n variables. 

REMARK. The purpose of the above definition is to allow us to talk 
about certain effective properties of individual n-tuples of elements of 
S in such a way that if the property holds for all n-tuples of elements 
of S then it holds uniformly for S. The need for the definition should 
become clear to the reader as he proceeds through this paper. 



CO-SEMIGROUPS 603 

REMARK. If the property P is clear from the context, we may just 
say an element y G S can be effectively found given xl5 • • -, xn. 

DEFINITION. An element b of an co-semigroup S is called a right 
œ-divisor of the element a G S if there exists a n i G S which can be 
effectively found from a and b such that x • b = a. An element b G S 
is called a left oj-divisor of a G S if there exists a t / £ S which can be 
effectively found from a and b such that b • y = a. 

NOTATION. If b is a right (left) co-divisor of a, we say a is co-
divisible on the right (left) by b. 

REMARK. The following three theorems relate co-divisibility to co-
groups. 

THEOREM T6. An <t)-semigroup S is an (o-group if and only if each 
of its members is (o-divisible both on the right and the left by every 
element of S. 

PROOF. Left to the reader. 

REMARK. The conditions in T6 for S to be an co-group can be weak­
ened as follows. 

THEOREM T7. If an (ù-semigroup S possesses an element which is 
both a right and left <o-divisor of every element of S and at the same 
time, itself is ct)-divisible both on the right and left by every element 
ofS, then S is an co-group, and conversely. 

PROOF. See [8, p. 46]. 

REMARK. Suppose that Gx = (a l5 px) and G2 = (a2, P2) a r e co-groups, 
and «! \a2. We can define an co-semigroup S = (a, p) as follows. Let 
a = c*! U c*2 and for x,y G a define p(x, y) to be pi(x, y), if x, y G. ax; 
p2(x, j/), if x, y G a2, and if x G ax and y G a2 then p(x, y) = p(y9 x) = 
y. It is straightforward to show that S is an co-semigroup and that S 
has both left and right co-divisors. Also it is clear that if aY and c*2

 a r e 

non empty, that S is not a group. Let B be the set of all elements of 
S that are both left and right co-divisors of every element of S, and let 
C be the set of all elements of S that are co-divisible both on the right 
and the left by every element of S. 

THEOREM T8. Following the above notation, Gr = B and G2 = C. 

PROOF. See [8, p. 46]. 

REMARK. We recall from semigroup theory that for a, b G S, S a 
semigroup, if a • b = a (b • a = a) then a is called a left (right) zero of b 
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and b is called a right (left) unit of a. Also an element of S that is a 
two-sided unit (zero) of S (i.e., every element of S) is called a unit (zero) 
of S. The following is a theorem of semigroup theory. 

THEOREM T9. A semigroup possesses at most one unit and one zero. 

REMARK. By T9, we also refer to a unit of S as the identity of S. 

THEOREM T10. Let S be an co-semigroup which possesses left and 
right co-divisors. 

(i) A unit of S is a right and left co-divisor of every element of S. 
(ii) Every element of S is both a right and left co-divisor of a zero 

ofS. 
(iii) The zero of S is neither a right nor left co-divisor of any element 

ofS, except itself 

PROOF. Left to the reader. 

THEOREM T i l . The following three conditions on an co-semigroup 
S are equivalent: 

(i) S possesses a unit and each element x of S possesses a multi­
plicative inverse which can be effectively found given x. 

(ii) S possesses a right unit i, and every element of S is a left co-
divisor ofi. 

(iii) S is an co-group. 

PROOF. Left to the reader. 

§5. co-Regular co-semigroups. 

REMARK. The following are analogues of the concepts of regular 
semigroup and completely regular semigroup as used in [8]. 

DEFINITION. Let S be an co-semigroup. An element a of S is said to 
be co-regular if we can effectively find an x G S, given a, such that 
a - x - a = a. 

DEFINITION. An co-semigroup S is said to be co-regular if every 
element of S is co-regular. 

REMARK. We see that S is co-regular if and only if there is a function 
/ defined on S, such that for all a G S, a • f(a) • a = a and / has 
a partial recursive extension. 

REMARK. We also note that if S has an co-regular element, then 
every regular element is co-regular. 

DEFINITION. An element a of an co-semigroup S is said to be com­
pletely co-regular, if we can effectively find, given a, an x G S such that 
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a • x - a = a and this x also satisfies the condition that a • x = x - a. 

REMARK. The above definition o f f l G S being completely co-regular 
is to be read so that a is co-regular and in addition a • x = x • a. 

REMARK. Although this definition may seem to be unnatural and it 
would appear the definition should read "an element a is completely 
co-regular if we can effectively find, given a, an x G S such that a • x • a 
= a and a * x = x • a," there is a good reason for not using this second 
definition. By using the second definition, it would be possible to 
have a completely co-regular element which is not co-regular. This 
would occur for an co-semigroup S in which there are regular elements 
a and no general effective procedure for finding an x such that 
a • x • a = a, but for the restricted set of regular elements which are 
completely regular there is such an effective procedure. The first 
definition does not have this problem. Also, both definitions are 
equivalent for co-semigroups in which all elements are completely 
co-regular. 

DEFINITION. An co-semigroup S is said to be completely <o-regular 
if every element of S is completely co-regular. 

REMARKS, (i) For a commutative co-semigroup S, S is co-regular if 
and only if S is completely co-regular. 

