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RANDOM EVOLUTIONS: 
A SURVEY OF RESULTS AND PROBLEMS 

REUBEN HERSH 

1. Introduction and Summary. Consider the following three phys­
ical models: 

— a particle moves in a straight line with constant speed, until it 
suffers a random collison; then it changes velocity, and again moves 
in a straight line with a new constant speed. 

— a radio signal propagates through a turbulent medium, in which 
the index of refraction is changing at random. 

— a population of bacteria evolve in an environment that is subject 
to random fluctuations. 

These are all examples of a single abstract situation, in which an 
evolving system changes its "mode of evolution" or "law of motion" 
because of random changes in the "environment" or the "medium." 
(In the first example, the mode of evolution is prescribed by the 
speed and direction of the particle; in the second, by the refractive 
index of the medium; and so on.) 

Such situations arise in every branch of science. Recently, a 
general mathematical theory of such problems has been developed, 
the theory of "random evolutions." It is the purpose of this article to 
summarize the literature so far. 

In physical language, a random evolution is a model for a dy­
namical system whose equation of state is subject to random varia­
tion. In mathematical language, a random evolution is an operator 
M satisfying a linear differential equation of the form 

(1.1) 4M(8,t)=-V(x(8))M(s,t) 

or, equivalently, 

(1.2) ^(s,t)=M(S,t)V(x(t)). 

The coefficient V is an operator depending on a parameter x, and 
this parameter is stochastic. (That is, x(t) is an abbreviation for 
x(t, w), where w is a sample point in some probability space lì.) 

In this generality our model includes any homogeneous linear 
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evolving system. For example, V(x(t)) can be a random Hamiltonian 
in applications to quantum mechanics. In applications to electro­
magnetic wave-propagation, (1.1) is a random system of first-order 
partial differential equations (Maxwell's equations, with random 
refractive index). A particularly instructive example is to take each 
V(x) as a single first-order linear differential operator, with random 
coefficients. Then (1) is a "transport equation," associated with the 
trajectory of a particle whose speed and direction change at random. 
This corresponds to our first example above. 

Particular examples of such equations have long been studied in 
physical application, but their mathematical study, in the generality 
presented here, is very recent. 

Progress has been rapid, and some key questions have attained a 
reasonably definitive answer. In this survey I attempt to show how 
various results in the literature are related. Throughout the exposi­
tion I point out open questions and inviting areas that are still un­
touched. 

To begin with, let us denote by u(t, x) the expected value of the 
solution of (1.1), conditioned on the initial value of x(s), x = x(0) : 

(1.3) u(t,x) = Ex[M(0,t)]. 

It turns out that if the random parameter x(t) is Markovian, u(t, x) 
satisfies a simple deterministic equation. Denote by Ç the generator 
of the process. (For example Q is an n-by-n matrix if x(t) is an ri­
state chain; Q = (1/2) d2ldx2 if x(t) is Brownian motion.) Then u(t, x) 
satisfies 

(1.4) ft= V(x)u + Qu. 

(See [19]). 
This is a generalization of the Feynman-Kac formula of potential 

theory. By appropriate choice of V(x) and Q, (1.3) yields a stochastic 
solution of certain systems of partial differential equations, of either 
the parabolic or the hyperbolic type. The connection with hyper­
bolic equations is one of the most intriguing aspects of random 
evolutions. As a special case, we recover Kac's solution of the tele­
grapher's equation in terms of the Poisson process (see [ 16, 22] ). 
These and related topics are the content of § 2 of this paper. 

This part of the subject could be called "representation theory." 
By requiring x(t) to be Markovian, we obtain an exact equation for 
the expected values of M, valid for all t > 0. 

Most of the paper presents results of a different type, asymptotic 
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theorems which are valid for small stochastic disturbances and large 
times, in an appropriate scaling. 

It turns out that there are limit theorems which enable one to say 
with certainty what happens in the long run, even without knowing 
exactly what happens over finite time intervals. 

To get a first idea of what to expect, one can write down a formal 
"solution" to (1.1), 

M(s9t)~~ exp ( | * V(s(r))dr) . 

(This can in fact be justified if the V(x) commute with each other.) 
Now, / V(x(r)) dr is (approximately) a sum of operator-valued 
random variables, ^ V(X(TJ)) A r̂. For such sums, under appropriate 
hypotheses, there are two important classes of limit theorems: the 
laws of large numbers, and the central limit theorems. One is thereby 
led to seek analogous limit theorems for M, the random evolution. 

In fact, it is these limit theorems which are the deepest and most 
useful parts of the theory. (But see the paper by Griego in this issue 
[13] for a limit theorem of quite a different character.) 

Formal derivations for specific physical models were obtained by 
R. Kubo [28] and M. Lax [31]. 

To prove limit theorems in the generality needed for applications, 
one must overcome three distinct obstacles: the coefficients V(x) may 
be unbounded; different values of the variable operator V(x) need 
not commute with each other; and the stochastic structure of the 
process x(t) should be as unrestricted as possible. Only recently (see 
[6] and [41]) have theorems been proved which meet these de­
mands. A series of earlier works [16, 19, 20, 25, 30, 38, 39] proved 
limit theorems under one or another special restrictive hypotheses. 
These more special results are still important, because they provide 
more explicit formulas and simpler arguments. 

In § 3, we present two types of asymptotic theorems. First-order 
theorems are those which generalize the classical laws of large 
numbers. Roughly speaking, these theorems say that if the evolution 
coefficients V are multiplied by €, and the process x(t) is speeded up 
to x(tk), then as e—» 0, M converges to exp^Vj) where Vx is the 
average (over both the sample parameter w and the time-parameter 
t) of the random coefficients V(x(t, to)). 

If Vi = 0, the first-order limit exp(^Vx) is just the identity. In this 
case, by speeding up the process still more to x(£/e2), one can prove 
second-order theorems, which generalize the classical central limit 
theorem. 
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Here one can prove convergence for the expected value of M. Its 
limit is exp(fVn) where Vn is an operator-valued covariance, doubly 
averaged in time: 

(1.5) V u = l i m - P I"' E(V(x(s))V(x(r)) dr ds. 
t^œ t Jo Jo 

The order of the factors under the integral is important, since they 
do not commute in general. 

Simple expressions for Vn can be written down if x(t) is Mark-
ovian. On the other hand, a more complicated form is necessary in 
certain cases where M(s, t) depends on € in a more complicated way. 
The canonical example of (1.5) is in particle transport, where V(x(t)) 
is a random first-order differential operator. Then (see [20] ) the 
parameter e is proportional to the mean free path between collisions, 
Vu is a second-order elliptic differential operator, and E [ M(0, t)] 
goes in the limit to a solution of a parabolic equation — i.e., a dif­
fusion. This shows that our second-order asymptotic theorems are 
generalizations of the classical diffusion approximation for linear 
transport theory, for which they also serve as a rigorous foundation. 

It is important to recognize that the hypothesis V\ = 0, which is 
necessary for the validity of the second-order theorem, is a genuine 
restriction on the random coefficients V(x). 

This is most easily seen if we suppose that V(x) is a scalar multiple 
of a single operator, V(x) = c(x)V. VY is an average of V(x) with 
positive weights, and it can vanish only if c(x) takes on both positive 
and negative values. Now, for existence of M(0, t), t > 0, it is neces­
sary that exp(tV(x)) be well-defined; that is, the V(x) should generate 
semigroups. This will be the case for positive and negative scalars 
c(x) if and only if V generates a group. For example V = dldz 
generates a _group of translation operators, and so V(x) = c(x) dldz 
can satisfy V\ = 0. On the other hand, if V = d2ldz2, then V(x) = 
c(x)V generates a semigroup only for c(x) ^ 0 and so in this case 
Vi cannot vanish, and a second-order theorem cannot hold. Related 
to this is the fact that for this example Vn would be a positive mul­
tiple of d4ldz4, and for such a choice of V u , exp(tVn) does not exist 
(as a C0 semigroup on a Banach space). 

