SEQUENCES OF IRRATIONAL FRACTION APPROXIMANTS TO SOME HYPERGEOMETRIC FUNCTIONS

L. R. SHENTON

I. Introduction. Let the Gauss continued fraction (C.F.) for $R(x) = \ln((x + 1)/(x - 1))$, with x real and |x| > 1, have convergents $L_s = N_s/D_s$, where for example, $N_0 = 0$, $D_0 = 1$; $N_1 = 2$, $D_1 = x$; $N_2 = 3x$, $D_2 = (3x^2 - 1)/2$, etc. Also let $u_s = D_s D_{s+2} - D_{s+1}^2$, $v_s = D_s N_{s+2} + D_{s+2}N_s - 2D_{s+1}N_{s+1}$, $w_s = N_s N_{s+2} - N_{s+1}^2$. Then I have shown [1] that if

(1)
$$R_s = \{(s+2)(s+1)v_s + 2\{(2s+3)^2x^2 - 4(s+2)(s+1)\}^{1/2}\}/\{(s+2)(s+1)u_s\},\$$

then for x > 1, $\{R_s\}$ is monotonic increasing, has the limit R(x) and

(2)
$$L_{s+1} < R_{s-1} < R(x).$$

For example, $R(x) > (-x + (9x^2 - 8)^{1/2})/(x^2 - 1)$.

Similarly, if R(t) is the Laplace C.F. for Mills's ratio for the normal integral, and

(3)
$$R(t) = \frac{1}{t} + \frac{1}{t} + \frac{2}{t} + \frac{3}{t} + \cdots, \quad t > 0,$$

with convergents χ_s/ω_s , then [2] with u_s , v_s , w_s defined in terms of the convergents as before, if

(4a)
$$R_{2s} = (v_{2s} + (2s)! (t^2 + 8s + 4)^{1/2})/(2u_{2s}),$$

(4b)
$$R_{2s+1} = 2w_{2s+1}/\{v_{2s+1} + (2s+1)!(t^2+8s+8)^{1/2}\},\$$

we have convergent monotonic sequences

(5)
$$R_0 < R_2 < R_4 \cdots < R < \cdots R_5 < R_3 < R_1, t \ge 0.$$

II. Irrational Approximants to the Confluent Hypergeometric Function. With the usual notation, the Gauss C.F. [5] is

$$F(a, 1; c; t) = \frac{1}{1} - \frac{b_1 t}{1} - \frac{b_2 t}{1} - \cdots,$$

with convergents N_s/D_s , and where

$$b_{2s+1} = \frac{(a+s)(s+c-1)}{(c+2s-1)(c+2s)}, \qquad b_{2s+2} = \frac{(s+1)(c-a+s)}{(c+2s)(c+2s+1)}$$

I showed [3] that

$$D_{2s}F(a, 1; c; t) - N_{2s} = b_1b_2 \cdots b_{2s}t^{2s}F(s + a, s + 1; 2s + c; t),$$
(6) $D_{2s+1}F(a, 1; c; t) - N_{2s+1}$
 $= b_1b_2 \cdots b_{2s+1}t^{2s+1}F(s + a + 1, s + 1; 2s + c + 1; t).$

Using the integral representation

$$F(a, b; c; z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c - b)} \int_0^1 \frac{t^{b-1}(1 - t)^{c-b-1}}{(1 - zt)^a} dt$$
$$(R(c) > R(b) > 0)$$

followed by an appeal to the inequality of Schwarz, one shows for example, that under mild restrictions,

$$\theta_{s+1}y_{2s}y_{2s+4} - \theta_s y_{2s+2}^2 \ge 0, \ \left(\ \theta_s = \frac{(c+2s-1)(c+2s)}{t^2(s+a)(c-a+s)} \ \right)$$

where

$$y_s = D_s F(a, 1; c; t) - N_s.$$

In particular, for the C.F. for the incomplete gamma function [5]

$$R(x, a) = e^{x} x^{-a} \int_{x}^{\infty} e^{-t} t^{a-1} dt \quad (x > 0, a > 0)$$

with N_s , D_s referring to the convergents of

(7)
$$R(x, a) = \frac{1}{x} + \frac{1-a}{1} + \frac{1}{x} + \frac{2-a}{1} + \frac{2}{x} + \cdots,$$

one may prove [4], defining

(8a)
$$R_{2s} = (v_{2s} + (v_{2s}^2 - 4u_{2s}w_{2s})^{1/2})/(2u_{2s}),$$

(8b)
$$R_{2s+1} = (v_{2s+1} + (v_{2s+1}^2 - 4u_{2s+1}w_{2s+1})^{1/2})/(2u_{2s+1})$$

that these form increasing and decreasing monotonic sequences with limit R. It is interesting to note that the discriminants reduce to multiples of $(x + 2s - a + 3)^2 - 4(s + 1)(s - a + 2)$ and $(x + 2s + 4 - a)^2 - 4(s + 1)(s + 3 - a)$ respectively.

388

III. Suggested Generalizations. To set up irrational fraction sequences to $R = \sum_{1}^{\infty} \alpha_s / x^s$, for x in some region and α_s real, consider

(9)
$$R(x) = A_{r+2}(x)R^2 + B_{r+1}(x)R + C_r(x)$$

where A, B, C are rational polynomials of degrees r + 2, r + 1, r. We may always take one specified coefficient to be known; for example the highest coefficient in A_{r+2} . Then there are 3r + 5 unknowns which can be determined in various ways. For example: (a) reduce the discriminant to linear form and make $R(x) = 0(x^{-4})$, (b) reduce the discriminant to some appealing canonical form and determine the remaining coefficients by a suitable choice of m in $R(x) = 0(x^{-m})$.

In passing, note that if we chose R(x) to be given by the Schwarzian form

(10)
$$R(x) = \theta_{s+1}(R\omega_s - \chi_s)(R\omega_{s+2} - \chi_{s+2}) - \theta_s(R\omega_{s+1} - \chi_{s+1})^2$$

then the discriminant is now

(11)
$$D(x) = \theta_{s+1} \{ \theta_{s+1} d^2(s, s+2) - 4 \theta_s d(s, s+1) d(s+1, s+2) \},\$$

where $d(s, r) \equiv \chi_s \omega_r - \chi_r \omega_s$. If χ_s , ω_s refer to the numerator and denominator of a C.F. then the usual determinant relation, along with a suitable choice of the parameter θ_s , would lead to a simple result for D(x).

Questions of convergence and non-negativity of the discriminant might prove difficult problems.

References

1. L. R. Shenton, Approximations to $\log (x + 1)/(x - 1)$, Mathematical Gazette 38 (1953), 214-216.

2. —, Inequalities for the Normal Integral, including a new continued fraction, Biometrika 41 (1954), 177-189.

3. —, The Continued Fraction for F(a, 1; c; t), Mathematical Gazette 38 (1954), 39-40.

4. ——, Inequalities for Mills's Ratio for the Incomplete Gamma Integral (unpublished).

5. H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, 1948.

UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30601