(ii) An co-group is a completely co-regular co-semigroup. 
(iii) Every completely co-regular element (co-semigroup) is an co-

regular element (co-semigroup). 

DEFINITION. A finite partial (f.p.) junction, f, is a function such 
that of and pf are finite sets. 

REMARK. It is clear that if / is an f.p. function then / is a partial 
recursive function. 

NOTATION. Let q(n) denote the (n + l) s t odd prime, for n G e . 

DEFINITION. Let a and ß be sets. A function / is an f.p. function 
fromß into a, if/ is an f.p. function such that ofCZß and pf C a. 

NOTATION. Let a C e . £(a) = {f\f is an f.p. function from a 
into a}. If a = €, then £(a) = £ 

NOTATION. Let / £ £ If 8f= 0 , then / * = 1. Suppose 8f 
has n + 1 members, say {x0, • • -, xn}, then 

f* = 2«+1 n q(*iY(xiHi. 
t=0 
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REMARK. Let / , g G £ If pf fi 8g = 0 , then 8(g ° f) = 0 . 
If pfOôgf0, then 8(g ° / ) = f~l(pf H 8g). Hence we have 
a multiplication of/, g G f by 

g 0 / ( ï ) = rg(/(*)),if*es(go/), 
^undefined, otherwise. 

We see that g ° / G £ if g and / are in £ If we are given g and 
/ we can effectively find g ° / Also the above multiplication in £ 
is clearly associative. Given / G f , i.e., given 8f,pf and /(x) 
for each x G 8/, we can effectively find f* and vice versa. We 
see t h a t / « * / * is a one-to-one Godei numbering of £ 

NOTATION. Let a C c . We denote the semigroup (f(a), ° ) by T(O). 

Also £*(a) = {/* l / G £(a)} and the semigroup (f*(a), ° ) is 
denoted by T(a), where / * ° g* = (/<> g)*, for / * , g* G £*(a). 

REMARK. 7(C) is a universal r.e. super semigroup for all T(a), ade. 

THEOREM T12. Let ade. T(a) is an <o-regular (o-semigroup. 

PROOF. Multiplication in T(a) is effective since given /*, g* G 
T(a)9 we can effectively find / g G r(a). Then we can compute 
/ ° g in r(a) and effectively find ( / ° g)*. Thus it follows that 
T(a) is an co-semigroup. Given / G r(a) we can effectively find all 
of its inverse functions such that 8 / _ 1 = p/ , since 8 / and pf are 
finite. We select a unique one by: /_1(j/) = (/ix)[x G 8/& 
/(x) = y] for t/ G p / Clearly fof-iof=fi for / G r(a). 
Thus for / * Ê T ( o ) , / * ° ( / - 1 ) * ° / * = /*• It follows that T(a) 
is an co-regular co-semigroup. 

REMARK. For a C €, r(a) is not a group, since every partial identity 
function on a, i.e., f(x) = x, for x G 8 / C a, is an idempotent, and 
there are 2Req(a) such partial identity functions. Thus T(a) is not an 
co-group. 

THEOREMT13. LetaCeandReqia) = A Theno(T(a)) = (A + 1)A. 

PROOF. We assume without loss of generality that 0 (£ a. Hence 
A + 1 = Req(a U {0}). We recall from [6] that (A + 1)A = 
Req(a U {0})« where (a U {0})a = {n | rn is a finite function from a 
into a U {0}}. Define a map \fß from £*(a) into (a U {0})a as follows. 
Let f* G f*(a). Form the finite function rn with 8ern = 8 / and 

r M = //<*>> tf*f *«f»> 
TnW 10, if x $ 8.rn. 
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Put t/f(/*) = n- It is e a s y t o s e e tha t ^ maps £*(a) one-to-one, 
onto (a U {0})a and that \fß and «/r_1 have partial recursive extensions. 
Hence by [5, Proposition 1], f *(a) =* (a U {0})a. Thus o(T(a)) = 
(A + 1)A. 

THEOREM T14. Fora,ß C e , 

PROOF. Left to the reader. 

THEOREM T15. For a, ß non empty isolated sets, 

PROOF. It suffices to show by T14 that T(a) = „ r (0 )=*a — ß. 
However it is easy to show that the function f(n) = (n + l ) n is a 
one-to-one recursive combinatorial function. Hence by [4, p. 54] and 
T13, if Req(a) = A and Req(/3) = B, then 

T(a) s s . T(j8) =*(A + 1)A = (B + l ) ß =>A = B=>a^ß. 

COROLLARY. TTiere are c non (o-isomorphic to-regular isolic semi­
groups which are not isolic groups. 

THEOREM T16. Let ß C a . Then 

T(ß) êrec T(a) if and only i£ß\a- ß. 

PROOF. If ß | a - ß, it is clear that f *(£) | f *(a) - f *(0). Hence 
T(j8) ^ r ß c T(a). Conversely if f *(/8) | f *(o) - £*(£)> * e n let fc be 
a fixed element of ß. For x €= a, let / x be the f.p. function such that 
8fx = pfx = {x, b} and /(b) = x, f(x) = fo. But we see that x E/3 if 
and only if/x* E f *(/8). It follows that/8 | a - 0. 

THEOREM T17. Jf S is an <û-regular (o-semigroup that is a group, it 
is an (û-group. 

PROOF. Let a G S. We can effectively find x £ S such that a • x • a = 
a. But x is clearly a - 1 , since S is ai group. Hence S is an co-group. 