In case x(t) is Markovian, there is a very useful connection be­
tween the asymptotic theory of § 3 and the representation theory of 
§ 2. This is the topic of § 4. The parameter €, which measures the 
"speeding up" of the random evolution, appears now as a factor in 
the Feynman-Kac formula (1.4), either as 
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(1.6) ft = V(x)u+±Qu 

in the case of the first-order asymptotics, or 

(1.7) ft = ±V(X)u + j-2Qu 

in the second-order asymptotics. 
In either case, the limit as e —> 0 is a highly singular 

perturbation; by using the probabilistic limit theorems for M(s, t) 
one proves that the solution of (1.6) or (1.7), with initial value u0(x), 
converges, respectively to 

etVi u0(x)diJi(x) 

or 

etVn u0(x)dix(x) 

where d/x is the invariant measure associated with the ergodic 
Markov process x(t) and where t > 0. 

In particular, one obtains in this manner the convergence of solu­
tions of first-order hyperbolic systems to a single second-order 
diffusion equation. Further specializing this result, one concludes 
that solutions of the abstract "telegrapher's equation" 

eiitt + ut = Whx 

converge to solutions of the "diffusion equation" 

ut = Vhi. 

If V2 is chosen as (dldz)2, we have the classical telegrapher's equa­
tion; it can also be chosen, for example, as a general higher-order 
elliptic operator, in several dimensions, with variable coefficients. 

Thus the limit theorems of random evolutions can be used as tools 
in analysis, to prove perturbation theorems arising quite inde­
pendently of any probabilistic models. 

Conversely, one way to prove limit theorems for random evolu­
tions, at least in the Markovian case, is to prove an equivalent 
singular perturbation theorem for equation (1.6) or (1.7). This was 
done by Pinsky [42] in case x(t) is an n-state chain, and V — 
v(x) dldz; it was done by Kurtz for general Q and V (see § 4 below). 

A good review of much of the work on Markovian random evolu­
tions is contained in the expository article by Pinsky [45]. 
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Pinsky also has studied random evolutions from a somewhat 
different point of view: 

In the theory of Markov processes an important role is played by 
real-valued "multiplicative functionals," which satisfy the equation 

(1.8) M(s,t)M(t,u)= M(s9u) 

if s < t < u. This equation is also satisfied by the random evolutions 
M(s, t) defined by (1.1); now, of course, the multiplication is in the 
sense of operator-multiplication. This observation led Pinsky to 
study the question of finding representations for the most general 
operator-valued solution of (1.8), at least for certain particular types 
of Markov process. 

If M(s, t) is a functional of a diffusion process, he obtained a rep­
resentation using an Ito integral [44]. If M(s, t) is a functional of a 
jump process, he found that M is a product of the form 

(1.9)M(0,£) =rx(0)(T1)Px(o)x(Tl)Tx(Tl)(T2 - TxJP^)^)- • 'Tx{TN(t)(t - rN(t)). 

Here the TJ are the jump times of x(t), N(t) is the number of jumps up 
to time t, Tx(i) is the semigroup generated by V(x), and Pxy are "jump 
operators" that act instantaneously when x(t) is making a transition. 
If M(0,t) is continuous, all Pxy drop out, and M(0, i) reduces to a 
formula found earlier in [ 15]. The asymptotics for the discontinuous 
case were developed in detail by R. Kertz and are discussed at the 
end of § 4. 

Many physical applications, especially of the second-order limit 
theorems, have been made by Papanicolaou and his co-workers. In 
[4] the problem considered is propagation in a wave guide where 
random inhomogeneities cause transfer of energy from one mode to 
another. In [40] the application is to a beam in a strongly focussing 
medium. In [33] transmission coefficients and reflection coefficients 
are computed for scalar waves in a slab of random refractive index. 
In [34] there is a generalization of the Ornstein-Uhlenbeck theory 
for a particle in a random field. In [39] there is a study of trans­
mission through a random slab, and also a study of a harmonic oscil­
lator with spring constant a random function of time. An application 
of learning theory is presented in [52]. In many of these works a 
second-order asymptotic theorem is used to obtain an equation satisfied 
by the physical quantity of interest. Then in some cases an explicit 
solution can be given by suitable use of special functions and sym­
metry arguments. See also [32] for the related work of Morrison 
and McKenna. 

A type of application with a history of its own is to random prod-
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ucts of matrices. As (1.9) shows, a random evolution in the case of a 
jump process is precisely a random product of operators. If these 
operators are specialized to be finite dimensional, we are considering 
random products of matrices. This application has interesting 
geometrical interpretations. For instance, one can study random 
rotations of a sphere, which, of course, are represented by products 
of unitary matrices. Applications of this type are given in [38] and 
in [41]. 

By use of the theory of weak convergence of measures, it is pos­
sible in these cases to prove convergence of distributions, not just 
convergence of expectations. Results of this type have been obtained 
by Gorostiza [10, 11] and by Griego and Gorostiza [12], by relying 
on a general theory of Rosen. In [ 12] a particle moves in a straight 
line for a random time (not necessarily exponentially distributed.) 
Then it changes direction; the new direction is distributed uniformly 
over a cone making a random vertex angle a with the previous direc­
tion as center line. The random times and angles are independent 
and identically distributed. The paths converge weakly to Brownian 
motion, and the variance parameter is obtained explicitly. 

Branching processes in random environments have been studied 
as an application of random evolutions in the recent thesis of J. 
Corona Burgueno [51]. Another important area of application is to 
control theory. In spite of its obvious practical importance, very little 
has been done as yet in relating random evolutions to problems of 
optimal control. Rishel has treated [47] the special case that x(t) 
is a finite state chain and V(x) are first-order one-dimensional differen­
tial operators. He establishes a maximal principle and obtains opti-
mality conditions, for the conditional expectations of a general func­
tional of the position of a particle moving on a line with one of n 
random position-dependent velocities. 

For a general reference on the theory of random operators, the 
recent book of Bharucha-Reid [2] is very useful. 

2. The Operator-Valued Feynman-Kac Formula; Applications to 
Hyperbolic Equations. Suppose the random coefficient V is para­
metrized by a Markov process x(t, w) : V(t, w) = V(x(ty w)). We let 
Ç denote the infinitesimal generator for x(t, w). (For example, if x is 
an n-state chain, Q is an n-by-n matrix, the derivative at t = 0 of the 
matrix of transition probabilities for x(t, w). If x(t, w) is a diffusion 
process, Q is a 2nd-order elliptic differential operator.) 

Define M(s, t) as the solution (assumed to exist) of 

(2.1) ^ = -V(x(s))M, 4y = MV(x(t)\ M(t, t) = 10 ^ s g t 
as at 
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Let Ex denote the expected value, conditioned on the value of 
x(t,w) at t = 0. Given a function/(x) with values in a Banach space 
L, we define 

(2.2) u(t,x) = Ex(M(0, t))f(x(t)). 

A direct calculation (see [19], p. 361) quickly shows that if duldt 
exists, 

| = V(x)u + Qu 

(2-3) 
ti(0,x) = / ( * ) . 

(2.3) requires a little interpretation, u is an L-valued function of 
t and x; V(x) is, for each x, an operator on L, so V(x) is a pointwise 
operation on L-valued functions. Q, as the infinitesimal generator 
of x(t, w), is in the first place defined as operating on real-valued 
functions of x, but it has an obvious interpretation as operating on 
L-valued functions of x: if limt^0(llt)[Ex(f(x(t, w)) — f(x)] exists, 
then it is defined to be Cf. 

In order to recognize (2.3) as an operator version of the Feynman-
Kac formula, suppose all values of the variable coefficient V(x) com­
mute with each other. Then we can write 

(2.4) M = e x p ( | * V(r)dr Y 

Substituting (2.4) into (2.2), we have precisely the classical formula 
of Feynman-Kac where x(t, w) is Brownian motion, Q = (1/2) d2ldx2, 
and V(x) is multiplication by a scalar. 

