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SEQUENCES OF IRRATIONAL FRACTION APPROXIMANTS 
TO SOME HYPERGEOMETRIC FUNCTIONS 

L. R. SHENTON 

I. Introduction. Let the Gauss continued fraction (C.F.) for R(x) = 
ln((* + l)l(x — 1)), with x real and \x\ > 1, have convergents Ls = 
NJDS, where for example, N0 = 0, D0 = 1; Nl = 2, Dx = x; N2 = Sx, 
D2 = (3x2 - l)/2, etc. Also let us = D,D s + 2 - D?+1 , ©, = D,N,+2 + 
D8+2N8 - 2D,+1NÄ+1, u;, = NsNs+2 - 2V,2+1. Then I have shown [1] 
that if 

Rs = {(s + 2)(s + I K + 2{(2s + 3)2x2 

- 4(s + 2)(s + l)}m}l{(s + 2)(* + I K } , 

then for x > 1, {Rs} is monotonie increasing, has the limit R(x) and 

(2) L J + 1 < fi,_! < Ä(*). 

For example, R(x) > ( - * + (9x2 - 8)lf2)l(x2 - 1). 
Similarly, if R(t) is the Laplace C.F. for Mills's ratio for the normal 

integral, and 

M « W - f + f + f + f + . . . •<><>, 
with convergents Xj(os, then [2] with ws, vs, ws defined in terms of 
the convergents as before, if 

(4a) R2s = (v2s + (2s)! (t2 + 8s + 4)^)/(2u2,), 

and 

(4b) R2s+l = 2oW{t>2 . + i + (2s + 1)! (t2 + 8s + 8 ) ^ } , 

we have convergent monotonie sequences 

(5) Ro < R2 < R4 • • • < fi < • R5 < R3 < Rl91^ 0. 

II. Irrational Approximants to the Confluent Hypergeometric Func
tion. With the usual notation, the Gauss C.F. [5] is 

TV , ! &i* V 
F(fl, 1; C; t) = y _ ~ y _ - y _ . . . 
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with convergents NSIDS, and where 

(a + s)(s + c - 1) (a + l )(c - a + s) 
2 s + 1 (c + 2s - l )(c + 2s) ' 2 s + 2 (c + 2s)(c + 2s + 1) 

I showed [3] that 

D2sF(a, 1; c; t) - N2s = bxb2 • • • b2st
2sF(s + a, s + 1; 2s + c; t), 

(6) D 2 s + 1 F ( a , l ; c ; 0 - N 2 s + i 

= bxb2 • • • fo2s+1(
2s+1F(s + a + 1, s + 1; 2s + c + 1; *). 

Using the integral representation 

F(ö,fo;c;*)= C £ r(c) a t*-i(l - f ) ^ ^ - 1 

eft 
r(fe)r(c - fe) Jo (i - zt)° 

(R(c) > R(b) > 0) 

followed by an appeal to the inequality oft Schwarz, one shows for 
example, that under mild restrictions, 

2 > n / (c + 2s - l)(c + 2s) \ 
0s+lî/2s!/25+4 *.y&+ 2 = o, {e. - f2{s + a){c _a + s) ) 

where 

ys = DsF(a, 1; c; *) - Ns. 

In particular, for the C.F. for the incomplete gamma function [5] 

R(x, a) = exx~a \ e^t"'1 dt (x > 0, a > 0) 
J x 

with Ns, Ds referring to the convergents of 

n\ D/~ „\ — 1 I — a 1 2 — a 2 

(7) „(,,«)_ _ + _ _ + _ + _ _ + _ + _ 
one may prove [4], defining 

(8a) R2s = (v2s.+ (vl - 4u2sw2syi*)l(2u2s\ 

(8b) R2s+1 = (v2s+l + (u£,+i - 4u2s+1w2s+l)
ìl2)l(2u2s+ì) 

that these form increasing and decreasing monotonie sequences with 
limit R. It is interesting to note that the discriminants reduce to 
multiples of (x + 2s - a + 3)2 - 4(5 + l)(s - a + 2) and (x + 2s + 
4 — a)2 — 4(5 + l)(s + 3 — a) respectively. 
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III. Suggested Generalizations. To set up irrational fraction se
quences to R = 2i°° <Xsfas, f° r x m some region and as real, consider 

(9) R(x) = A,+2(x)R2 + B r+i(*)ß + Cf(x) 

where A, B, C are rational polynomials of degrees r + 2, r + 1 , r. 
We may always take one specified coefficient to be known; for example 
the highest coefficient in Ä,.+2. Then there are 3r + 5 unknowns which 
can be determined in various ways. For example: (a) reduce the dis
criminant to linear form and make R(x) = 0(x~4), (b) reduce the dis
criminant to some appealing canonical form and determine the re
maining coefficients by a suitable choice of m in R(x) = 0(x~m). 

In passing, note that if we chose R(x) to be given by the Schwarzian 
form 

(10) R(x) = 6s+i(Ra>s - Xs)(Ra>s+2 - Xs+2) - 0s(R<os+l -X, + 1 ) 2 , 

then the discriminant is now 

(11) D(x) = es+l{$s+ld
2(s,s+ 2 ) - 4$sd(s,s+ l)d(s + l,s+ 2)}, 

where d(s9 r) = Xs<or — Xr<os. ltXs, œs refer to the numerator and de
nominator of a C.F. then the usual determinant relation, along with a 
suitable choice of the parameter 0S, would lead to a simple result for 
D(x). 

Questions of convergence and non-negativity of the discriminant 
might prove difficult problems. 
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