COROLLARY. If S is an w-semigroup that is a group but not an co-
group, then S is a regular (û-semigroup that is not (o-regular. 

THEOREM T18. There exist e non (»-isomorphic, completely <o-
regular, non-abelian, isolic semigroups which are not isolic groups. 

PROOF. Let a and ß be immune, separable sets, and let y be an 
infinite subset of ß. For any set T, we recall from [7] that F(T) is 
the co-group of Godei numbers of finite permutations of T and that 
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o(P(r)) = 71, where Req(r) = T. Also from the remark following T7 , 
we have that if Gl = (a1? px) and G2 = (a2, P2) a r e a n v two co-groups 
with «! I «2, then Gx U G2 forms an co-semigroup with the given multi­
plication p. Now, since a | y, we can effectively recode P(a) and P(y) 
so that they have no elements in common, instead of having the 
identity element, 1, in common. For example, let P\(ct) = 
{2x I x G P(a)} and P2(y) = {2x + 1 | x G P(y)}, and adjust their mul­
tiplications accordingly. Let Sy be the co-semigroup Pi(a) U P2(y) with 
the appropriate multiplication, p. Clearly Sr is not abelian. Also if 
z G Sy then z G P\(a) or z G P^y). In either case, 2 has a group in­
verse z~l such that p(z, p(z - 1 , z)) = z and p(z, z~l) = p(z~l, z). Thus 
Sy is a completely co-regular co-semigroup. Now o(Sy) = o(Pi(a)) + 
ö(P2(y)). T h u s i f Req(a) = A and Req(y) = C then o(Sy) = A! H- C!. 
But A, C G A implies A! + C! G A. Therefore Sy is a completely co-
regular isolic semigroup. Now if yY and y2 are two subsets of ß with 
Reqfyi) = Cx and Req(y2) = C2, then 

Syi s . S72=> A! + CJ = A! + C2! ^ C J = C2! = ^ C 1 = C2. 

Hence Sy ^ ^ S72 =>y^ y2. But )3 has c immune subsets which are 
mutually nonrecursively equivalent. Thus there are c completely co-
regular isolic semigroups of the form Sy. 

REMARK. The following are analogues of regular left (right, two-
sided) unit as used in [8]. 

DEFINITION. Let S be an co-semigroup. An element a of S has an co-
regular left (right) unit i if, given a, we can effectively find an i G S and 
x G S such that i - a = a and a * j c = i ( a - i = a and x • a = Ï). An 
element i of S is (o-regular two-sided unit of a if i is both an co-regular 
left unit of a and an co-regular right unit of a. 

REMARK. We see that i is an co-regular left (right, two-sided) unit 
implies i is a regular left (right, two-sided) unit. 

THEOREM T19. (i) Every idempotent of an (o-semigroup containing 
ù)-regular elements is completely (o-regular. 

(ii) A regular left (right, two-sided) unit of an arbitrary element of a 
semigroup is always an idempotent. 

PROOF. Left to the reader. 

THEOREM T20. Let S be an (û-semigroup. 
(i) If an element a of S has either an ù)-regular left unit or an co-

regular right unit, then a is œ-regular. 
(ii) An (»-regular element a of S has both an (»-regular left unit and 
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an (»-regular right unit. 
(iii) An element a of S is completely (»-regular if and only if a has 

an (û-regular two-sided unit. 

PROOF, (i) Let i be an co-regular left unit of a. That is, given a we 
can effectively find i,xŒS such that i • a= a and a • x = i. Thus 
given a we can effectively find x G S such that amx-a=i'a=a. 
Also suppose we have a b G S for which there exists a y G S such that 
b - y - b = b. But ib = b • y satisfies ib • b = b and b • y = ib, and 
hence given fo we can effectively find j , z G S such that j - b = b and 
fc - z = j . However, b-z-b=j-b=b. In other words, given b we 
can effectively find z such that b - z - b = b. Thus a is co-regular. 
Similarly if i is an co-regular right unit of a then a is co-regular. 

(ii) Let a be an co-regular element. Thus given a we can effectively 
find x G S such that a • x • a = a. Put ia = a • x and ia = x • a. Thus 
ffl is a regular left unit and ia is a regular right unit. Suppose for 
b G S, there exist i, t/ G S such that i - b = b and b - y = i. Then, 
b - y ' b = b and fo is regular. Thus b is co-regular and given b we can 
effectively find z £ S such that b • z - b = b. Letting ib = b - z, we 
have if, is a regular left unit of b. It follows that ia is an co-regular left 
unit of a. Similarly ia is an co-regular right unit of a. 

(iii) See [8, p. 73]. 

REMARK. We know from semigroup theory that an element of a 
semigroup S may have no more than one regular two-sided unit, hence 
an element of an (»-semigroup S may not have more than one (»-regular 
two-sided unit. 

DEFINITION. Let S be an co-semigroup and a G S. If, given a, we 
can effectively find a b G S such that a • b - a— a and b • a • b = fo, 
then fo is called an (»-inverse of a. 

REMARK, (i) An element of an co-semigroup may have several co-
inverses. 

(ii) An element that possesses an co-inverse is co-regular. The con­
verse is also true. 

THEOREM T21. Every (»-regular element of an (»-semigroup S has 
an iù-inverse. A completely ù)-regular element of S has an (o-inverse 
which commutes with it. 

