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RANDOM EVOLUTIONS: 
A SURVEY OF RESULTS AND PROBLEMS 

REUBEN HERSH 

1. Introduction and Summary. Consider the following three phys­
ical models: 

— a particle moves in a straight line with constant speed, until it 
suffers a random collison; then it changes velocity, and again moves 
in a straight line with a new constant speed. 

— a radio signal propagates through a turbulent medium, in which 
the index of refraction is changing at random. 

— a population of bacteria evolve in an environment that is subject 
to random fluctuations. 

These are all examples of a single abstract situation, in which an 
evolving system changes its "mode of evolution" or "law of motion" 
because of random changes in the "environment" or the "medium." 
(In the first example, the mode of evolution is prescribed by the 
speed and direction of the particle; in the second, by the refractive 
index of the medium; and so on.) 

Such situations arise in every branch of science. Recently, a 
general mathematical theory of such problems has been developed, 
the theory of "random evolutions." It is the purpose of this article to 
summarize the literature so far. 

In physical language, a random evolution is a model for a dy­
namical system whose equation of state is subject to random varia­
tion. In mathematical language, a random evolution is an operator 
M satisfying a linear differential equation of the form 

(1.1) 4M(8,t)=-V(x(8))M(s,t) 

or, equivalently, 

(1.2) ^(s,t)=M(S,t)V(x(t)). 

The coefficient V is an operator depending on a parameter x, and 
this parameter is stochastic. (That is, x(t) is an abbreviation for 
x(t, w), where w is a sample point in some probability space lì.) 

In this generality our model includes any homogeneous linear 
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evolving system. For example, V(x(t)) can be a random Hamiltonian 
in applications to quantum mechanics. In applications to electro­
magnetic wave-propagation, (1.1) is a random system of first-order 
partial differential equations (Maxwell's equations, with random 
refractive index). A particularly instructive example is to take each 
V(x) as a single first-order linear differential operator, with random 
coefficients. Then (1) is a "transport equation," associated with the 
trajectory of a particle whose speed and direction change at random. 
This corresponds to our first example above. 

Particular examples of such equations have long been studied in 
physical application, but their mathematical study, in the generality 
presented here, is very recent. 

Progress has been rapid, and some key questions have attained a 
reasonably definitive answer. In this survey I attempt to show how 
various results in the literature are related. Throughout the exposi­
tion I point out open questions and inviting areas that are still un­
touched. 

To begin with, let us denote by u(t, x) the expected value of the 
solution of (1.1), conditioned on the initial value of x(s), x = x(0) : 

(1.3) u(t,x) = Ex[M(0,t)]. 

It turns out that if the random parameter x(t) is Markovian, u(t, x) 
satisfies a simple deterministic equation. Denote by Ç the generator 
of the process. (For example Q is an n-by-n matrix if x(t) is an ri­
state chain; Q = (1/2) d2ldx2 if x(t) is Brownian motion.) Then u(t, x) 
satisfies 

(1.4) ft= V(x)u + Qu. 

(See [19]). 
This is a generalization of the Feynman-Kac formula of potential 

theory. By appropriate choice of V(x) and Q, (1.3) yields a stochastic 
solution of certain systems of partial differential equations, of either 
the parabolic or the hyperbolic type. The connection with hyper­
bolic equations is one of the most intriguing aspects of random 
evolutions. As a special case, we recover Kac's solution of the tele­
grapher's equation in terms of the Poisson process (see [ 16, 22] ). 
These and related topics are the content of § 2 of this paper. 

This part of the subject could be called "representation theory." 
By requiring x(t) to be Markovian, we obtain an exact equation for 
the expected values of M, valid for all t > 0. 

Most of the paper presents results of a different type, asymptotic 
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theorems which are valid for small stochastic disturbances and large 
times, in an appropriate scaling. 

It turns out that there are limit theorems which enable one to say 
with certainty what happens in the long run, even without knowing 
exactly what happens over finite time intervals. 

To get a first idea of what to expect, one can write down a formal 
"solution" to (1.1), 

M(s9t)~~ exp ( | * V(s(r))dr) . 

(This can in fact be justified if the V(x) commute with each other.) 
Now, / V(x(r)) dr is (approximately) a sum of operator-valued 
random variables, ^ V(X(TJ)) A r̂. For such sums, under appropriate 
hypotheses, there are two important classes of limit theorems: the 
laws of large numbers, and the central limit theorems. One is thereby 
led to seek analogous limit theorems for M, the random evolution. 

