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THE CONVERGENCE OF CERTAIN PADÉ APPROXIMANTS* 
J. NUTTALL 

1. Introduction. Although Padé approximants have been used with 
great success in all manner of numerical computations for many years, 
it is only for very restricted classes of functions that rigorous results 
about their convergence have been obtained. In the case of functions 
given by series of Stieltjes, which we shall not discuss here, conver
gence of the P.A/s [N, N ± J] as N —» oo occurs in the cut plane. 
There are a number of generalizations of this basic result, all depending 
on the non-negative character of a certain function. The convergence 
proof relies on the fact that the poles of the P.A/s fall on the cut of the 
function to be approximated and therefore are outside the region where 
convergence is to be proved. 

For more general functions the location of the poles of P.A/s is not 
well understood, and finding information on this point constitutes an 
important unsolved problem in the theory of the P.A. For instance, 
it is not obvious that a sequence of P.A.s converges even inside the 
circle of convergence of a power series. In fact, it is possible to con
struct an entire function for which the sequence [ N, N] diverges and 
is actually unbounded everywhere except the origin. This may be 
done because it has been shown that, given a sequence of integers 
rv, v = 1, 2, • • -, with nv > 2nv_1? there exists an entire function for 
which [nv, nv] has a pole at any given point bv ^ 0 of the complex 
plane. 

Numerical examples have been given of functions for which [ N, N] 
appears to be converging well inside a region of analyticity of the 
function, but then for a high value of N, the P.A. contains a pole to
gether with a nearby zero, both spurious. These considerations have 
led to the conjecture of Baker, Gammel and Wills [2] that states 
that, for a function/analytic in \z | = 1 except for a finite number of poles 
in 0 < \z | < 1 and except for z = 1 where the function is continuous 
when only points satisfying \z | = 1 are considered, then a subsequence 
of the sequence [ N, N] exists which converges uniformly in the domain 
\z | = 1 with small disks centered at the poles of/ removed. This con

jecture has been neither proved nor disproved. 
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Until recently the only results about the convergence of diagonal 
or near diagonal sequences (probably the more powerful type of P.A.) 
have involved assumptions about the number of poles or some other 
similar property of the P.A/s. These theorems, which have been sum
marized by Baker, [1] lack utility because of the difficulty of deter
mining whether a particular function of interest satisfies the conditions 
needed for the theorems to hold. 

In view of this situation, it seemed natural to search for a conver
gence theorem that did not use in its proof any information about the 
location of the poles of the P.A/s. This meant that the type of con
vergence to be demonstrated had to be changed. It had been 
previously shown in a scattering theory problem that a sequence of 
approximations derived from the application of a stationary variational 
principle converged in measure [6]. Since there is a close 
formal connection between P.A/s and variational approximations 
[7], the same type of convergence was suggested for P.A/s. 

Convergence in measure allows for the possibility of any number 
of P.A. poles in the region of interest provided that there are also 
nearby zeros, so that over a large fraction of the region (which in
creases toward 100% as N-» oo ) the P.A. differs only slightly from the 
function being approximated. Convergence in measure has been proved 
for diagonal sequences of P.A/s for meromorphic functions, [8] and 
there have been several extensions and generalizations of this result, 
which will be mentioned below in Sec. 3. An outline of the method 
of proof is given in Sec. 2. 

It is perhaps not too surprising that, in return for convergence in 
a larger domain than is the case for a power series, the type of con
vergence of P.A/s is weaker. In mathematics, as in the real world, 
one rarely gets something for nothing. 

2. Proof of Convergence in Measure. The original proof depended 
on two lemmas, the first being, 

LEMMA 1. Let a junction f (z) (with no pole at the origin) have the 
form 

(i) f=g + QIR 

where 

2N+J 

(2) g(z)= S ëiZJ 

j=o 

and Q, R are polynomials of degree m — 1, m respectively. Write the 
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[N,N + J] Fade approximant to fas BID where B, D are polynomials 
of degree no higher than N + J, N respectively. Then, if m < N + 1, 

2N+J+1 

(3) BID-f- - + — . 

When applied to a polynomial Q(z) = ^ / 1 0 qfîj, [ Q] a means 
[Q] a — 2 /=« Qj^' If ö or fo is omitted, it is taken to be 0 or M respec
tively. 

Although it was not made clear in [8], this Lemma uses the Fro-
benius definition of the P.A., in which 

(4) B - Df = 0(z2N+J+i). 

B/D always exists and is unique. 
The second lemma states, 

LEMMA 2. Whatever the values of zj9 N, the inequality relating to 
the polynomial D(z) = f | **=l {% — Zj), \D(z)\ = xN, holds in a region 
of the complex z-plane whose area is never greater than TTX2. 

This lemma is a special case of a more general result of Cartan [3]. 
To prove convergence in measure for meromorphic functions within 

the region \z\ = 1 for the sequence [N, N + J] as N —> °°, we first 
choose x as small as we like, and then choose m large enough so that 
QIR can represent exactly the contribution to the meromorphic func
tion F from all poles within the circle \z\^ p = 8lx. Then F — QIR 
is given by a power series whose coefficients we shall identify with gj 
of Lemma 1, and which possess the property \gj\ â Cp~j. Since 
F — f can be made very small, the theorem follows if the right-hand 
side of (3) is small. This is true for the first term since [Dg]2N+/+i 
has no more than 2NN terms each containing a factor gj withj = N + 1, 
and a similar argument holds for the second term. The point is that 
gy, j ê N + 1 , are small enough to compensate for the fact that 1/D 
may be large, provided we avoid a region of the z-plane area no larger 
than TTX2. Thus we have the theorem. 

THEOREM. If F(z) is meromorphic in the whole complex plane and 
does not have a pole at the origin, then the [N,N ± J] P.A. (using the 
Frobenius definition) of F converges in measure to F as N —» <» in 
any bounded subset of the complex plane. 

3. Extensions and Generalizations. Pommerenke [9] has ex
tended the theorem of the preceding section by demonstrating con
vergence in capacity, which implies convergence in measure, for a 
larger class of functions, namely those analytic in the whole complex 
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plane except for a set of capacity zero. Capacity (or transfinite diam
eter) is defined in Hille's book [5]. Pommerenke considers sequences 
[N, M] for which N, M -» oo ? l/\ g NIM ^ K A > 1. 

For certain classes of entire functions, the coefficients gj decrease 
sufficiently rapidly that stronger results may be obtained, and Wallin 
[ 10] has obtained some results in this direction. 

Zinn-Justin [12] has done some related work which will be de
scribed elsewhere in this volume. 

Recently, Gammel and Nuttall [4] showed that Padé approxi-
mants to a certain class of quasi-analytic functions converge in measure, 
even outside the natural boundary. This subject is discussed in more 
detail by Gammel in his contribution to this volume. 
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