PROOF. Let a be an co-regular element of S. Hence we can effec­
tively find, given a, an x G S such that a - x - a = a. Put b = x • a • x. 
Thus it is easy to check that b is an co-inverse of a. Also if a • x = x -a 
then a f o = a - a c - a * a c = a c a j c a = & * a . 
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THEOREM T22. The following are necessary and sufficient conditions 
that an œ-semigroup S is an co-group. 

(i) S has a unit which is an co-regular left unit of every element of S. 
(ii) S is (ù-regular and has only one idempotent. 

(iii) S is (o-regular with two-sided cancellation. 

PROOF. The three conditions are clearly necessary. It suffices to 
show they are sufficient. But (i) follows from T i l , and (ii) and (iii) 
follow from [8, p. 76], T17, and the fact that any co-regular co-semi­
group is a regular semigroup. 

§6. Inverse co-semigroups. 

DEFINITION. An inverse lû-semigroup is an co-regular co-semigroup 
S in which for each a G S, there exists a unique b G S such that 
a,b-a=a>b-a'b=b and b is an co-inverse of a. 

REMARK, (i) We see that an inverse co-semigroup is an inverse semi­
group in which each element has an co-inverse. 

(ii) If an co-regular co-semigroup is also an inverse semigroup then 
by T21, it is an inverse co-semigroup. 

NOTATION. If S is an inverse co-semigroup, we denote the co-inverse 
of a G S by a - 1 . 

THEOREM T23. Let S be an inverse (^-semigroup. 
(i) For all a,b G S, fo is an œ-inverse of a if and only if a is an 

(ù-inverse ofb. 
(ii) For all a EL S, (a~l)~l = a. 

(iii) Ifi is an idempotent of S then i~l = i. 
(iv) For all a G S, a * a~l is the only œ-regular left unit of a and 

a~l • a is the only (o-regular right unit of a. 

PROOF. Left to the reader. 

NOTATION. Let a C e . £(a) = { / £ f ( a ) | / is one-to-one on its 
domain}. 0(a) is the subsemigroup of r(a), (£(a), ° ). Also £*(«) = 
{f* | / E £ ( a ) } and 1(a) is the co-subsemigroup of T(a)> (£*(<*), ° ). 

REMARK. 1(a) is called the symmetric inverse œ-semigroup on a. 

THEOREM T24. For a C €, 1(a) is an inverse (^-semigroup. 

PROOF. If / * G 1(a) then f~l, the inverse function of / , is the 
only fp. function which satisfies f°f~lof=f a n d 
f~l° f°f~l = f~l. Also ( / _ 1 )* is an co-inverse of /*. 
Hence 1(a) is an inverse co-semigroup. 
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REMARK. By the remark following T12, we see that 1(a) is not an 
co-group. 

REMARK. 1(a) is not completely co-regular, since if / G £(a) and 
Of ^ pf, then 8 ( / - l°f) = 8 / and « ( / • / -1 ) = p/ . Hence 

THEOREM T25. For a, j3 C €, a ^ ß -» 1(a) = „ I(ß). 

PROOF. Left to the reader. 

REMARK. We recall from [4] that p0 = 0 and pn = {ai9 • • •, av}, 
where n = 201 + • • • + 2a>, for n ^ 1, is a one-to-one enumeration of 
Ç), the finite subsets of e. 

REMARK. If a is a finite set and card (a) = n, then it is easy to show 
that card 1(a) = X(n), where X(n) = ^ = o ' (?) (?)*!. Let us define for 
a G V, *(a) = £*(a). We can see that: 

(1) a G Ç - * < D ( a ) G Ç , 
(2) a , 0 G Ç > a n d a ~ j 3 - * * ( a ) ~ 4>(j8), 
(3) a G Ç and card (a) = n -* card*(a) = X(n). 

To prove that <I> is a combinatorial operator which induces X(n), it 
only remains to show that * has a quasi-inverse. Clearly <I>C = £*(c). 
Consider the function m(x) with domain £*(c) such that if / G £(c) 
and x = /*, m(x) is the unique canonical index such that pm(X) = 
Of U p / Thus for a G V and x G £*(*)> 

x G 4>(a)<=>pm(x) C a. 

Hence pm(x) is a quasi-inverse for O and 4> is a combinatorial operator. 
Also the function g(n) such that $(pn) = pg(n) is recursive so that <I> 
is a recursive combinatorial operator which induces the recursive 
combinatorial function X(n). Let for A G ß , Cx (A) = Req *(a) , aŒ A, 
be MyhilFs canonical extension of X(n) to O. We now have the fol­
lowing theorem. 

THEOREM T26. o(I(a)) = Cx (X), a G X, X G a 

THEOREM T27. For a, ß nonempty isolated sets a — ß «* 1(a) 

= ./(/8). 

PROOF. By [4, p. 54] and T26, for a G A and ß E B, A, B G A, 

/(a) a s . IO) -* o(/(«)) = o(I(B)) -* Cx (A) 

= C X ( B ) = * A = B = > a - B . 

Thus we are done by T25. 
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COROLLARY. There exist e non co-isomorphic inverse isolic semi­
groups, which are not completely co-regular. 

LEMMA 1. [3, vol. 1, p. 28]. Let S be a semigroup. Then S is an 
inverse semigroup if and only if S is regular, and any two idempotent 
elements of S commute with each other. 

THEOREM T28. Let S be an a)-semigroup. Then S is an inverse co-
semigroup if and only if S is ay-regular and any two idempotent ele­
ments of S commute with each other. 

