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THE NIELSEN FIXED POINT THEORY 
FOR NONCOMPACT SPACES 

U. KURT SCHOLZ1 

Introduction. The Nielsen fixed point theoiy provides a lower 
bound for the number of fixed points of a map f : X —» X on a com­
pact metric ANR (absolute neighbourhood retract) ( [ 5 ] , [11] , [15]). 
This lower bound, denoted by N(f) (the Nielsen number of f) 
is a non-negative integer and is known to be homotopy invariant 
( [11 ] , [15]). Recently, Brown [7 ] , has shown that one can obtain a 
Nielsen theoiy on noncompact ANR's by requiring only that the 
maps and homotopies be compact (i.e., their images have compact 
closure). 

The purpose of this paper is to establish a Nielsen theory for very 
general classes of self maps (§1) and to give a proof of the homotopy 
invariance of the Nielsen number. The motivation for this type of 
generality becomes clear in §3 where several interesting and analyti­
cally important examples of such classes are produced. 

§1. Preliminaries. Given a self map f:X—*X, let <!>(/) repre­
sent the set of fixed points of f. W e let I denote the closed unit inter­
val. For a given homotopy H : X X 7 —> X, we shall make use of the 
following maps: H : X X I ^ X X I given by H(x7 t) = (H(x, t), t); 
for t G /, h{ : X - > X defined by ht(x) = H(x, t); finally, for r ^ E I , 
Hrs : X X / - » X defined by Hr>s(x, t) = H(x, (1 - t)r + ts). 

Let 9 b e a class of self maps. An ^ -homotopy is a map H : X X I 
- » X such that Hrs G <? and ht G V for all r,s,tE I. If H is an <?-
homotopy, we say that h0 and hY are ^ -nomotopic . 

For a given class of self maps ÇD-, we let C^ be the class of all 
triples (X, / , U) where / : X —> X is a map in *3, and U is an open 
subset of X which has no fixed points off on its boundary. 

Let / : X —> X be a map and H* = {Hp, dp} a rational homology 
theory defined for a category of spaces including X. Let f%>p : HP(X) 
—> HP(X) denote the induced homomorphism. W e say that / has a 
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generalized trace if for each integer p there is a finite dimensional 
subspace Ep Ç Hp(X) so that: 

(1) f*p(Ep) = 0 for all but a finite number of p. 
(2)/»,;,(£„) C E P . 
(3) For each a G HP(X), there is an n so that f$tP(a) G Ep where 

f£fP denotes the nth iterate of/* p. 
In this case one defines trace (f*tP) = trace (f%p \ Ep). It is 

easily verified that this definition is independent of the choice of Ep 

satisfying condition (2) and (3); (see Browder [3], Leray [10] ). 
If / : X —» X is a map having a generalized trace, define L(f) = 

51 p=o (~ l ) p trace (f*tP), the generalized Lefschetz number. 
A class of self maps <3 will be called admissible if for each map 

/ : X —» X in S3 the following three conditions are satisfied: 
(1) / h a s a generalized Lefschetz number. 
(2) <$(/) is compact. 
(3) X is a metric ANR. 
We will call d? admissible if S3 is admissible. 

An index on a class of admissible triples d o is a function i : do —» 
integers satisfying the following five axioms: 

(1) (Excision). If (X,/, U) G d0 and g G <37 g : X -> X is a map 
such that g|cl(C7) = /|cl(f7) (cl(l7) = closure of U) then t(X,/, U) = 
<(X,g,I7). 

(2) (Homotopy). If H : X X /—» X is a homotopy and H Œ <3 and 
(X, fc,, (7) G £9 for alU G I then t(X, /i0, U) = t(X, /il7 (7). 

(3) (Additivity). If (X,/, f/) G dD and {C/x - - - Un} is a collection 
of mutually disjoint open subsets of U so that 0 ( / ) Pi 
(U - U U U{)= 0 , theni(X,/, 17) = £"=1 i(X,/, f/J. 