In fact, it is these limit theorems which are the deepest and most 
useful parts of the theory. (But see the paper by Griego in this issue 
[13] for a limit theorem of quite a different character.) 

Formal derivations for specific physical models were obtained by 
R. Kubo [28] and M. Lax [31]. 

To prove limit theorems in the generality needed for applications, 
one must overcome three distinct obstacles: the coefficients V(x) may 
be unbounded; different values of the variable operator V(x) need 
not commute with each other; and the stochastic structure of the 
process x(t) should be as unrestricted as possible. Only recently (see 
[6] and [41]) have theorems been proved which meet these de­
mands. A series of earlier works [16, 19, 20, 25, 30, 38, 39] proved 
limit theorems under one or another special restrictive hypotheses. 
These more special results are still important, because they provide 
more explicit formulas and simpler arguments. 

In § 3, we present two types of asymptotic theorems. First-order 
theorems are those which generalize the classical laws of large 
numbers. Roughly speaking, these theorems say that if the evolution 
coefficients V are multiplied by €, and the process x(t) is speeded up 
to x(tk), then as e—» 0, M converges to exp^Vj) where Vx is the 
average (over both the sample parameter w and the time-parameter 
t) of the random coefficients V(x(t, to)). 

If Vi = 0, the first-order limit exp(^Vx) is just the identity. In this 
case, by speeding up the process still more to x(£/e2), one can prove 
second-order theorems, which generalize the classical central limit 
theorem. 
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Here one can prove convergence for the expected value of M. Its 
limit is exp(fVn) where Vn is an operator-valued covariance, doubly 
averaged in time: 

(1.5) V u = l i m - P I"' E(V(x(s))V(x(r)) dr ds. 
t^œ t Jo Jo 

The order of the factors under the integral is important, since they 
do not commute in general. 

Simple expressions for Vn can be written down if x(t) is Mark-
ovian. On the other hand, a more complicated form is necessary in 
certain cases where M(s, t) depends on € in a more complicated way. 
The canonical example of (1.5) is in particle transport, where V(x(t)) 
is a random first-order differential operator. Then (see [20] ) the 
parameter e is proportional to the mean free path between collisions, 
Vu is a second-order elliptic differential operator, and E [ M(0, t)] 
goes in the limit to a solution of a parabolic equation — i.e., a dif­
fusion. This shows that our second-order asymptotic theorems are 
generalizations of the classical diffusion approximation for linear 
transport theory, for which they also serve as a rigorous foundation. 

It is important to recognize that the hypothesis V\ = 0, which is 
necessary for the validity of the second-order theorem, is a genuine 
restriction on the random coefficients V(x). 

This is most easily seen if we suppose that V(x) is a scalar multiple 
of a single operator, V(x) = c(x)V. VY is an average of V(x) with 
positive weights, and it can vanish only if c(x) takes on both positive 
and negative values. Now, for existence of M(0, t), t > 0, it is neces­
sary that exp(tV(x)) be well-defined; that is, the V(x) should generate 
semigroups. This will be the case for positive and negative scalars 
c(x) if and only if V generates a group. For example V = dldz 
generates a _group of translation operators, and so V(x) = c(x) dldz 
can satisfy V\ = 0. On the other hand, if V = d2ldz2, then V(x) = 
c(x)V generates a semigroup only for c(x) ^ 0 and so in this case 
Vi cannot vanish, and a second-order theorem cannot hold. Related 
to this is the fact that for this example Vn would be a positive mul­
tiple of d4ldz4, and for such a choice of V u , exp(tVn) does not exist 
(as a C0 semigroup on a Banach space). 

In case x(t) is Markovian, there is a very useful connection be­
tween the asymptotic theory of § 3 and the representation theory of 
§ 2. This is the topic of § 4. The parameter €, which measures the 
"speeding up" of the random evolution, appears now as a factor in 
the Feynman-Kac formula (1.4), either as 
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(1.6) ft = V(x)u+±Qu 

in the case of the first-order asymptotics, or 

(1.7) ft = ±V(X)u + j-2Qu 

in the second-order asymptotics. 
In either case, the limit as e —> 0 is a highly singular 

perturbation; by using the probabilistic limit theorems for M(s, t) 
one proves that the solution of (1.6) or (1.7), with initial value u0(x), 
converges, respectively to 

etVi u0(x)diJi(x) 

or 

etVn u0(x)dix(x) 

where d/x is the invariant measure associated with the ergodic 
Markov process x(t) and where t > 0. 