PROOF. If S is an inverse co-semigroup, then S is co-regular and S 
is an inverse semigroup. Thus by lemma 1, any two idempotents of 
S commute with each other. Conversely if S is co-regular and any two 
idempotents commute with each other, then by lemma 1, S is an 
inverse semigroup. Hence by a previous remark, S is an inverse co-
semigroup. 

COROLLARY 1. A mapping of an inverse (o-semigroup S onto itself 
which carries every element a of S onto its w-inverse a - 1 , is an (o-anti-
automorphism. 

PROOF. See [8, p. 80]. 

COROLLARY 2. If S is an inverse <ù-semigroup and a, b G S, then 
(ab)~l = b~l -a"1 . 

COROLLARY 3. If S is an inverse (o-semigroup and H is a subsemi-
group of S such that if a G H then a~l G H, it follows that H is an 
inverse œ-semigroup. 

PROOF. If a G H then we can effectively find a~l G H, given a. 
Hence H is an co-regular co-semigroup. But all idempotents of H 
commute since H C S. Thus H is an inverse co-semigroup. 

DEFINITION. Let S be an inverse co-semigroup and e be an idem-
potent in S. Ge = {x G S I e is an co-regular two sided unit of x}. 

THEOREM T29. Let S be an inverse (o-semigroup. Then Ge is an 
(o-group and Ge ^ rec S. 

PROOF. We have e G Ge. Let a G Ge, then a • a~l = e and a~l • a = 
e by T20 and the fact that a may have only one co-regular two-sided 
unit. Hence a'1 G Ge by T20 and the fact that (a" 1 ) - 1 = a. Also if 
a,b G G e then 

(ab) • (ab)~l = (a • b)(b~l • a"1) = a • (b • b~l)a-1 

= a • e - a - 1 = a • cf_1 = e. 

Similarly (ab)~l(ab) = e. Thus a • b G G e . Hence Ge is a group. 
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Therefore by T17, Ge is an co-group. Finally, given e, we can effective­
ly test if a • a"1 = e, for a G S. Thus Ge g rec S. 

§7. co-Homomorphisms of co-semigroups. 

DEFINITION. Let Sx and S2 be semigroups. Then <£> is an co-horao-
morphism of Si onto S2 if 

(i) 0 is a homomorphism of Sx onto S2, 
(ii) <f> is an co-function from Sx onto S2. 

NOTATION. If <f> is an co-homomorphism from Sx onto S2, we say Sx 

is (D-homomorphic to S2, [written: Sx ̂  w S2]. 

THEOREM T30. (i) Let Sx = (a1? px) fee an (»-semigroup and <j> be an 
(»-homomorphismfrom Sx onto S2. Tnen S2 is an (»-semigroup. 

(ii) If (f>i is an ù)-homomorphism from an (»-semigroup Sx onto an 
(û-semigroup S2 and c/>2 is an (o-homomorphism from S2 onto an co-
semigroup S3 then <f>2 ° c^ is an (»-homomorphism from Sx onto S3. 

(iii) If (f> is an (a-homomorphism from an (a-semigroup Sx onto an 
(o-semigroup S2 and $ is one-to-one on Sx then <j> is an (»-isomorphism. 

PROOF, (i) Let S2 be the semigroup (a2, p2). Thus a2 = (f>(ai). Also 
let g be a function with a one-to-one partial recursive extension such 
that 8g = a2 and for all y G c*2, g(y) G(f>~l(y). Thus p2(t/i,t/2) = 
$Pi(g(ï/i)> g(ï/2))> f° r all !/i> !/2 ^ <*2- Hence p 2 can be extended to a 
partial recursive function of two variables. Therefore S2 is an co-
semigroup. 

(ii) Use [2, p. 5] . 
(iii) Use [2, p. 4] . 

THEOREM T31. If SL is an isolic semigroup and S 1 ^ W S 2 thenS2 is an 
isolic semigroup. 

PROOF. Since Sx g m S2 then o(Sx) ̂  o(S2) by [2, p. 18]. Thus 
o(Si) G A implies o(S2) G A. 

REMARK. We recall that an equivalence relation p is a congruence 
on a semigroup S, if for a, b G S apb implies that a-cpb-c and 
c -ape 'b for every c G S. 

NOTATION. If p is a congruence on a semigroup S then [Sip] is the 
factor semigroup of S induced by p. Also p ^ is the canonical mapping 
of S onto [Sip]. 

REMARK. If p is a congruence on a semigroup S, then p ^ is a homo­
morphism of S onto [ Sip]. 

DEFINITION. A congruence p on an co-semigroup S is an co-
congruence if [Sip] is a godecomposition of S. 
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REMARK. By [2, p. 12], if m! and m2 are gc-functions of [Sip] and 
7i = m i(S) and y2 = m2(S) are the associated gosets, then yx — y2. 

DEFINITION. Let S = (a, p) be an co-semigroup and p a congruence 
on S. With every choice function m of [ Sip] we associate a semigroup 
Cm = (r, qm\ defined by, 

(i) y = m(a), 8</m = y X y, 
(ii) 9m(*> ?/) = ™p(*> ?/), for xyyE.y. 

REMARK. Note that (ii) can be phrased as 
(iii) qm[m(x), m(y)] = mp(x, y), for x, y G a. 

DEFINITION. If p is an co-congruence on an co-semigroup S then the 
factor (»-semigroup of S [written: Sip] is Cm, where m is a gc-
function of [ Sip]. 

REMARK. By the previous two remarks we see that Sip is a well-
defined co-semigroup. 