(4) (Normalization). If / G S3 then t(X, / , X) = L(/). 
(5) (Commutativity). If/: X—» Y and g : Y—» X are maps such that 

/g and gf are in *3 then if (x, gf, U) G 67 we have i(X, gf, U) — 
i(Y,fg,g-KU)). 

For the existence of indexes in the compact case, see e.g., Leray 
[10], O'Neill [13], Dold [8]. Numerous indexes exist for non-
compact spaces and varieties of self maps. 

§2 The Nielsen Number. In this section, let S3 be an admissible 
class such that dD admits an index. 

Given / G *3 and x0, xy G $ ( / ) , then x0 and xY are called / 
equivalent if there exists a path C : I —» X so that C(0) = x0, C(l) = xl 

and C and / C are homotopic keeping endpoints fixed (Wecken 
[15]). Using the property that an ANR can be embedded as a 
closed subspace of a normed linear space, it is not difficult to show 
that for each x G 4>(/), there exists a ô = ô(x) > 0 so that when-
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ever x ' E $ ( / ) and d(x, xf) < 8 then x and x' are / -equivalent 
(Brown [7] ). This implies that each fixed point class is open in 4>(/) 
and hence by the compactness of the latter set, the number of / 
equivalence classes is finite. An equivalence class will be called a 
fixed point class o f / 

For each fixed point class F o f / we can now produce an open set 
U containing F so that cl(C7) fì * ( / ) = F (e.g., let U = 
U X E / . N ( X , Ô(x)/2) where N(x, 8(x)l2) is the ô(x)/2 neighborhood of 
x and 8(x) is from the preceding paragraph) . W e define the index i(F) 
of the fixed point class F by i(F) = i(X, fi U). One easily verifies 
that this is independent of the part icular U chosen. If i(F) ^ 0, we 
shall call F an essential fixed point class. 

The Nielsen number N(f) of a map / £E S3 is defined to be the 
number of essential fixed point classes of / The following is then 
obvious. 

THEOREM 1. If f : X —> X is a map in S? then f has at least N(f) 
fixed points. 

The rest of this section is devoted to the proof that the Nielsen num­
ber is homotopy invariant i.e., if / g : X —» X are maps in <3 which 
are ^ -nomotopic , then N(f) = N(g). 

Let X be a space and A Ç X X I a subset of X X I; for each t G. Z, 
the £-slice of A, wri t ten At, is defined by At = {x : (x, i) GE A}. 

L E M M A 1. Let H : X X I —» X be an S3--homotopy and let F be a 

fixed point class of H. Then for each t G 7, either Ft = 0 or Ft is a 
single fixed point class ofht. 

PROOF. For notational convenience, we shall write C — D to indi­
cate that C and D are fixed end-point nomotopic paths in X. 

Let t E. I. To prove the lemma, it suffices to show that two points 
(x, t) and (y, t) in X X I are / / -equivalent if and only if x and y are 
/^-equivalent. 

If (x, t) and (t/, t) are / / -equivalent , then there is a pa th C" : I —» 
X X / so that C ' (0) = (x, t\ C ' ( l ) = (y, t) and HC ^ C. Wri te 
C(T)= (0,(7), C 2 ( T ) ) and let C be the pa th defined by C(T) = 
( C ^ T ) , *). Clearly C ^ C so that C^HC. It now follows that 
Ç, — /ifCx and consequently since Ci(0) = x, C i ( l ) = ?/? we conclude 
that x and (/ are ^-equivalent . 

Conversely, if x and y are /^-equivalent, then choose a path D : I 
-+X so that D(0) = x, D(l) = y and D =* htD. W e now define 
D : / -> X X / by D(r) = (D(r\ t). Clearly D ^ / / D , showing that (x, t) 
and (y, £) are / /-equivalent . 
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LEMMA 2. Let H be an ^-homotopy and for a given t G I, let F ' 
be a fixed point class of ht. Then there is a unique fixed point class 
F of H so that F ' = Ft. 

PROOF. If x G F ', then (x, t) G $ ( H ) , so that if F is the unique 
fixed point class containing (x, t) then F' = Ft by Lemma 1. 