On the other hand, if x(t,w) is an n-state chain, and Q is an n-by-n 
matrix, (2.3) is a system of n equations for u(t, x), x = 1, • • -, n. V(x) 
is a diagonal matrix, operating on the vector u(t,x). 

We will consider several different applications to partial differential 
equations. To begin with, we can specialize (2.3) to obtain a para­
bolic system of differential equations. 

We choose x(t, w) as an n-state Markov chain. Now Q is an n-by-n 
matrix, whose row-sums are zero, and whose off-diagonal terms are 
non-negative. For each x = 1, • • -, n, let V(x) be a second-order 
elliptic operator on, say, Rl9 — <» < z < <». In this case, (2.3) is a 
2d-order parabolic system. The principal part can vary from one 
row to the next in our system of n equations. On the other hand, 
there is the restriction that in the xth equation, 1 i x ^ n, only 
the xth unknown is differentiated. The coupling of the equations is 
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only through the matrix Q, i.e., through the zero-order terms. Cha-
browski [5] has shown that only for such weakly coupled systems 
can one obtain a non-negative fundamental solution. 

To obtain a hyperbolic system, we again take Q as the generator of 
an n-state Markov chain, but now restrict V(x), x = 1, • • -, n, to be 
first-order differential operators. Now (2.3) is a first-order system of 
hyperbolic equations, with variable or constant coefficients. 

In all these cases, of course, (2.2) yields a solution, where Ex and 
M are interpreted in the appropriate way. 

Once we specialize x(i) to be a jump process —in particular, a 
finite-state chain —we can solve (2.1) "explicitly", since now V(x(s)) 
is piecewise constant. If, as we assume, the solution M(s, t) exists, 
then each V(x) must generate a semi-group exp(tV(x)), and we can 
represent M (s, t) as a random product of "exponentials." If TJ are the 
jump times of the process x(t, w) 

M(s, t) = expKn - s)V(x(s))] exp[(r2 - T ^ x f o ) ) ] 
(2.5) 

• • - e x p [ ( * - TN)V(X(TN))] 

where N is the number of jumps performed by the chain between the 
epochs s and t, and Tjy l^j^N, are the jump times of the sample 
path x(r*), S ̂  r* g t. 

In this case, a standard renewal-theoretic argument shows that 
u(t, x) satisfies the integral equation 

u(t9 x) = exp(*V(x))/(x)prob(T > t \ x(0) = x) 
(2.6) 

+ L exp(rV(x)) S u(t - r> y)9xyPxx(r) dr 
0 x*y 

(see [16], p. 411). Here r is the first jump of the chain x(t), and 
pxy(r) is the matrix of transition probabilities generated by Ç. Dif­
ferentiating (2.6), one obtains again the Feynman-Kac equation (2.3). 
In the general case, (2.3) is valid only if fis assumed a priori to be in 
the domain of Q, but in the case of a jump process, Q is an integral 
operator or a matrix, and the renewal argument shows that (2.3) is 
valid without any special restrictions on f. 

One case had already been considered by several authors [3, 9, 
22, 42] before the general notion of random evolution was intro­
duced. This is the case where 

V(x) = v(x)(dldz\ v(x) G R. 

That is to say, as x ranges over 1, • • -,n, V(x) is one of n different 
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scalar multipliers of dldz. Our model is a particle moving on the 
z-axis at one of n possible speeds; it changes speed at random, ac­
cording to a Markov chain with generator Q. 

In this case, the "exponentials" of V(x), i.e., the semi-groups they 
generate, are just translation at speed v(x), 

(2.7) exp(tV(x))f(z) = f(z + tv(x)). 

Furthermore, the generators, and therefore the semi-groups, all 
commute with each other, and so (2.5) reduces to 

(2.8) M ( M ) = e x p ( £ y(x,t)V(x)) 
X 

where y(x, i) is the occupation time of the chain in state x up to 
time t. 

Combining (2.7) and (2.8), we get 

(2.9) u(t, x, z) = £ / ( x(t), z + £ v(y)y(y, t) ) 

as the solution of the first-order hyperbolic system 

— u(t, x,z) = v(x)—u(t, x, z) 

(2.10) + £ q(x, y)u(t, y,z)9l^x^ n. 
y = i 

u(0, x, z) = f(x, z) 

The fact that systems of the form of (2.10) arise in connection with 
the above-described motion of a particle with random velocity had 
been noted by Pinsky [42] and earlier by Birkhoff-Lynch [3]. 
However, the concise formula (2.9) was first discovered only as a 
special case of the general theory of random evolutions. 

If x(t) is a two-state chain, and 

<?-c: -:) 
then N(t), the number of jumps performed by x up to time t, is a 
Poisson process with intensity a. 

If V(l) = vdldz and V(2) = —vdldz, we have a particle moving on 
the line at speed v, and reversing direction according to a Poisson 
process. 

In this case (2.10) is a system of two hyperbolic equations of first 
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order. Differentiation and addition show that both u(t, 1, z) and 
u(t, 2, z) satisfy the single second-order equation 

(2.11) uu + 2aut = vhizz. 

This is the telegrapher's equation, which was derived by Kac, 
following earlier work of S. Goldstein [9]. By going to the continu­
ous limit from a discrete random walk (see [22], reprinted in this 
issue), Kac found an elegant solution formula for (2.11): if w(0, z) = 
f(z) and ut(0, z) = 0, then 

(2.12) u = E(W(T, Z)) 

where T = /J ( — l)N{s) ds, N is a Poisson process with intensity a, 
and w is a solution of the wave equation, 

wtt = vh»zz, 

w(0, z) = f wt(0, z) = 0. 

Formula (2.12) was remarkable for at least two reasons. First of 
all, it is a stochastic solution of a second-order hyperbolic equation. 
Secondly, it is still valid, if in (2.11) and (2.12) the operator d2ldz2 is 
replaced by a two or three-dimensional Laplacian, V2 . Yet there is 
no random translation in the plane or in space which yields the 
higher-dimensional "telegrapher's equation" in the manner in which 
Kac obtained the one-dimensional equation. 

The operator-theoretic viewpoint of random evolutions supplies 
the missing link. If we return to the system (2.3), still with 

<?-r: -:) 
and choose V(l) as the generator of any continuous group of opera­
tors, and V(2) as its negative, 

V(l) = V 

V(2)= - V , 

then again the system is equivalent to a single higher order equa­
tion, 

(2.11') utt + 2aut= V%i. 

This becomes a higher-dimensional telegrapher's equation if 

V = (d2/cfei2 + d2ldz2
2 + d2ldz3

2)112. 

Such a V indeed exists, as a pseudo-differential operator, and it 
generates a group. The Fourier transformation, 
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yields 

etvf= g - i [exp( t ( f 1 2+ & + £ 3
2 ) 1 / 2 )^ f ] . 

So Kac's formula (2.12) can be obtained, in any number of dimen­
sions, by considering a random evolution which switches, according 
to a Poisson process, between forward and backward evolution 
according to a square root of the Laplacian. 

Now formula (2.8) reduces to 

2 y ( x , t ) V ( * ) = [y(l,t)-y(2,t)]V. 
X 

One easily checks that 

y(M)-y(2,t)= £ (-l)"<*>£fe, 

and so formula (2.12) is obtained as a special case of (2.2). See [16] 
for more details. 

Formulas (2.2), (2.9) and (2.12) are remarkable because they yield, 
for certain hyperbolic equations, a solution expressed as the expecta­
tion of a stochastic process — a type of representation that was often 
thought to be attainable only for parabolic and elliptic equations. 

The question naturally arises to extend these formulas to as general 
as possible a class of hyperbolic equations. I know of three papers 
that have results of this type. 

The telegraph equation with a time-dependent coefficient was 
solved by Stanley Kaplan [23]. His idea was to introduce a process 
N(t), the Poisson process with variable intensity a(t). Its frequency 
function is given by 

P{N(t) - N(s) = m} = [ J ' a(j)dT 1 m (m\)-lexp [ - J ' a{r)dr\ . 