THEOREM T32. If p is an (»-congruence on an (»-semigroup S and 
m is a gc-function of [ Sip] then m is an (o-homomorphism from S 
onto Sip. 

PROOF. Clearly for x G S, m(x) Œp^(x), thus m is a homomorphism. 
Further by [2, p. 9 and p. 16], m is an co-function. Thus m is an co-
homomorphism from S onto Sip. 

THEOREM T33. Let c/> be an œ-homomorphism of an (»-semigroup 
S Y onto an (»-semigroup S2. Define a relation p by apb if and only if 
(f>(a) = <f>(b),for a,b Œ. Sx. Then p is an (»-congruence on S and there 
exists an (»-isomorphism \p from SJp onto S2 such that (j> = $ ° f 
where fisa gc-function of [ SJp]. 

PROOF. We know from semigroup theory that p is a congruence. 
Since </> is an co-homomorphism then by [2, p. 15], [Sip] is a gc-class, 
i.e., p is an co-congruence, and there exists a mapping ifß from Cf onto 
S2 such that (f> = i/f ° / , where / is a gc-function of [Sx/p], and iff 
has a one-to-one partial recursive extension. Thus \fß is an co-
isomorphism from S Jp onto S2, by T32 and the fact that c/> is an co-
homomorphism. 

REMARK. From T32 and T33 we see that each co-congruence induces 
an co-homomorphism and vice versa. 

DEFINITION. We call the co-congruence p associated with the co-
homomorphism (f> in T33, the (»-congruence induced by c/>. We some­
times denotep by (f>~l ° (f>. 

THEOREM T3^. Let fa and (f>2 be (»-homomorphisms of an (»-semi-
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group S onto (»-semigroups Sx and S2 respectively such that <f>i~l° <f>i 
C <f>2~l° 02- Then there exists a unique (»-homomorphism 6 of SY 

onto S2 such that 6 ° fa = t/>2-

PROOF. For c^ G S1? define 0(czi) = 4>2{a), where a G S and 
c/>1(a) = av If a, fo G S and <£I(Ö) = </>x(&) then a ^ - 1 ° <f>\)b. Hence 
by hypothesis, a(</>2

_1 ° <fe)k and <£2(#) = <fe(fr)- Thus 0 is well-
defined. It is easy to check that 6 is a homomorphism from Sx onto 
S2. Since <h and <£2 are co-homomorphisms there exists functions px 

and p 2 with partial recursive extensions such that 8pi= Sl9 8p2 = S2 

and for all ax G S1? pi(a{) G.<f>i~l(ai) and for all a2 G S2, P2(a2) G 
02 -1(a2)- Thus 0(#i) = <l>2Pi(ai)i for all ai G SX and 0 has a partial 
recursive extension. Also if a2 G S2 then p3(a2) = <^1p2(ö2) G 0_1(a2) 
and p 3 has a partial recursive extension. Hence 6 is an co-homo-
morphism from Sx onto S2. The uniqueness of 0 follows immediately 
from 0 ° <fo = < 2̂. 

COROLLARY. J fp! and p2 are (»-congruences on an o)-semigroup S 
such thatpi C p2 , £/ien S/px ^ w S/p2. 

PROOF. Left to the reader. 

LEMMA. [8, p. 270]. If<j>isa homomorphism of an inverse semi­
group S, and if for a G S, <j>(a) is an idempotent of<j>(S), then S contains 
an idempotent ifor which c/>(i) = (f>(a). 

REMARK. The idempotent of the above lemma is a~l • a. 

THEOREM T35. [8, p. 271]. If <f> is a homomorphism of an inverse 
semigroup S, then <f>(S) is an inverse semigroup. 

THEOREM T36. If c/> is an (»-homomorphism of an (»-regular co-
semigroup Sj onto an (»-semigroup S2, then S2 is (»-regular. 

PROOF. Let p be a function associated with <f> such that for all y G S2, 
p(y) CL<f>~l(y) and p has a partial recursive extension. Let h G S2. 
Then p(b) G Sl and there exists an x G Sx such that p(fo) • x • p(fc) = 
p(fo) and x can be effectively found given p(b). Thus <f>(p(b) • x • p(&)) 
= ^p(b) = b. But <f>(p(fo) • x • p(b)) = <fyp(b) • c/>(a) • <J>p(fo) = fo • <£(*) 
• b. Hence b • </>(:x) • b = b and given b we can effectively find <j>(x). 
Therefore S2 is co-regular. 

THEOREM T37. If <f> is an (»-homomorphism of an inverse (»-semi-
group S, then <f>(S) is an inverse (»-semigroup. 

PROOF. Let S be an inverse co-semigroup; then by T35 <£(S) is an 
inverse semigroup. Hence by Lemma 1 of T28, all the idempotents 
of c/>(S) commute. Also by T28, S is co-regular. Thus by T36, cf>(S) is 
co-regular. It follows by T28 that <f>(S) is an inverse co-semigroup. 
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COROLLARY 1. If <f> is an co-homomorphism of an inverse iù-semi-
group S then for each x £ S , ((f>(x))~l = <j>(x~l). 

PROOF. Left to the reader. 

COROLLARY 2. If <f> is an (o-homomorphism of an inverse w-semigroup 
S, and if <f>(a), for a G S, is an idempotent, then given <f>(a) we can 
effectively find an idempotent i G S such that <f>(i) = <f>{a). 