LEMMA 3. (Compare Brooks [1, Theorem 24, page 81] ). Let H : X 
X I —> X be an ^-homotopy and let F be a fixed point class of H. 
Then i(F0) = i(Fi) (where we define i(Ft) = 0 ifFt = 0 ) . 

PROOF. It suffices to show that for each r G Z, there is an € > 0 so 
that if s G I and \r — s\ < e then i(Fr) = i(Fs). Then using the con­
nectivity of the set I we obtain the desired result. 

Let d be the metric defined on X and let p : X X I —» X be the pro­
jection map. Choose an open set U (Z X X I so that F Ç U and 
cl(C7) H <&(H) = F. If r G Z, then we easily have Fr Ç C/r and cl(C7r) H 
4>(/ir) = Fr. Thus i(Fr) = i(X, hn Ur). Also, the compact set K = 
p(F) — Ur clearly contains no fixed points of hr and so we can find a 
8 > 0 so that d(hr(x), x > 8 for all x G K. Now since K is compact, H 
is uniformly continuous on K X I; consequently there exists an e > 0 
so that if \r - s\ < e then d(H(x, r), H(x? s)) < 8 for all x G K. Thus 
if |r — s\ < e then hs can have no fixed points on K. It then follows 
that since Fs Ç. p(F), we must have Fs Ç Ur. Clearly, c\(Ur) D ®(hs) 
= Fs since c\(U) contains only the fixed point class F. Thus i(Fs) = 
i(X, hs, Ur). 

Finally, using the fact that Hrs G Q, and for each t G Z, foj's has no 
fixed points on the boundary of Un we conclude that i(X, hr, Ur) = 
i(X, hs, Ur) by the homotopy axiom. Thus i(Fr) = i(Fs) as asserted. 

We are now prepared to prove our main theorem. 

THEOREM 2. Let H : X X I —» X be an Q-homotopy. Then N(h0) = 

PROOF. A given fixed point class of h0 is the 0-slice of a fixed point 
class F of H (Lemma 2). Then by Lemma 3, i(F0) = i(Fx); hence if F0 

is essential, so is Fp 
Using the homotopy H~l = H[{) and the same argument as above 

we obtain N(h{) ^ N(h0). 

REMARKS. We note that the definition of the Nielsen number and 
the conclusion of Theorem 2 require only axioms (1) and (2) of the 
fixed point index and the property that if i(X,fi U) ^ 0 then f has 
a fixed point in U (this is implicit in axiom 3). In view of this fact, 
Theorem 2 can be generalized to include those classes S3 of self maps 
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on metric ANR having compact fixed point sets and such that <2<j 
admits an "index" satisfying the three properties above. 

As a final remark, we note that it is possible to generalize the Niel­
sen theoiy to maps of the type f : cl(U) —» X where U is an open 
subset of X (metric ANR), <!>(/) is compact and f is fixed point 
free on the boundary of U. Using the fact that an open subset of an 
ANR is an ANR, one could obtain a "local Nielsen number," N(f, U). 
We omit the obvious details of its definition and proof of its homotopy 
invariance. 

§3. EXAMPLES. The condition of being an ^-homotopy is quite 
awkward and in practice it is usually satisfied by a homotopy H when­
ever H G *3. This is the case for the three examples which follow. 

1. Palais maps. A map / : X —» X on a metric ANR is called a 
Palais map if the following two conditions are satisfied: (a) / is core 
compact; i.e., cl(fi/n(X)) is compact, (b) / is locally compact; 
i.e., for each x (E X, there exists an open set U containing x so that 
f(U)CU and cl(/(C/)) is compact. 

Let sj. be the class of Palais maps and let H : X X / —> X be a 
homotopy so that H Ë 9 , To show H is a Palais homotopy, suppose 
that UC XX I is an open set such that H(U)C U and cl(H(U)) 
is compact. For r , s G I define Mr>s : X X I —»XX 7 by Mr>s(x, t) = 
(x9 (t- r)l(s- r)) and let Ur>s = Mr,s(U). We then have Hr^(Ur*s) 
= MrjS(H(U)). From this it follows easily that Hrs is locally compact. 
The remaining conditions for being an ^-homotopy are straight for­
ward. 