He shows by a moment calculation and an induction argument, 
that if now the random time r is again defined as in Kac's paper for 
the case when a is constant, 

T = r (-i)*<»>cfo 
Jo 

and if v(t) satisfies 
vtt = Lv, 
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then 
u(t) = E{V(T)} 

satisfies utt + 2a(t)ut = Lu. Moreover, u(0) = v(0), ut(0) = vt(0). 
L can be an n-dimensional Laplacian, or, more generally, "any 
reasonable linear operator." 

This theorem should be open to generalization. It seems more 
than likely that by suitable consideration of a non-stationary Markov 
process, one could prove a Feynman-Kac formula (2.2) for a variable 
operator Q(t). But so far this has not been done, even for the case of 
an n-state chain. (Kaplan's result, of course, is closely related to the 
special case n = 2.) 

An extension of the Kac-Kaplan formula in a different direction has 
recently been given by Rosencrans [ 48]. 

He uses a random time T which is given, not by a Poisson process 
but by a diffusion, 

dr = f(r) dt + e(r) db, r(0) = 0 

where h(t) is a standard Brownian motion process, and e, / are given 
smooth functions. Then he finds that if v satisfies 

\ e%t)vtt + f(t)vt = Av, 

thenu(t) = E[V(T)] satisfies 

ut = Au, ti(0) = ü(0). 

As a formula for solving hyperbolic systems, (2.9) has restricted 
application, for equation (2.10) is somewhat special: the coefficients 
v(x) and q(x, y) are independent of z, and q(x, y)=0 if x ^ 0, 

The case V = v(x, z) is covered by formula (2.5). But to allow Q to 
be 2-dependent and arbitrary-valued requires a genuine extension 
of the theory. 

This was done in 1969 by David Heath [ 18]. He was able to 
modify (2.5) so that he could solve a general first-order linear 
hyperbolic system: 

(2.13) - ^ =*<*) | * + 2 &<*)«%. 

Ui=f(z)2itt= 0. 

Here we use the usual notation for a system of equations; the 
subscripts i, j of course, correspond to the variables x, y in (2.10) and 
above. 
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To allow a general zero-order term gij(z) instead of just the re­
stricted constants qij9 Heath used a method of "piecing out" to con­
struct a process in which a particle moving on the 2-axis according 
to one of n different position-dependent velocities Vi(z) undergoes a 
random jump in velocity from v^z) to Vj(z) with a probability 
|g,j-(2;)|. Then he introduces a multiplicative functional, m(t,w) 
which depends on the signs of the off-diagonal elements gij? and on 
the sign and magnitude of gu: 

(2.14) m(t9w)= exp\ \ d(z(s9w))ds] • ] 1 signg,, (Z(TÄ)). 
L ° J £ = 1 

Here d(z) = gü(z) + ^jH |gö(z)| andr* g t < Tk+l. 
The jumps of the process are at time T% , I = 1, • • -, and at the £th 

jump it goes from velocity vijL(z) to velocity Vj(z), if the particle at the 
jump time has position z. 

With this functional, Heath is able to show that 

EM{m(t9w)f(z9t9w)} 

satisfies (2.13). 
By constructing an equivalent first-order system, he can solve 

second-order equations of the form 

Utt = uzz + 2r(z)uz. 

He also gives a theory of generalized solutions, analogous to 
Doob's theory of "parabolic" functions. 

Heath's work was followed up by Griego and Moncayo [ 17]. 
They showed that if n Markov processes on a common state space 
are "pieced together" to yield a new process, the semigroup of the 
"pieced-out process" is the same as that constructed in [16] by the 
method of random evolutions, as the expected value of a random 
product of semigroups. 

This means, in particular, that if Heath's method and the Griego-
Hersh method are both specialized so that they are comparable, 
then they yield two different constructions of the same semigroup. 

It would be interesting to see if Heath's technique could be 
extended to more general cases. 

For arbitrary second-order elliptic operators Vi one should be 
able to solve parabolic systems of the form 

1 = VU + S gy(z)Uj 
dt 
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by piecing together diffusions and using the same multiplicative 
functional m(t,w). There should be a generalization to the case 
where the random velocities and diffusion coefficients are para­
metrized, not just by a finite set, but by an arbitrary probability 
space. This would yield a generalization of the Feynman-Kac 
formula (2.3), permitting an additional term of very general form, 
provided the operators V(x) are themselves generators of Markov 
processes on a common state space. 

Even more to the point would be a study of limit theorems for 
Heath's solutions. Heath's thesis contains no asymptotic results. 
The asymptotic formulas we discuss below are in the main restricted 
to the cases included in the "random differential equation" or 
"Feynman-Kac formula" cases. 

Presumably there is a connection between Heath's work and that 
of Pinsky and Kertz on multiplicative functionals. In particular, 
some of Kertz' asymptotic theorems may be applicable to Heath's 
equations. If so, this would add considerably to the applicability of 
the limit theorems in the study of hyperbolic equations. Kertz' work 
is described at the end of § 4. 

Also relevant to hyperbolic systems is the work of M. Keepler 
[24]. Keepler's work can be regarded as an extension to the 
operator-valued case of the renewal-theoretic approach to the for­
ward and backward equations satisfied by the transition proba­
bilities of an n-state chain. 

If the chain has generator Ç, and transition matrix p^(t) = et(2, 
then 

Pik(t) = -qiPik + S «toPjfcW 

(the backward equation) and 

(2.15) pj.it) = -pik(t)qk + 2 pij(t)qjk 

(the forward equation). 
These two equations are obtained by differentiation from the 

formulas 

(2.16) pik(t) = due-*" + 2 £ e-^sqijPjk(t-s) & 

and 

(2.17) p<*(*)= «**-**'+ 2 P e-9ik(t-»)qJkp^s)ds. 

http://pj.it
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If one formally replaces — q{ by V{ — qh where V{ generates a 
group exp(fVj), then (2.16) becomes a new solution formula for 
equation (2.3), and (2.17) solves a different equation, in which 
Q has been replaced by QT. Keepler verifies that these formulas 
actually are valid. His work is so far the only study of the forward-
backward duality in the random evolution context. (Except for an 
announcement [49] of Schay.) 

Keepler finds that the solution of the "transposed" equation 

is not the transpose of the solution of (2.3), except in the special case 
that the V* commute with each other. He also studies the effect of 
"time-reversal" of the chain, in case of a countable-state chain with a 
finite "explosion time"; a relationship is established between time-
reversal and the substitution of QTfor Ç in (2.3). 

It remains to extend these investigations to more general random 
evolutions, where renewal theory is not directly applicable. 

The interesting paper [3] of Birkhoff and Lynch also deserves 
mention. Perhaps because its main concern is the construction of 
difference approximations, it has not been influential in prob­
abilistically-oriented work. Nevertheless, it uses probabilistic ideas 
in a very suggestive way, particularly to motivate certain formal 
asymptotic expansions for first-order hyperbolic systems of the type 
we are discussing here, and for the telegraph equation. It would be 
interesting to see whether some of the heuristic discussion in this 
paper can be substantiated on the basis of more recent rigorous 
work, such as that of Pinsky [42] and others, which we discuss in 
§ 4 below. 

3. Limit Theorems in the General Case. With a single exception (a 
theorem of Pinsky which we discuss below) the asymptotic theorems 
on random evolutions all involve a balance between two limits — one 
takes the limit of small stochastic disturbances over long times. 

