SEQUENCES OF IRRATIONAL FRACTION APPROXIMANTS TO SOME HYPERGEOMETRIC FUNCTIONS

L. R. SHENTON

I. Introduction. Let the Gauss continued fraction (C.F.) for $R(x)=$ $\ln ((x+1) /(x-1))$, with x real and $|x|>1$, have convergents $L_{s}=$ N_{s} / D_{s}, where for example, $N_{0}=0, D_{0}=1 ; N_{1}=2, D_{1}=x ; N_{2}=3 x$, $D_{2}=\left(3 x^{2}-1\right) / 2$, etc. Also let $u_{s}=D_{s} D_{s+2}-D_{s+1}^{2}, v_{s}=D_{s} N_{s+2}+$ $D_{s+2} N_{s}-2 D_{s+1} N_{s+1}, w_{s}=N_{s} N_{s+2}-N_{s+1}^{2}$. Then I have shown [1] that if

$$
\begin{align*}
R_{s}= & \left\{(s+2)(s+1) v_{s}+2\left\{(2 s+3)^{2} x^{2}\right.\right. \tag{1}\\
& \left.-4(s+2)(s+1)\}^{1 / 2}\right\} /\left\{(s+2)(s+1) u_{s}\right\}
\end{align*}
$$

then for $x>1,\left\{R_{s}\right\}$ is monotonic increasing, has the limit $R(x)$ and

$$
\begin{equation*}
L_{s+1}<R_{s-1}<R(x) \tag{2}
\end{equation*}
$$

For example, $R(x)>\left(-x+\left(9 x^{2}-8\right)^{1 / 2}\right) /\left(x^{2}-1\right)$.
Similarly, if $R(t)$ is the Laplace C.F. for Mills's ratio for the normal integral, and

$$
\begin{equation*}
R(t)=\frac{1}{t}+\frac{1}{t}+\frac{2}{t}+\frac{3}{t}+\cdots \quad, t>0 \tag{3}
\end{equation*}
$$

with convergents χ_{s} / ω_{s}, then [2] with u_{s}, v_{s}, w_{s} defined in terms of the convergents as before, if

$$
\begin{equation*}
R_{2 s}=\left(v_{2 s}+(2 s)!\left(t^{2}+8 s+4\right)^{1 / 2}\right) /\left(2 u_{2 s}\right), \tag{4a}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{2 s+1}=2 w_{2 s+1} /\left\{v_{2 s+1}+(2 s+1)!\left(t^{2}+8 s+8\right)^{1 / 2}\right\} \tag{4b}
\end{equation*}
$$

we have convergent monotonic sequences

$$
\begin{equation*}
R_{0}<R_{2}<R_{4} \cdots<R<\cdots R_{5}<R_{3}<R_{1}, t \geqq 0 \tag{5}
\end{equation*}
$$

II. Irrational Approximants to the Confluent Hypergeometric Func-
tion. With the usual notation, the Gauss C.F. [5] is

$$
F(a, 1 ; c ; t)=\frac{1}{1}-\frac{b_{1} t}{1}-\frac{b_{2} t}{1}-\cdots
$$

with convergents N_{s} / D_{s}, and where

$$
b_{2 s+1}=\frac{(a+s)(s+c-1)}{(c+2 s-1)(c+2 s)}, \quad b_{2 s+2}=\frac{(s+1)(c-a+s)}{(c+2 s)(c+2 s+1)}
$$

I showed [3] that

$$
D_{2 s} F(a, 1 ; c ; t)-N_{2 s}=b_{1} b_{2} \cdots b_{2 s} t^{2 s} F(s+a, s+1 ; 2 s+c ; t)
$$

$$
\begin{align*}
& D_{2 s+1} F(a, 1 ; c ; t)-N_{2 s+1} \tag{6}\\
& \quad=b_{1} b_{2} \cdots b_{2 s+1} t^{2 s+1} F(s+a+1, s+1 ; 2 s+c+1 ; t)
\end{align*}
$$