The following is due to R. S. Palais (unpublished). 

THEOREM 3. Let ^3 be the class of Palais maps on metric ANR. 
Then S3 is admissible and (2,3 admits an index. 

Consequently by the above discussion and Theorem 2 we conclude 
that if H G S3 then N(h0) = Nfa). 

2. k-set contractions. Let A be a bounded subset of a Banach 
space B. Define y (A) to be the infimum of all numbers d > 0 so that 
A can be covered by a finite number of sets in B of diameter less than or 
equal to d. If X C B and / : X —> X is a map such that for each 
bounded set A Q X, y(f(A)) ^ ky(A) then / is called a fc-set con­
traction. 

Let S3 be the class of all self maps f : X —» X such that X is a 
locally finite union of closed convex subsets of a Banach space, and 
/ is a k-set contraction with k < 1 for which /n(X) is bounded for 
some n. 
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THEOREM 4. (Nussbaum [12] ). The class dD is admissible and 
admits an index. 

If H is a homotopy with H G ^ , it is easily verified that H is an 
^-homotopy. 

3. Let X be a subspace of a Banach space B and assume that there 
exist an increasing sequence of ANR subspaces Xn Ç X contained in 
finite dimensional subspaces of B, and retractions rn : X —» Xn such 
that (a) c l ( U X n ) = X and (b) lim rn(x) = x for each x £ I Call 
{Xn,rn} an approximation scheme for X For f : X —» X, define 
/ n : X n ^ X „ b y / n = r n o ( / | X n ) . 

Note that if X admits an approximation scheme {Xn, rn} then so 
does X. X Z, given by {Xn X I, rn = rn X id} where id is the identity 
map on 7. 

Let *? be the class of all maps f : X —> X such that 4>(/) is 
compact and X possesses an approximation scheme with the following 
property: for each sequence {xn} (with xn E. Xn and n}; —» oo ) such 
that d(xn., /„ (x„.)) —> 0, there exists a subsequence xnj(^} converging 
to some x G X and/(x) = x. 

We remark that such maps are entirely analogous to and modelled 
upon the concept of A-proper maps [4]. 

We define an "index" as in [4] : 
Let U be a bounded open subset of X so that (X, /, U) is admissible 

and set Un = U D Xn. By an easy argument, it is easily seen that there 
exists some integer n0 so that (Xn,fn,Un) is admissible whenever 
n = n0. By Dold [8], an index is defined for (Xn? fn, Un). 

Let Z be the set of integers and let Z ' = Z U {— oo ? oo }. Define 
i(X, f, U) to equal the set of limit points of {i(Xn, fn, Un) \ (Xn, fn, Un) 
is admissible}. Then i(X, f, U) is a non-empty subset of Z ' . Now if 
U is unbounded, choose a bounded open subset V C [/so that (X, /, V) 
is admissible and (U - V) D * ( / ) = Ç)- define i(X,/, U) = f(X, /, V). 

The following properties are easily verified: 
(i) If i(X, / , U)f {0} then/has a fixed point in U. 
(ii) If H is a homotopy such that H E 9 and (X, ht, U) is admis­

sible for each t G I, then t(X, ho, U) = i(X, hl9 U). 
(iii) If (X,/, U) G ^3 and [71? • • -, C/n are disjoint open subsets of 

(7 so that / is fixed point free on U - (U r j= 1 Uj) then t(X,/, 17) C 
S " = i i(X,/, l/j) (where oo — oo = Z ' by convention). 

(iv) If H : X X I -> X is a map so that H £ 9 then H is an <9-
homotopy. 

Finally, to define the Nielsen number, we further require that for 
each map / : X —» X in SJ, X is also an ANR. 
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Together with the remarks following Theorem 2, we obtain a 
homotopy invariant Nielsen number for this class <3. 
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