Indeed, one should expect that for a fixed time, and small dis­
turbance, the system would remain approximately at rest; while dis­
turbances of finite size, acting over a very long period of time, might 
be expected to produce arbitrarily large effects, precluding the 
existence of any kind of limit. (By making a hypothesis strong 
enough to exclude such misbehavior, in this latter situation, Pinsky 
obtained a limit theorem which he calls an "ergodic-type theorem." 
(See [45], § 3.6). He assumed also that the random parameter was a 
finite state Markov chain.) 
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To say that the stochastic disturbances are "small", we substitute 
eV(x) for V(x) in (1.1), (1.2) and therefore also in (2.3), (2.5), and any 
other formulas which follow from (1.1) — (1.2) or special cases 
thereof. It turns out that the random evolution generated by 
eV(x(t)) approaches a limit as e—»0 if tie is kept fixed. We call re­
sults of this type "first-order theorems"; they generalize the classical 
laws of large numbers, as was indicated in § 1. 

If M(0, t) converges to the identity in this first-order limit, one 
can consider a second limiting process, in which tk2 is kept fixed as 
e —» 0. Results of this type are "second-order theorems," and gen­
eralize the classical central limit theorems. 

In discussing questions of asymptotic behavior, we do not have to 
assume that x(t) is Markovian. Whereas the representation theory of 
§2 is valid only if the random coefficients are controlled by a 
Markovian random parameter, the asymptotic theory is valid in 
much more generality; the main thing needed is a "mixing condi­
tion"—i.e., V(x(t)) and V(x(t ')) should be approximately independent 
if (t — t') is large. 

Nevertheless, the additional structure available in the Markov 
case makes possible simpler proofs and more explicit formulas. A 
great deal of interesting work has been devoted to the case where 
x(t) is Markovian. 

For purposes of exposition, we treat the two situations separately. 
In this section, we present those results which do not require x(t) to 
be a Markov process. 

First of all we should refer to Stratonovich and Khasminski. 
Stratonovich obtained limit formulas for solutions of random non­
linear ordinary differential equations. His arguments were incom­
plete, and Khasminski [26, 27] succeeded in making them rigorous. 
Using Prohorov's theorem on weak convergence of measures, he 
was able [26] to prove under suitable hypotheses that, as €—» 0 and 
tk stays fixed, the solution of his nonlinear random system con­
verges in distribution to the solution of an "averaged equation"; and, 
under stronger hypotheses, that as e—» 0 and tk2 stays fixed, it con­
verges in distribution to a certain diffusion, whose generator is 
given explicitly in terms of the right-hand side of the random or­
dinary differential equation [27]. 

The precise conditions are too complicated to repeat here. 
In certain respects, as we will explain shortly, this work of 

Khasminski is included in the more recent results on random 
evolutions. 

In order to relate Khasminski's work with random evolutions, it is 
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necessary to associate to a nonlinear ordinary differential equation a 
linear operator equation. This can be done, as follows: if x(t), 
x G Rn, is a solution of a nonlinear o.d.e. dxidt = F(x), and/(x) is an 
"arbitrary" real-valued function of x, then define a one-parameter 
family of operators T(t) by 

T(t)f(x) = f(x(t)),x(0) = x. 

T(t) is a group if the trajectories x(t) are uniquely defined for all 
— oo < t < oo, x(0) = x arbitrary in Rn. (Only in this case is there 
any asymptotic behavior to study as £—» oo .) 

The generator of T(t) is the linear differential operator 

Now if F depends on a sample point w and a small parameter €, so 
do T(t) and its generator. In this way, the asymptotics of a stochastic 
nonlinear o.d.e. is connected to the asymptotics of a linear operator 
equation with a random coefficient (see [38, p. 830] for details). 

A formal but quite general solution to the asymptotics of a random 
linear operator equation such as (1.1) or (1.2) was obtained by 
Papanicolaou and Keller [39]. They used a formal perturbation ex­
pansion, the "two-time" method of Julian Cole. In this formalism, 
one introduces a second time-variable r = ert, and regards the un­
known function u(t, e) as a function of three variables, u(t, e) = v(t, r,e). 
The equation 

becomes 

tt(0,e) = /(€) 

av . r dv T7/. v 
at dT 

Now a formal expansion for v in powers of e is obtained by match­
ing coefficients of equal powers of € on the left and right side of the 
equation. 

This calculation yields an expansion v ~ ^ *nvn, where the vn 

are functions of t with certain arbitrary or indeterminate terms. 
These are chosen so as to prevent vn(t) from growing too rapidly as 
t —> oo. This choice also determines the value of the integer r used 
to define r. 
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I f V ( * , e ) ~ 2 ï V n ( ' ) € " a n d 

(3.1) V ^ l i m r 1 P Vn(a)da 

the result if V, ^ 0 is r = 1, 

(3.2) u(t, €) = e x p ^ V ^ O ) + 0(e). 

IfVj = 0 , t h e n r = 2, and 

(3.3) u(t, e) = eXp(r(V2 + Vn))/(0) + 0(e) 

where 

(3.4) Vu= limt-1 P \° V^V^dsda. 
t-+oo JO JO 

In order to apply these formulas to the case where V is a random 
function V(t,€,w), w in some probability space, Papanicolaou and 
Keller assumed that Vi9 V2 and V u , which are defined as time 
averages of random variables Vi(t, w) and V2(t, w)> are independent 
of w. Then they are equal to the time averages of the mean values of 
Vi(t), V2(t), or, respectively, 

f V^V^s) ds9 Jo 

and (3.4) becomes (1.5). 
In order to justify this assumption, Papanicolaou and Keller as­

sumed the operators V were finite, numerical-valued matrices. 
The use of the method of matching powers depends, also, of 

course, on an assumption that the solution u(t,e) is a smooth func­
tion of e near € = 0. This would be difficult to verify if the coef­
ficients V(t,€,w) are unbounded operators, as in some of the ex­
amples considered in § 2. Within the framework of matrix coef­
ficients, Papanicolaou and Keller were able to give complete treat­
ments of two significant physical problems: a harmonic oscillator 
with spring constant a random function of time, and one-dimensional 
wave propagation through a layer with refractive index a random 
function of position. 

In [38] a partial success was achieved in making mathematically 
rigorous the second-order asymptotic formula (3.4). 

The hypothesis is made that x(t) is a renewal process, with a 
random renewal time that is independent of state. Assuming V is a 
function only of x(t) and 
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dyldt = eVy,y(0) = f, 

one finds, 

lim E[y(t)] = eT\ 

where t = r/e2. V satisfies (1.5), but in this case can be expressed 
much more simply, 

where JJL and z2 are the mean and variance of the renewal time, which 
is assumed to have also a finite third moment. It is assumed also 
that V generates a semigroup, and several other technical hypotheses 
are used, which are easily checked in the main special cases where 
V(x) is for each x a differential operator with well-behaved co­
efficients. 

In order to cover certain important applications, this theorem was 
extended [38, Theorem 3] to certain cases where V is explicitly 
time-dependent, 

V = V(x(t\ t). 

But in order to accomplish this, the process x(t) was restricted still 
more strongly, to be a renewal process with a deterministic renewal 
time. 

These restrictions on x(t) were removed in [6]. In this paper, and 
in a subsequent paper by Papanicolaou and Varadhan [41], the only 
restrictions on the stochastic structure of the coefficients are that 
the values of V in the remote future should be almost independent of 
their values in the past. Such a condition is called a "mixing condi­
tion." Some condition of this type is always needed in proving a 
central limit theorem. 

In [6] the equation considered is 

(3.5) ^ = (eV^t) +e2V2(t) + €3V3(*))M, s g t, M(t,t) = I 

where all the Vi are random functions of t, and V3 may also depend 
one. 

The absence of a zero-order term in e on the right of (3.5) is not a 
real restriction. If a term V0M were present, the substitution 
M = e ~tV° M removes it. 

The inclusion of the higher-order terms in e on the right is im­
portant. For some applications it is essential to include V2, which 
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has an effect that is felt in the second-order asymptotic limit (as can 
be seen from the Papanicolaou-Keller formula (3.3)). 