PROOF. Given <f>(a) we can effectively find fo G S such that <f>(a) = 
<f>(b). Set i = b~l • b which we can effectively find given </>(a). By 
lemma to T35, since <f>(b) is an idempotent, f is an idempotent. Also 
by this lemma, <f>(i) = <f>(b) = <f>(a). 

COROLLARY 3. Suppose that <f> is an a)-homomorphism of an inverse 
(o-semigroup S and that X = <f>(a), a G S, is an idempotent of <f>(S). 
Then the set Bk of all b G S such that <j>(b) = A is an inverse o>-
semigroup and Bk ^ r e c S. 

PROOF. If bly b2 G Bx, then <f>(bl • b2) = ^{bx) • 0(fo2) = k • k = X. 
Thus bx • b2 G Bk. Hence Bk is closed under multiplication. It follows 
that Bk g S. Furthermore xEBk+* <f>(x) = k. Thus Bk ^ r e c S. Sup­
pose b G Bk. Then ^(fe"1) = (<f>(b))-1 = k~l = k. Therefore b~l G X. 
Hence by Corollary 3 of T28, Bk is an inverse w-semigroup. 

REMARK. We recall that for a semigroup S and an ideal / of S, the 
Bees congruence modulo I, p, is defined by apb if and only if a = b 
or a, b G I, for a, b G S. 

DEFINITION. If S is an w-semigroup and I is an ideal of S, then I is 
a recursive ideal of S if / ^ r e c S. 

THEOREM T38. If lis a recursive ideal of an ù)-semigroup S then the 
Bees congruence modulo I, p, is an co-congruence. 

PROOF. Let a be fixed element of/. For x G S, define 

C(X)= fa> i f * G / > C{X) U if*$J. 
Then it is easy to see that [Sip] is a goclass, with gc-function, c(x), 
since J | S — I. 

NOTATION. If S is an co-semigroup, I is a recursive ideal of S, and 
p is the Rees congruence modulo I, then we denote Sip by SIL 

THEOREM T39. Let A be a recursive ideal of the (o-semigroup S. 
Then S is an inverse (^-semigroup if and only if A and SIA are both 
inverse co-semigroups. 
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PROOF. Suppose S is an inverse co-semigroup. Since SIA is an co-
homomorphic image of S, by T37, SIA is an inverse co-semigroup. Also 
if a G A, then a~l • a • a~l G A, since A is an ideal. But a - 1 • a • a - 1 

= a"1. Hence a"1 G A. It follows by Corollary 3 of T28 that A is 
an inverse co-semigroup. Conversely, suppose A and SIA are both 
inverse co-semigroups. Let a G S. If a G A, there exists a unique 
x G A such that a • x • a = a and x • a • x = x and we can effectively 
find x given a. Further since A is an ideal, x -a • x G A for any x G S. 
Hence there exists a unique x G S satisfying a • x • a = a and x • a • x = 
x. If a G S — A then since SIA is an inverse co-semigroup, there is a 
unique x G S/A such that a • x • a = a and x • a • x = x and we can 
effectively find x given a. Furthermore any x G S satisfying a • x • a = a 
must belong to S — A, and hence S/A, since if x G A then a - x • a = 
a G A. But this contradicts a G S — A. Hence there exists a unique 
x G S such that a • x • a = a and x • a • x = x. Since A | S — A it 
follows that S is an inverse co-semigroup. 

§8. co-Right groups. 

REMARK. We recall that a semigroup S is called right (left) simple 
if it contains no proper right (left) ideal. Also from [3, vol. 1, p. 37], 
a semigroup S is called a right group if it is right simple and left can­
cellativi This is equivalent to the statement that for every a, b G S, 
there exists a unique x G S such that a - x = b. 

DEFINITION. An co-semigroup S is an w-right group if given a, b G S 
there exists a unique x G S such that a • x = b and we can effectively 
find x given a and b. 

REMARK. We see that every co-right group is a right group. 

REMARK. We recall that an co-semigroup S is called a right zero 
co-semigroup if x • y = t/, for all x, y G S. Clearly every right zero 
co-semigroup is an co-right group. 

We need the following lemma from [3, vol. 1, p. 37]. 

LEMMA. Every idempotent of a right simple semigroup S is a left 
unit of S. 

DEFINITION. Let Sx = (c*i, pi) and S2 = (a2, P2) be co-semigroups. 
We define the direct ù)-product of Sx and S2 [written: Sx X w S2] as the 
semigroup which consists of the set j(«i x «2) a n d th e semigroup 
operation: 

7'(*i> «2) "j(yi» »2) = i[pi(*i> !/i)> P2(*2> Î/2)],' 
for x1? t/x G <*x and x2, t/2 G a2. 



618 C. H. APPLEBAUM 

REMARK. It is readily seen that the direct co-product of two co-
semigroups is again an co-semigroup. 

THEOREM T40. The direct û)-product of two œ-right groups is an 
(ù-ìight group. 

PROOF. Left to the reader. 

THEOREM T41. An oi-isomorphic image of an cj-right group is an 
(o-right group. 

PROOF. Left to the reader. 

THEOREM T42. An (o-semigroup S is an œ-right group if and only 
if S is (^-isomorphic to the direct œ-product G X ^ E of an (o-group G 
and a right zero (o-semigroup E. 