In particular, one obtains in this manner the convergence of solu­
tions of first-order hyperbolic systems to a single second-order 
diffusion equation. Further specializing this result, one concludes 
that solutions of the abstract "telegrapher's equation" 

eiitt + ut = Whx 

converge to solutions of the "diffusion equation" 

ut = Vhi. 

If V2 is chosen as (dldz)2, we have the classical telegrapher's equa­
tion; it can also be chosen, for example, as a general higher-order 
elliptic operator, in several dimensions, with variable coefficients. 

Thus the limit theorems of random evolutions can be used as tools 
in analysis, to prove perturbation theorems arising quite inde­
pendently of any probabilistic models. 

Conversely, one way to prove limit theorems for random evolu­
tions, at least in the Markovian case, is to prove an equivalent 
singular perturbation theorem for equation (1.6) or (1.7). This was 
done by Pinsky [42] in case x(t) is an n-state chain, and V — 
v(x) dldz; it was done by Kurtz for general Q and V (see § 4 below). 

A good review of much of the work on Markovian random evolu­
tions is contained in the expository article by Pinsky [45]. 
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Pinsky also has studied random evolutions from a somewhat 
different point of view: 

In the theory of Markov processes an important role is played by 
real-valued "multiplicative functionals," which satisfy the equation 

(1.8) M(s,t)M(t,u)= M(s9u) 

if s < t < u. This equation is also satisfied by the random evolutions 
M(s, t) defined by (1.1); now, of course, the multiplication is in the 
sense of operator-multiplication. This observation led Pinsky to 
study the question of finding representations for the most general 
operator-valued solution of (1.8), at least for certain particular types 
of Markov process. 

If M(s, t) is a functional of a diffusion process, he obtained a rep­
resentation using an Ito integral [44]. If M(s, t) is a functional of a 
jump process, he found that M is a product of the form 

(1.9)M(0,£) =rx(0)(T1)Px(o)x(Tl)Tx(Tl)(T2 - TxJP^)^)- • 'Tx{TN(t)(t - rN(t)). 

Here the TJ are the jump times of x(t), N(t) is the number of jumps up 
to time t, Tx(i) is the semigroup generated by V(x), and Pxy are "jump 
operators" that act instantaneously when x(t) is making a transition. 
If M(0,t) is continuous, all Pxy drop out, and M(0, i) reduces to a 
formula found earlier in [ 15]. The asymptotics for the discontinuous 
case were developed in detail by R. Kertz and are discussed at the 
end of § 4. 

Many physical applications, especially of the second-order limit 
theorems, have been made by Papanicolaou and his co-workers. In 
[4] the problem considered is propagation in a wave guide where 
random inhomogeneities cause transfer of energy from one mode to 
another. In [40] the application is to a beam in a strongly focussing 
medium. In [33] transmission coefficients and reflection coefficients 
are computed for scalar waves in a slab of random refractive index. 
In [34] there is a generalization of the Ornstein-Uhlenbeck theory 
for a particle in a random field. In [39] there is a study of trans­
mission through a random slab, and also a study of a harmonic oscil­
lator with spring constant a random function of time. An application 
of learning theory is presented in [52]. In many of these works a 
second-order asymptotic theorem is used to obtain an equation satisfied 
by the physical quantity of interest. Then in some cases an explicit 
solution can be given by suitable use of special functions and sym­
metry arguments. See also [32] for the related work of Morrison 
and McKenna. 

A type of application with a history of its own is to random prod-
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ucts of matrices. As (1.9) shows, a random evolution in the case of a 
jump process is precisely a random product of operators. If these 
operators are specialized to be finite dimensional, we are considering 
random products of matrices. This application has interesting 
geometrical interpretations. For instance, one can study random 
rotations of a sphere, which, of course, are represented by products 
of unitary matrices. Applications of this type are given in [38] and 
in [41]. 

By use of the theory of weak convergence of measures, it is pos­
sible in these cases to prove convergence of distributions, not just 
convergence of expectations. Results of this type have been obtained 
by Gorostiza [10, 11] and by Griego and Gorostiza [12], by relying 
on a general theory of Rosen. In [ 12] a particle moves in a straight 
line for a random time (not necessarily exponentially distributed.) 
Then it changes direction; the new direction is distributed uniformly 
over a cone making a random vertex angle a with the previous direc­
tion as center line. The random times and angles are independent 
and identically distributed. The paths converge weakly to Brownian 
motion, and the variance parameter is obtained explicitly. 