Abbreviating V(t9 x(t)) to V(t), we define 

V t / = l i m i p " * E(Vx(t))dtf 

(3.6) VJ= l i m i f ' ° + ' E(V2(t))dtf 

- i f o + £ r *o+* 

V l x / = l im-M EiV^V^drctef 

where the limits are assumed to be independent of t0. 
We abbreviate V= V2-h Vn. Then we have two theorems: a 

first-order theorem, which says that M(tfe)f converges in probability 
to e*Vif; and a second-order theorem, which says that if Vx = 0, the 
expected value of M (tie2)/ converges to etVf. 

In order to prove these theorems, it is necessary to assume some 
regularity about the domains of the random operators, about their 
measurability and ^-dependence, and about the existence in a 
reasonably strong sense of the limits by which Vl and V are de­
fined. It is also necessary to assume that V2 and V do generate 
semigroups, and that these semigroups have certain regularity 
properties. 

We comment here on the key assumptions; for full and precise 
statements, it is necessary to refer to [6]. 

The principal hypothesis is the mixing condition. Let PS(A | w) 
denote a regular version of the conditional probability of an event 
A, given the past up to time s. Let pt = sup(Ps(A | w) — PA), where 
the sup is taken over all w and s, and all events A which depend on 
the processes V{ from time s + t onward. Thus pt measures the 
influence of the past upon future events distant by a time-interval of 
t or more. 

If the random coefficient is Markovian, and time-homogeneous, it 
is known that either pt = 1 or pt goes to zero with exponential 
speed. To prove the first-order limit theorem in [6], pt is merely 
required to go to zero as t —» o°. For the second-order theorem, we 
assume foPs112 ds < <*>. (Roughly speaking, pt = 0(£~2-e)). 

We have to assume that M exists, and that it is bounded uniformly 
in s, t and e. It would be desirable to remove this latter assumption; 
the second-order theorem was proved for random evolutions having 
exponential growth with respect to t, in the special case of a com­
mutative, finite-state Markovian equation [20]. 
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As in any second-order theorem, a necessary condition is that 
Vi = 0 (the first-order limit will overpower the second-order limit 
unless it is absent). But unlike earlier proofs, it is not assumed that 
E(Vi(*)) = 0; the expectation of Vi need vanish only after averaging 
over time. But it must do this fast enough; we require that in a 
suitable norm it decays faster than t~ 1/2( [6], p. 1084). 

We also have to assume, especially for the second-order theorem, 
that the limit operators Vx and V generate semigroups with certain 
regularity properties with respect to the operators V(t). Roughly 
speaking [6, p. 1084] we need to know that expressions such as 

V(tl)V(t2)V(t3)e'Vf 

are meaningful, for a certain dense set of /, and are bounded func­
tions of r for r ^ t. 

In applications, V(t) is often a differential operator, and V an 
elliptic differential operator (because Vn is a quadratic expression, 
essentially an operator-valued covariance). For example, if V(t) = 
c(t, z, w) dldz, and if c(t, z, w) is sufficiently smooth with respect to 
z (of class C4) then V is a second-order elliptic operator with coeffi­
cients in c3, and the hypotheses needed for the limit theorem can be 
verified by known theorems on parabolic partial differential equa­
tions. 

The second-order theorem of [6] has been refined by Papanicolaou 
and Varadhan to yield a rate of convergence [41]. Using the added 
condition that the limit (3.6) is approached at a rate of 0(t~l), they 
prove that as € - * 0 and t = rie2, E(y(t)) approaches exp(rV n ) at a 
rate of 0(e). This is known to be best possible. It had been obtained 
earlier in a few special cases [50, 42]. ([41] starts with the equation 
dyldt = eVy, so, in terms of (3.5), V = V1? and V2 and V3 do not 
appear.) 

Their hypotheses are different in some respects from those of [6], 
and their proof is somewhat simpler. They carry out in full the 
verification of their conditions in the special case of 

V(t)= ±F£z9t,w)-£-
j = i azj 

which comes from the linear operator equation associated to a non­
linear ordinary differential equation dzldt = F(z,t,w). In this way 
they carry out in detail a limit theorem comparable to Khasminski's. 
(This had been done earlier, under more restrictive conditions, in 
[38].) 
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4. Singular Perturbation Theorems and Asymptotics for Markovian 
Evolutions. A very fruitful and illuminating connection can be es­
tablished between the representation theory of § 2 and the asymp­
totic theory of § 3. To this end, we now return to equations (2.1) and 
set 

(4.1) V(x) = €Vx(x) + €2V2(x) + e3V3(x,e). 

If u(t, x) = Ex[M(0, t)], (2.2) and (2.3) yield 

(4.2) jt= (eV^x) + e*V2(x) + €*V3(x,e))u + Qu, u(0) = I. 

Here u(t) is , for each value of t and e, an operator on the space of 
L-valued functions of x. In fact, it is, for each € the "solution opera­
tor" for (4.2). The limit theorems of § 3 can be applied to equation 
(4.2). 

To apply the first-order theorems, let r = et. Then (4.2) becomes 

(4.3) ^ = (V, + €(V2 + eV3))u + -Qu, t/(0) = /. 
UT € 

Now, if x(t9 w) satisfies the "mixing conditions" of [6], namely, 
that pt-*0, then as €—»0, M(0,r/e) converges in probability to 
exp^Vi). In particular, the expected value of M(0, r/e) converges to 
exp (TVI). But this means precisely that U(T), the solution of (4.3), 
converges, as € —» 0 and T is fixed, to the solution of 

ar 

This is a perturbation theorem about solutions of a certain class of 
operator equations; such equations may arise quite apart from any 
probabilistic interest. 

The simplest possible example is if x(t, to) is a 2-state chain, with 
generator 

Q=(~qi qi) 
</2 - < / 2 

and states {1,2}. Then the invariant measure of Ç is (qJiqi + 92)> 
qj(qi + 92)) a n d so V1? the average value of V^x) is 

?2Vi(l) + qiVi(2) 

9i + 92 

For example, consider the coupled heat and wave equations 
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duY _ d2ux qYUi qiU2 

dr dz2 e e 

(4 4) du2= du2 + q2ul _ q2u2 

dr dz e e 

ux(0,z) = u2(0,z)=f(z). 

Here V^l) = d2ldz2, Vx(2) = djdz, V2 = 0, V3 = 0. 
We can conclude that as e —» 0 both ux and u2 converge to the 

solution of 

dr \ qi + q2 I dz2 \ qx + q2 I dz 

If the initial data for Uy and u2 in (4.4) are not equal, an application 
of the Markov property and the ergodicity of x(t) (along the lines of 
the Corollary, p. 357, [ 19] ) shows that 

qi + 92 

The initial values are mixed together according to the invariant 
measure of x(t). 

If Vi = 92^1(1) + 9i^i(2) = 0, we can use the second-order 
theorem. For this purpose, define T = e2t. Then (4.2) becomes 

(4.5) fT=(\ Vt(x) + V2(x) + c V3(x) ) u + ±£u, u(0) = I. 

Our general theory tells us that u converges, as e —> 0, to the solu­
tion of 

%=(V2+ Vn)v = 0,v(0) = I. 

If Q is the same as before, it is clear that 

- _ q2V2(l) + qiV2(2) 

qi + 92 

What is V n ? In view of (1.5), (3.4) or (3.6) it is easy to see that it 
must be of the form cV1(l)V1(2) where c is some function of qY and 
q2. We will shortly give general formulas for V u . (See (4.9) and 
(4.11) for the commutative case, (4.12)-(4.17) for the general case.) In 
this case, we get 

- _ -2V1(l)V1(2) 
V 1 i — 

qi + 92 
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For example, consider the system of equations 

dT e dz 1 W dz2 e2 1 e 
(4.6) 

du* _g(z)du2 d^H a q 
dT e dz +a2ÌZ) dz2 + e2"1 e2"2 

«i(0, z) = / , 

«a(0, z) = /2 . 

Here we have specialized q± — q2 — q, and taken 

V 1 ( 1 ) = - V 1 ( 2 ) = Ü ( ^ ) ^ 

V2(l) = a 1 ( z ) ^ , V 2 ( 2 ) = a 2 ( z ) ^ 

We assume a^z) and a2(z) > 0 and in C3, g(%) in C4. 