Using the integral representation

$$
\begin{array}{r}
F(a, b ; c ; z)=\frac{\Gamma(c)}{\Gamma(b) \Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-z t)^{a}} d t \\
\quad(R(c)>R(b)>0)
\end{array}
$$

followed by an appeal to the inequality of Schwarz, one shows for example, that under mild restrictions,

$$
\boldsymbol{\theta}_{s+1} y_{2 s} y_{2 s+4}-\theta_{s} y_{2 s+2}^{2} \geqq 0, \quad\left(\boldsymbol{\theta}_{s}=\frac{(c+2 s-1)(c+2 s)}{t^{2}(s+a)(c-a+s)}\right)
$$

where

$$
y_{s}=D_{s} F(a, 1 ; c ; t)-N_{s}
$$

In particular, for the C.F. for the incomplete gamma function [5]

$$
R(x, a)=e^{x} x^{-a} \int_{x}^{\infty} e^{-t} t^{a-1} d t \quad(x>0, a>0)
$$

with N_{s}, D_{s} referring to the convergents of

$$
\begin{equation*}
R(x, a)=\frac{1}{x}+\frac{1-a}{1}+\frac{1}{x}+\frac{2-a}{1}+\frac{2}{x}+\cdots \tag{7}
\end{equation*}
$$

one may prove [4], defining

$$
\begin{gather*}
R_{2 s}=\left(v_{2 s}+\left(v_{2 s}^{2}-4 u_{2 s} w_{2 s}\right)^{1 / 2}\right) /\left(2 u_{2 s}\right) \tag{8a}\\
R_{2 s+1}=\left(v_{2 s+1}+\left(v_{2 s+1}^{2}-4 u_{2 s+1} w_{2 s+1}\right)^{1 / 2}\right) /\left(2 u_{2 s+1}\right) \tag{8b}
\end{gather*}
$$

that these form increasing and decreasing monotonic sequences with limit R. It is interesting to note that the discriminants reduce to multiples of $(x+2 s-a+3)^{2}-4(s+1)(s-a+2)$ and $(x+2 s+$ $4-a)^{2}-4(s+1)(s+3-a)$ respectively.
III. Suggested Generalizations. To set up irrational fraction sequences to $R=\sum_{1}^{\infty} \alpha_{s} / x^{s}$, for x in some region and α_{s} real, consider

$$
\begin{equation*}
R(x)=A_{r+2}(x) R^{2}+B_{r+1}(x) R+C_{r}(x) \tag{9}
\end{equation*}
$$

where A, B, C are rational polynomials of degrees $r+2, r+1, r$. We may always take one specified coefficient to be known; for example the highest coefficient in A_{r+2}. Then there are $3 r+5$ unknowns which can be determined in various ways. For example: (a) reduce the discriminant to linear form and make $R(x)=0\left(x^{-4}\right)$, (b) reduce the discriminant to some appealing canonical form and determine the remaining coefficients by a suitable choice of m in $R(x)=0\left(x^{-m}\right)$.
In passing, note that if we chose $R(x)$ to be given by the Schwarzian form

$$
\begin{equation*}
R(x)=\theta_{s+1}\left(R \omega_{s}-\chi_{s}\right)\left(R \omega_{s+2}-\chi_{s+2}\right)-\theta_{s}\left(R \omega_{s+1}-\chi_{s+1}\right)^{2}, \tag{10}
\end{equation*}
$$

then the discriminant is now

$$
\begin{equation*}
D(x)=\theta_{s+1}\left\{\theta_{s+1} d^{2}(s, s+2)-4 \theta_{s} d(s, s+1) d(s+1, s+2)\right\}, \tag{11}
\end{equation*}
$$

where $d(s, r) \equiv \chi_{s} \omega_{r}-\chi_{r} \omega_{s}$. If χ_{s}, ω_{s} refer to the numerator and denominator of a C.F. then the usual determinant relation, along with a suitable choice of the parameter θ_{s}, would lead to a simple result for $D(x)$.

Questions of convergence and non-negativity of the discriminant might prove difficult problems.

References

1. L. R. Shenton, Approximations to $\log (x+1) /(x-1)$, Mathematical Gazette 38 (1953), 214-216.
2. ——, Inequalities for the Normal Integral, including a new continued fraction, Biometrika 41 (1954), 177-189.
3. ——_The Continued Fraction for $F(a, 1 ; c ; t)$, Mathematical Gazette 38 (1954), 39-40.
4. -_, Inequalities for Mills's Ratio for the Incomplete Gamma Integral (unpublished).
5. H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, 1948.

University of Georgia, Athens, Georgia 30601