Branching processes in random environments have been studied 
as an application of random evolutions in the recent thesis of J. 
Corona Burgueno [51]. Another important area of application is to 
control theory. In spite of its obvious practical importance, very little 
has been done as yet in relating random evolutions to problems of 
optimal control. Rishel has treated [47] the special case that x(t) 
is a finite state chain and V(x) are first-order one-dimensional differen­
tial operators. He establishes a maximal principle and obtains opti-
mality conditions, for the conditional expectations of a general func­
tional of the position of a particle moving on a line with one of n 
random position-dependent velocities. 

For a general reference on the theory of random operators, the 
recent book of Bharucha-Reid [2] is very useful. 

2. The Operator-Valued Feynman-Kac Formula; Applications to 
Hyperbolic Equations. Suppose the random coefficient V is para­
metrized by a Markov process x(t, w) : V(t, w) = V(x(ty w)). We let 
Ç denote the infinitesimal generator for x(t, w). (For example, if x is 
an n-state chain, Q is an n-by-n matrix, the derivative at t = 0 of the 
matrix of transition probabilities for x(t, w). If x(t, w) is a diffusion 
process, Q is a 2nd-order elliptic differential operator.) 

Define M(s, t) as the solution (assumed to exist) of 

(2.1) ^ = -V(x(s))M, 4y = MV(x(t)\ M(t, t) = 10 ^ s g t 
as at 
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Let Ex denote the expected value, conditioned on the value of 
x(t,w) at t = 0. Given a function/(x) with values in a Banach space 
L, we define 

(2.2) u(t,x) = Ex(M(0, t))f(x(t)). 

A direct calculation (see [19], p. 361) quickly shows that if duldt 
exists, 

| = V(x)u + Qu 

(2-3) 
ti(0,x) = / ( * ) . 

(2.3) requires a little interpretation, u is an L-valued function of 
t and x; V(x) is, for each x, an operator on L, so V(x) is a pointwise 
operation on L-valued functions. Q, as the infinitesimal generator 
of x(t, w), is in the first place defined as operating on real-valued 
functions of x, but it has an obvious interpretation as operating on 
L-valued functions of x: if limt^0(llt)[Ex(f(x(t, w)) — f(x)] exists, 
then it is defined to be Cf. 

In order to recognize (2.3) as an operator version of the Feynman-
Kac formula, suppose all values of the variable coefficient V(x) com­
mute with each other. Then we can write 

(2.4) M = e x p ( | * V(r)dr Y 

Substituting (2.4) into (2.2), we have precisely the classical formula 
of Feynman-Kac where x(t, w) is Brownian motion, Q = (1/2) d2ldx2, 
and V(x) is multiplication by a scalar. 

On the other hand, if x(t,w) is an n-state chain, and Q is an n-by-n 
matrix, (2.3) is a system of n equations for u(t, x), x = 1, • • -, n. V(x) 
is a diagonal matrix, operating on the vector u(t,x). 

We will consider several different applications to partial differential 
equations. To begin with, we can specialize (2.3) to obtain a para­
bolic system of differential equations. 

We choose x(t, w) as an n-state Markov chain. Now Q is an n-by-n 
matrix, whose row-sums are zero, and whose off-diagonal terms are 
non-negative. For each x = 1, • • -, n, let V(x) be a second-order 
elliptic operator on, say, Rl9 — <» < z < <». In this case, (2.3) is a 
2d-order parabolic system. The principal part can vary from one 
row to the next in our system of n equations. On the other hand, 
there is the restriction that in the xth equation, 1 i x ^ n, only 
the xth unknown is differentiated. The coupling of the equations is 
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only through the matrix Q, i.e., through the zero-order terms. Cha-
browski [5] has shown that only for such weakly coupled systems 
can one obtain a non-negative fundamental solution. 

To obtain a hyperbolic system, we again take Q as the generator of 
an n-state Markov chain, but now restrict V(x), x = 1, • • -, n, to be 
first-order differential operators. Now (2.3) is a first-order system of 
hyperbolic equations, with variable or constant coefficients. 

In all these cases, of course, (2.2) yields a solution, where Ex and 
M are interpreted in the appropriate way. 