Then we find that ul and w2both converge, as €—» 0, to the solu­

tion of 

dv 1 . v d I . v dv \ aAz) + aJiz) d2v 

dT <76V y d z \ 6 V y dz / 2 dz2 

On the right-hand side of (4.7), the first term is Vnv and the 
second is V^D. 

This example shows the advantage of keeping the €2 term on the 
right of (3.5); it enables us to include on the right side of (4.6) terms 
which do not blow up as € —» 0, and yet which do influence the 
limiting value of u. 

If in (4.5) we take 

* = { 1 , 2 } , Ç = ( ~ 9 _ q ) 7 V 2 ^ V 3 ^ 0 , V 1 ( l ) = V , V 1 ( 2 ) = - V , 

then we again have a pair of equations which, as we saw in Section 
2, is equivalent to the "abstract telegrapher's equation," (2.11'). But 
now the parameter e appears in the leading term: 

€Utt + 2qut = Vhi. 

From this equation it can be seen that as € —» 0, u should go to 
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exp(rV2/2g); this is consistent with our claim above thatV n = 

This special case of the abstract telegrapher's equation was treated 
in [15, 16]. It is particularly simple because we have only two 
values for our random operator, V^l) and Vx(2), and they must 
commute with each other in order to satisfy the condition that 

_ Vi(l) + Vi(2) _ 
Vi - 2 - u, 

Another commutative case which arises naturally is the motion of 
a particle whose random speed is independent of position. This is 
the case considered in formulas (2.7) — (2.10) above. The V(x) = 
v(x) dldz commute with each other because the speeds v(x) are in­
dependent of the position z. 

In these cases, the commutativity makes possible a much simpler 
convergence proof. As (2.8) shows, the random evolution M is now 
a functional of a finite-dimensional random vector — namely, the 
occupation times y(x, F), 1 = x = n. 

In [ 16] for the special case of the abstract telegrapher's equation 
(2.11'), and in [20] for the general n-state case, the second-order 
limit theorem is obtained by using the representation (2.8) and 
proving a central limit theorem for the occupation times of the 
chain. 

If {fi(x)} is the invariant measure of x(t), then 

±(y(x,tk2)-trtx)) 

converges weakly to a degenerate Gaussian distribution with mean 
zero, and covariance matrix 

(4.8) caß = limìcov(y(a, t)y(ß91)) 

(lemmas 2 and 3, [20]). 
It follows that in this finite-state commutative case we have the 

simple formula for the limit generator, 

(4.9) V„ = i25X„V(a)VG8). 

In the particular case n = 2, Ç = (~q
q _£), we saw that the limiting 

operator V u could be obtained formally by going over to the equiv­
alent second-order equation (the telegrapher's equation) and then 
setting € = 0. 

The same is true in the n-state commutative case. The system 
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^ = I V(x)M + i p w , l S x g n , 
(if € V 7 € 2 V 

is algebraically reducible to 

det ( c2 — I - e diag(V(x))- Q )u = 0. 

This is an nth order equation in d/dt. Because det Ç = 0, a factor 
e can be divided out after the left-hand side is expanded. When this 
is done, the left-hand side has the form 

(4.10) « , - 2 ( 2 <]aßV(a)V(ß)ul £ qy ) + 0(e), 

where qy is the determinant of the principal minor of Q with yth 
row and column deleted, qaß is the determinant of the principal 
minor with ath row and column and /8th row and column deleted, 
q«,ß = 1 if n = 2. 

Letting € —> 0 formally in (4.10), we conclude that 

(4.11) V„ = 2 2 9a>/,V(a)V(/3)/29r. 

The study of this determinantal equation was done in [42] for the 
particular case V = v(x)dldz, but nothing changes if we go to the 
abstract commutative case. (In [42] the limit theorem is proved in a 
purely analytical way, by Fourier-transforming in the ^-variable, 
solving the transformed system, and studying its e-dependence.) 

Although the limit theorems can now be proved for non-commuta­
tive V(x), the results in [20] are in certain respects stronger than 
those which have been proved so far without commutativity. First of 
all, convergence of the expected value is actually obtained as a con­
sequence of convergence in distribution. In the case of non-com­
mutative operators which are not finite numerical matrices, all that 
is known in the second-order asymptotic (central limit theorem case) 
is convergence of the expected value of M. Nothing is known as yet 
about convergence in distribution except in the special case of trans­
port theory (V(x) a first-order partial differential operator) which is 
covered by the work of Khasminski [27] and the recent work [52] 
of Papanicolaou. 

Moreover, in the commutative case, the random evolution is per­
mitted to grow exponentially, whereas in the non-commutative case 
it must be uniformly bounded in t. 

These discrepancies show room for improvement in the non-
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commutative theory. They also show that there might be some value 
even to extending the asymptotics for commutative random evolu­
tions beyond the n-state Makov chain considered by [2] to a general 
state-space. The results of Hitsuda and Shimizu [21] on compact 
spaces would be relevant for such a project. 

One more special result in the commutative case can be mentioned 
here. Quiring [46] gave a construction of M(s, t) where the random 
parameter x(t, w) is a diffusion process and the V(x) commute with 
each other and generate contractions etV{x). He reduces the general 
diffusion to the special case of Brownian motion, which he then 
approximates by a suitably constructed jump process. 

The asymptotic theory for Markovian random evolutions without 
any commutativity assumptions was obtained in [19] for the n-state 
case, and by Kurtz [29, 30] for general state spaces. 

[19] uses a renewal-theoretic approach. The idea is to factor 
E[M(0, e2T)] into a product of operators S€. Each factor is the ex­
pected value of an "orbit" of M between two successive entries into a 
particular ergodic state, say {1}. The S€ are identical because the 
disjoint random orbits of the evolution are independent and identi­
cally distributed. Because the argument depends on a random 
return time, it makes use of Doob's theorem on stopping times for 
martingales. For the case V = Vl5 it is shown that if ^ j^aV(a) = 0, 
then M(0, Tie2) converges to exp(TVn) where 

(4.12) Vu = 2 V^VMMaß-

In (4.12) /Lta, a = 1, • • -, n is the invariant measure of x(t), and 

(4.13) yaß = j j (Paß(t) - nß)dt 

where Paß(i) = (etQ)aiß are the transition probabilities. 
As in the commutative case, V u is a quadratic expression in V(x); 

but now it need not be symmetric. In fact, as is explained in [ 19], 
(4.12) is a symmetric quadratic form, for non-commuting V(x), if and 
only if the Markov chain x(t) is invariant under time-reversal. 

In the case of a general state-space, (4.12) becomes 

(4.14) J JV(a)V{ß)fjL(a}y(a, ß) da dß, 

where ti(a)da is the invariant measure and 

y(a,ß)dß = J " £fe[prob{x(t) G dß \ x(0) = a} - /m(j3) dß]. 
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This can be rewritten [ 19, p. 342] as 

(4.15) y(a,ß) = lim [ (A - Ç ) " ' - ±üß) ] • 

In the n-state case, Cramer's rule and FHospital's rule yield 

where cof^a( • ) is the cofactor of the ß, a-th element of a matrix. 
In the general case, (4.15) yields the equation 

(4.17) CT = IT - /, Tir = 0 

for the operators T = Jy(x,y)f(y)dy, irf=!^y)f(y)dy (see [6, 
p. 1073].) 

Formula (4.17) says that —y(x,y) is a Green's function for the 
operator Q, subject to the side condition fy(x, y) dy = 0. 

The equation (4.17) can be used to compute y(x, y), thereby mak­
ing (4.14) an effective explicit formula for Vn. 

It is evident that (4.16) must reduce to (4.11) if V(a)V(ß) = 
V(ß)B(a). This is a purely algebraic identity, which should be open 
to a direct algebraic proof. But so far as I know, no such proof has 
been given. 