PROOF. Let S be an co-right group and a G S. Then there is a 
unique solution to a • x = a. Call this solution e. But then a • e2 = 
a • e = a. Hence by uniqueness e2 = e. Now let E be the set of 
idempotents of S. Since e G E, E is not empty. Also by the previous 
lemma, if x G E, then x is a left unit of S. In particular e • / = / , for 
all e, f G E. Hence E is a right zero co-subsemigroup of S. Also 
x G E if and only if x2 — x, for all x G S. Thus E =xec S. 

Now if e G E, S • e is an co-subsemigroup of S with unit e. Also if 
a G S • e, we have a solution for a • x = e. But a(x • e) = e2 = e, so a 
has a right inverse x • e in S • e. Hence S • e is a subgroup of S. How­
ever given a and e we can effectively find a~l = x • e. Thus for fixed 
e, S • e is an co-group. So let g be a fixed element of E and let G be the 
co-group S • g. Next, form the direct co-product G X (I)E = 
{j(x, y) | x G G & y G E}. We define a map </> from G X W E into S 
by <l>j(a, e) = a • e, for j(a, e) G G X w E. It is easy to check that </> is 
a homomorphism. Also if </>j(a, e) = <f>j(b, f) then a - e = b - f 
But g is the identity of G. Hence 

a = a • g = fl(e • g) = (a • e) • g = (b • / ) • g = b • ( /• g) = fe • g = b. 

It follows that a - e = a - f But S is left cancellativi so e = f 
Thus <£ is one-to-one. Furthermore, if a G S then a • e = a, for some 
e G S. But a • e2 = a • e = a. Hence e2 = e and e G E. It follows that 

<W(0g> e) = (a * g) • e = a • e = a. 

Thus <f> is onto S. Now clearly if x = j(a, e) G G X w E, then 0(x) = 
fc(x) • £(x), and c/> has a partial recursive extension. Also if a G S, given 
a, we can effectively find e G E such that a • £ = a. Therefore 
<f>~l{a) = j(a - g,e) has a partial recursive extension. It follows from 
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[5, Proposition 1] that $ has a one-to-one partial recursive extension 
a n d S s w G X w E . 

Conversely, the direct co-product GX „E of an co-group G and a 
right zero co-semigroup E is an co-right group by T40. 

COROLLARY. If S is an ù>-right group and e is an idempotent of S, 
then S • e is an o)-group. 

THEOREM T43. An o>-semigroup S is an (o-right group if and only 
if S is (û-regular and left cancellative. 

PROOF. Let S be an co-right group; then S is a right group and hence 
left cancellative. Now we can effectively find a solution to a • x = a 
given a. Call this solution e. By left cancellation we get e2 = e. But 
we can find i / E S such that e • y = a. Hence e • a = e2 • y = ey = a. 
Finally, given a, we can effectively find zŒS such that a • z = e. 
However a*Z'a=e-a=a. Thus S is co-regular. 

Conversely, suppose S is co-regular and left cancellative. Then given 
a , b E S , we can effectively find y G S such that a • y • a = a. Thus 
x = t/ • fo is a solution to a • x = b. For (ay) • b = (at/a) • y - b = 
(ay) - a * y - b. Thus by left cancellation a • y • b = fo. Finally this 
solution is unique by left cancellation. 

REMARK. If S is an co-semigroup which is a group but not an co-
group, then S is right simple, left cancellative and contains a unique 
idempotent. But S is not an co-right group by T17 and T43. Hence 
the following theorem. 

THEOREM T44. If S is an oi-semigroup which is a group but not an 
(ù-group then S is not an m-right group. 

REMARK. In the case that S is a periodic co-semigroup or an r.e. 
semigroup, then we have nice behavior. 

THEOREM T45. The following assertions concerning an r.e. semi­
group or a periodic (o-semigroup S are equivalent: 

(i) S is an (o-right group, 
(ii) S is right simple and left cancellative, 

(iii) S is right simple and contains an idempotent. 

PROOF. By [3, p. 38], (ii) and (iii) are equivalent and we already 
have (i) implies (ii); hence to complete the proof, i.e., to show (ii) 
implies (i), it suffices to show that if S is a right group then given 
fl,6GS we can effectively find the unique x £ S such that a • x = b. 
Clearly if S is an r.e. semigroup we can do this. So suppose S is a 
periodic co-semigroup. The key to the proof is to show that given 
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a,b G S, there exists an n G € such that an+1 • b = b,i.e., that a - x = b, 
where x = an • b. Hence, suppose we are given a,bŒS. If a is an 
idempotent then by a previous lemma, a is a left unit of S, and hence 
a - b = b. So assume a is not an idempotent of S. But since S is right 
simple and left cancellativi there is a unique idempotent e E. S such 
that a • e = a. However, by [3, p. 38], since e is an idempotent, 
S • e is a subgroup of S. Since S is a periodic co-semigroup, S • e is a 
periodic co-semigroup. Thus, it follows by Tl , that S • e is a periodic 
co-group. Hence, given a, we can effectively find the inverse of 
a G S • e, of the form t/ • e, since y • e = an, where n G e — {0} and 
an+2 = a j n other words, we can effectively find an, such that a - an = 
e. But a - (an • b) = (a • an) • b = e • b = b, since, as above, e is a left 
unit of S. Therefore, given a, b G S, we can effectively find x = an • b 
such that a ' x =* b. This completes the proof. 

COROLLARY 1. An r.e. semigroup or periodic (o-semigroup is an co-
right group if and only if it is a right group. 

COROLLARY 2. An isolic semigroup is an isolic right group if and 
only if it is a right group. 
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