Once we specialize x(i) to be a jump process —in particular, a 
finite-state chain —we can solve (2.1) "explicitly", since now V(x(s)) 
is piecewise constant. If, as we assume, the solution M(s, t) exists, 
then each V(x) must generate a semi-group exp(tV(x)), and we can 
represent M (s, t) as a random product of "exponentials." If TJ are the 
jump times of the process x(t, w) 

M(s, t) = expKn - s)V(x(s))] exp[(r2 - T ^ x f o ) ) ] 
(2.5) 

• • - e x p [ ( * - TN)V(X(TN))] 

where N is the number of jumps performed by the chain between the 
epochs s and t, and Tjy l^j^N, are the jump times of the sample 
path x(r*), S ̂  r* g t. 

In this case, a standard renewal-theoretic argument shows that 
u(t, x) satisfies the integral equation 

u(t9 x) = exp(*V(x))/(x)prob(T > t \ x(0) = x) 
(2.6) 

+ L exp(rV(x)) S u(t - r> y)9xyPxx(r) dr 
0 x*y 

(see [16], p. 411). Here r is the first jump of the chain x(t), and 
pxy(r) is the matrix of transition probabilities generated by Ç. Dif­
ferentiating (2.6), one obtains again the Feynman-Kac equation (2.3). 
In the general case, (2.3) is valid only if fis assumed a priori to be in 
the domain of Q, but in the case of a jump process, Q is an integral 
operator or a matrix, and the renewal argument shows that (2.3) is 
valid without any special restrictions on f. 

One case had already been considered by several authors [3, 9, 
22, 42] before the general notion of random evolution was intro­
duced. This is the case where 

V(x) = v(x)(dldz\ v(x) G R. 

That is to say, as x ranges over 1, • • -,n, V(x) is one of n different 
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scalar multipliers of dldz. Our model is a particle moving on the 
z-axis at one of n possible speeds; it changes speed at random, ac­
cording to a Markov chain with generator Q. 

In this case, the "exponentials" of V(x), i.e., the semi-groups they 
generate, are just translation at speed v(x), 

(2.7) exp(tV(x))f(z) = f(z + tv(x)). 

Furthermore, the generators, and therefore the semi-groups, all 
commute with each other, and so (2.5) reduces to 

(2.8) M ( M ) = e x p ( £ y(x,t)V(x)) 
X 

where y(x, i) is the occupation time of the chain in state x up to 
time t. 

Combining (2.7) and (2.8), we get 

(2.9) u(t, x, z) = £ / ( x(t), z + £ v(y)y(y, t) ) 

as the solution of the first-order hyperbolic system 

— u(t, x,z) = v(x)—u(t, x, z) 

(2.10) + £ q(x, y)u(t, y,z)9l^x^ n. 
y = i 

u(0, x, z) = f(x, z) 

The fact that systems of the form of (2.10) arise in connection with 
the above-described motion of a particle with random velocity had 
been noted by Pinsky [42] and earlier by Birkhoff-Lynch [3]. 
However, the concise formula (2.9) was first discovered only as a 
special case of the general theory of random evolutions. 

If x(t) is a two-state chain, and 

<?-c: -:) 
then N(t), the number of jumps performed by x up to time t, is a 
Poisson process with intensity a. 

If V(l) = vdldz and V(2) = —vdldz, we have a particle moving on 
the line at speed v, and reversing direction according to a Poisson 
process. 

In this case (2.10) is a system of two hyperbolic equations of first 
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order. Differentiation and addition show that both u(t, 1, z) and 
u(t, 2, z) satisfy the single second-order equation 

(2.11) uu + 2aut = vhizz. 

This is the telegrapher's equation, which was derived by Kac, 
following earlier work of S. Goldstein [9]. By going to the continu­
ous limit from a discrete random walk (see [22], reprinted in this 
issue), Kac found an elegant solution formula for (2.11): if w(0, z) = 
f(z) and ut(0, z) = 0, then 

(2.12) u = E(W(T, Z)) 

where T = /J ( — l)N{s) ds, N is a Poisson process with intensity a, 
and w is a solution of the wave equation, 

wtt = vh»zz, 

w(0, z) = f wt(0, z) = 0. 