We give two specific examples where Vn has been computed. 
If x(t) is Brownian motion in the unit circle, 0 ^ x < 2n, nor­

malized so that Q = d2ldx2, then the invariant measure fi(x)dx is just 
normalized Lebesgue measure, dxl2ir. It turns out that 

y(x,y)=±(x-yr-\\x-y\ + iTlß if 0 g \x - y\ < 2TT, 

and 

I fOtir C2/TT 
Vn=Ìrio Jo vi(*)vi(yM*,y)dxdy. 

( [6] , p. 1074). 
Another case with a simple formula for V u is that where x(t) is 

an n-state chain which is homogeneous in the sense that p^t) is in­
dependent of j . (The occupation time depends on the state, but once 
it jumps, it is equally likely to go to any other state.) 

For this type of chain, 

Vi 
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([19], p. 344.) 
The extension from the finite-state case to the case of general 

Markovian x(t) was achieved by T. Kurtz [30]. 
For the case of a regular jump process, Kurtz also proved a first-

order asymptotic theorem (law of large numbers) where convergence 
is almost sure; in this respect his result is stronger than the con­
vergence in probability obtained in [6] for the general (non-
Markovian) random evolution. 

In both papers, he relies on his semi-group convergence theorem 
which generalizes the well-known Trotter-Kato theory of perturba­
tions of semi-groups. 

In fact, Kurtz's method involves a direct attack on the equations 
(4.3) or (4.5). The convergence of E[M(0, tie)] or E[M(0, tk2)] is a 
corollary to a singular perturbation theorem for (4.3) or (4.5). 

THEOREM (KURTZ). Let V(t) and S(t) be strongly continuous semi­
groups of linear contractions on a Banach space £ with infinitesimal 
operators Q and V respectively. Let the closure of V + (l/e)Q 
generate a strongly continuous semigroup Te(t). Assume that Q is 
the closure of its restriction to the intersection of the domains of V 
and Q. Suppose limx^o\(X — Q)~lf= Pf exists for every fG £. Let 
D be the intersection of the range of P and the domain of V. Let 
PVf= 0 for fG D. Let D0 be the intersection of D with the set off 
such that Vf is in the range of Ç, so that Q~lVf exists (perhaps not 
uniquely) for f G D0. Suppose D0 is contained in the closure of the 
range of k — PVQ~lV, for some X > 0. Then the closure of 
— PVQ~lV, restricted so that its range is in D0, is the generator of a 
strongly continuous contraction semigroup T(t), and, for fG. D0, 

lim T.(tk)f= T(t)f. 

To connect this theorem with Markovian random evolutions, one 
chooses £ as the space of L-valued functions of x, T(t) = exp(tV(x))> 
and 

S(«)/= \f(y)p(t,x,dy) 

where p is the transition function of a Markov process, with generator 
Q. Then Kurtz' P is the same as the operator n of formula (4.17). His 
condition PVf= 0 is our condition Vx = 0, and his operator PVQ~lV 
is a generalization of the quadratic expression V n of (4.12), as (4.17) 
makes clear. 

Kurtz points out that his limit theorem is applicable to the case 
where the generator Q is not constant. He calls this "random evolu-
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tion with feedback." For the special case V(x) = v(x, z)dldz, Ç = 
Q(z), this is precisely the type of process "pieced together" by Heath 
(see § 2 above.) 

In [30] there is also a first-order theorem, but in the random evo­
lutions application it is much weaker than the following theorem 
[29], which Kurtz calls a "random Trotter formula," because it 
specializes to give Trotter's product formula if x(t) is a particular case 
of a two-state jump process. 

THEOREM (KURTZ): Let X(t, w) be a pure jump process. Suppose S is 
a separable, locally compact metric space and there is a measure fjL 
on the Borei subsets of S such that /LL(S) = 1 and 

P { Hm Ì j ' o g(X(s)) ds= | g(x)ix(dx) } = 1 

for every real, bounded, continuous function g. 
For each x G S let Tx(t) be a semigroup of linear operators on a 

Banach space L with infinitesimal operator A^ satisfying \\Tx(t)\\ ^ 
eat,for some a independent ofx. 

Let § be the jth state occupied by X(t, w), let A, be the sojourn 
time there, and let N(t) be the number of jumps up to time t. 

Let Tk(t, w) be the random product 

Tk(t, w) = 7>0 ( i A0 yfl ( y Ai ) * • * r W ( 7 Au )• 

(This is the same as formula (2.5) above, with the scaling factor A 
added.) 

Let D be the set of f G L such that A^f: S—» L is a bounded con­
tinuous function of x. Define Af= / Axfii(dx)for f Œ D. 

If D is dense in L and ^?(/u, — A) is dense in L for some \x > a, 
then the closure of A is the infinitesimal operator for a strongly con­
tinuous semigroup T(t) defined on L and 

P{\imTK(t,w)f= T(t)f}=l 

for every f G L. 

All the methods described in this section are utilized successively 
in the thesis of R. Kertz [25]. Kertz considers "discontinuous" ran­
dom evolutions, of the type (1.9) that Pinsky found in seeking the 
general solution of the equation M(s, u) = M(s, t)M(t, u) where M is 
a functional of a Markov jump process. If M is not continuous, 
random "jump operators" may be inserted between the factors 
exp((rfc+x - Tfc) V(oc(Tfc)) in formula (2.5). 
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As a result, the "Feynman-Kac" equation (2.3) which is satisfied by 
the expected value of M is modified; each off-diagonal element qxy in 
the probability-generating matrix Q is now multiplied by the as­
sociated operator 7Txy which intervenes when the chain jumps from 
state x to state y. 

This is really an abstract operator-valued version of the real-valued 
multiplicative functional m(t, w) used by Heath (see formula (2.14) 
above). In order to obtain asymptotic theorems for his "discontin­
uous random evolutions," Kertz requires the "jump operators" to be 
e-dependent; they must converge to the identity as e —> 0, at a suit­
able rate (depending on whether he is proving an asymptotic theorem 
of first-order or second-order type). Of course, his limiting equa­
tions now involve the jump operators -nxy as well as the V(x) that 
occur in the "continuous" case. By so doing he is able to obtain some 
interesting applications; in particular, a limit theorem of Ilin and 
Khasminski about Brownian motion in phase space. Kertz sys­
tematically carries out his extension in the setting of [20] (com­
mutative operators, limit theorems for occupation times and number 
of jumps); [ 19] (non-commutative operators, renewal methods using 
optional stopping) and [29, 30] (operator-theoretic perturbation 
techniques). 

Recent work of R. Ellis should be mentioned in concluding this 
section. In his thesis [7], Ellis considered the second-order limit for 
equation (2.10), which becomes, after replacing v by ev and t by 
Tie2 

du(t, x, z) 1 ^du(t,x,z) , 1 A 

~^r~=ëv{x) ~ILT + ̂  £ ^ yw, * *i 
(4.18) 

x = 1, • • -, n, t > 0. 
This particular equation was studied in Pinsky's thesis [42]. Assum­
ing Q has a unique left null vector fi(x) such that ^ ix(x)v(x) = 0, 
Pinsky proved that if u(0) is smooth, u(t) converges to the solution of 
a certain heat equation, at a rate of 0(e). Ellis obtains the same con­
vergence rate for discontinuous u(0). 

In the notation of the more general theory described above, 
Vi = S /^M*) = 0- The generator in the limiting diffusion equa­
tion is a special case of our V n . 

If Ç does not have a unique left null vector —that is, if the Markov 
chain it generates is not ergodic —the general theory is not appli­
cable. However, in the special case of equation (4.18) Pinsky and 
Ellis [8] recently proved a limit theorem in which Q is allowed to 
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have a d-dimensional null space, d > 1. The proof uses Fourier 
transformation with respect to z, as in Pinsky's thesis. The limit 
theorem in this case has physical interest in connection with Boltz-
mann's equation and kinetic theory. 
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