Formula (2.12) was remarkable for at least two reasons. First of 
all, it is a stochastic solution of a second-order hyperbolic equation. 
Secondly, it is still valid, if in (2.11) and (2.12) the operator d2ldz2 is 
replaced by a two or three-dimensional Laplacian, V2 . Yet there is 
no random translation in the plane or in space which yields the 
higher-dimensional "telegrapher's equation" in the manner in which 
Kac obtained the one-dimensional equation. 

The operator-theoretic viewpoint of random evolutions supplies 
the missing link. If we return to the system (2.3), still with 

<?-r: -:) 
and choose V(l) as the generator of any continuous group of opera­
tors, and V(2) as its negative, 

V(l) = V 

V(2)= - V , 

then again the system is equivalent to a single higher order equa­
tion, 

(2.11') utt + 2aut= V%i. 

This becomes a higher-dimensional telegrapher's equation if 

V = (d2/cfei2 + d2ldz2
2 + d2ldz3

2)112. 

Such a V indeed exists, as a pseudo-differential operator, and it 
generates a group. The Fourier transformation, 
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yields 

etvf= g - i [exp( t ( f 1 2+ & + £ 3
2 ) 1 / 2 )^ f ] . 

So Kac's formula (2.12) can be obtained, in any number of dimen­
sions, by considering a random evolution which switches, according 
to a Poisson process, between forward and backward evolution 
according to a square root of the Laplacian. 

Now formula (2.8) reduces to 

2 y ( x , t ) V ( * ) = [y(l,t)-y(2,t)]V. 
X 

One easily checks that 

y(M)-y(2,t)= £ (-l)"<*>£fe, 

and so formula (2.12) is obtained as a special case of (2.2). See [16] 
for more details. 

Formulas (2.2), (2.9) and (2.12) are remarkable because they yield, 
for certain hyperbolic equations, a solution expressed as the expecta­
tion of a stochastic process — a type of representation that was often 
thought to be attainable only for parabolic and elliptic equations. 

The question naturally arises to extend these formulas to as general 
as possible a class of hyperbolic equations. I know of three papers 
that have results of this type. 

The telegraph equation with a time-dependent coefficient was 
solved by Stanley Kaplan [23]. His idea was to introduce a process 
N(t), the Poisson process with variable intensity a(t). Its frequency 
function is given by 

P{N(t) - N(s) = m} = [ J ' a(j)dT 1 m (m\)-lexp [ - J ' a{r)dr\ . 

He shows by a moment calculation and an induction argument, 
that if now the random time r is again defined as in Kac's paper for 
the case when a is constant, 

T = r (-i)*<»>cfo 
Jo 

and if v(t) satisfies 
vtt = Lv, 
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then 
u(t) = E{V(T)} 

satisfies utt + 2a(t)ut = Lu. Moreover, u(0) = v(0), ut(0) = vt(0). 
L can be an n-dimensional Laplacian, or, more generally, "any 
reasonable linear operator." 

This theorem should be open to generalization. It seems more 
than likely that by suitable consideration of a non-stationary Markov 
process, one could prove a Feynman-Kac formula (2.2) for a variable 
operator Q(t). But so far this has not been done, even for the case of 
an n-state chain. (Kaplan's result, of course, is closely related to the 
special case n = 2.) 

An extension of the Kac-Kaplan formula in a different direction has 
recently been given by Rosencrans [ 48]. 

He uses a random time T which is given, not by a Poisson process 
but by a diffusion, 

dr = f(r) dt + e(r) db, r(0) = 0 

where h(t) is a standard Brownian motion process, and e, / are given 
smooth functions. Then he finds that if v satisfies 

\ e%t)vtt + f(t)vt = Av, 

thenu(t) = E[V(T)] satisfies 

ut = Au, ti(0) = ü(0). 

As a formula for solving hyperbolic systems, (2.9) has restricted 
application, for equation (2.10) is somewhat special: the coefficients 
v(x) and q(x, y) are independent of z, and q(x, y)=0 if x ^ 0, 

The case V = v(x, z) is covered by formula (2.5). But to allow Q to 
be 2-dependent and arbitrary-valued requires a genuine extension 
of the theory. 

This was done in 1969 by David Heath [ 18]. He was able to 
modify (2.5) so that he could solve a general first-order linear 
hyperbolic system: 

(2.13) - ^ =*<*) | * + 2 &<*)«%. 

Ui=f(z)2itt= 0. 

Here we use the usual notation for a system of equations; the 
subscripts i, j of course, correspond to the variables x, y in (2.10) and 
above. 


