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OSCILLATION PROPERTIES OF THIRD ORDER 
DIFFERENTIAL EQUATIONS 

GARY D. JONES 

ABSTRACT. Oscillation properties of elements of possible 
bases for the solution space of a third order linear differential 
equation are considered. 

1. Introduction. We will consider the differential equation 

(1) y"' + p(x)y' + q(x)y~0 

and its adjoint 

(2) y"' + p(x)y' + (p'(x)-q(x))y=0, 

where we will assume that the coefficients are continuous on [0, +00). 
In particular, we will consider equations which are of Class I or Class 
II as defined by Hanan [ 1]. 

We will consider a solution of (1) oscillatory if it changes sign for 
arbitrarily large x. 

It has been shown by Utz [3], that the solution space of equation 
(1) can have at the same time a basis consisting of i oscillatory solutions 
and 3 — i nonoscillatory solutions, for i = 0 ,1 , 2, 3. 

We will describe the types of bases possible for the solution spaces 
of equations (1) of Class I and Class II, with respect to the number of 
oscillatory solutions possible in a given basis. In doing so, we will 
generalize a theorem of Utz [3]. 

2. An equation (1) is said to be Class I if any solution for which 
y(a) = y'{a) = 0, y"(a) > 0 is positive on [0, a). It is said to be Class 
II if any solution for which y (a) = y'(a) = 0, y"(a) > 0 is positive on 
(0, + 00 ). It was shown by Hanan [1] that (1) is Class I if and only if 
(2) is Class II. 

In [1], Hanan considers a solution y(x) of (1) to be oscillatory if it 
has an infinity of zeros in [0, + 00 ), but it follows from the definitions 
that if (1) is Class I or Class II, then this definition of oscillation 
implies y(x) must change signs for arbitrarily large x. 

We will use a method similar to that used by Lazer [2, p. 437] to 
prove the following lemma. 
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LEMMA. If(l) is Class I, and if (I) has an oscillatory solution, then 
there exists a nontrivial nonoscillatory solution such that y(x) > 0 for 
x G [0, + oo ). 

PROOF. Let u(x), v(x), w(x) be a basis for the solution space of (1). 
Let 

yn(x) = Cn>lu(x) + Cnt2v(x) + Cn>3w(x), 

where yn(n) = yn'(n) = 0, t/n"'(n) > 0, and where C2^ + C2
)2 + 

C 2
3 = 1. Suppose further, without loss of generality, that lim Cni = 

c / f o r i = 1,2,3. Let 

y(x) = Ciu(x) + C2t>(x) H- C3U;(:JC). 

Since {yn(x)} converges to y(x) uniformly on any finite subinterval of 
(0, + » ), we have y(x) ^ 0. Now y(x) ^ 0 since Cx

2 + C2
2 + C3

2 

= 1. Further, by [1] if there is an Xi such that y(xi) — 0, then y is 
oscillatory. Thus, y(x) > 0 for all x. 

Using Lemma 1.1 of [2], we observe that Utz in Theorem 2 [3] is 
considering a special equation of Class I. Thus the following theorem 
will generalize the result of Utz. 

THEOREM 1. If (1) is Class I, and if some solution oscillates, then 
the solution space of (I) has a basis with three oscillatory solutions, 
and a basis with exactly two oscillatory solutions. 

PROOF. By the lemma, there is a nonoscillatory solution w(x) of (1). 
By [1] any solution of (1) that vanishes at least once is oscillatory. 
Let w(x), u(x), v(x) be solutions of (1) which form a basis, where w(x) 
is nonoscillatory and u(x) is oscillatory. 

Let a G (0, oo ) such that u(a)v(a) ^ 0. Choose constants fcx and 
k2 such that v(a) + klw(a) = 0 and v(a) + k2u(a) = 0. Then, 
yi(x) = v(x) 4- kxw(x) is oscillatory, y2(x) = v(x) + k2u(x) is oscillatory, 
and u(x) is oscillatory. Further 

v(x) + k2u(x) — k2u(x) = v(x), 

v(x) + kxw(x) — v(x) = klw(x). 

Since kx ^ 0, t/i(x), y2(x), and u(x) forms a basis for the solution space 
of(l). 

Also, u(x), y2(x), and w(x) is a basis for the solution space of (1). 
We will now consider an equation of Class II. 

THEOREM 2. If (1) is Class II, and if some solution oscillates, then 
the solution space of (I) has a basis consisting of exactly i oscillatory 
solutions, for i = 0,1,2. 



THIRD ORDER DIFFERENTIAL EQUATIONS 509 

PROOF. Since (1) has an oscillatory solution, (2) has an oscillatory 
solution by [1]. Also, since (1) is Class II, (2) is Class I. Let uY{x), 
w2(x), u3(x) be a basis for the solution space of (2) such that ux(x) is 
nonoscillatory, and such that u2(x) and u3(x) are oscillatory. Then 
wi(*)> w2(*)> a n d 

u3(x) + ku^x) == w3(x) 

is a basis where X is chosen such that 

u3(a) + kui(a) = u2(a) = 0 

for some a G [0, + oo ). Note that ux(x) is nonoscillatory, but u2(x) 
and w3(x) are oscillatory. Now 

Ui(x) = ux(x)u2'(x) - u2{x)ul'(x), 

U2(x) = ul(x)w3 '(x) - w3(x)ux '(*), 

U3(x) = U2(x)u>3 '(*) - u2 '(x)w3(x), 

is a basis for the solution space of (1). It is clear that C/1(x), and U2(x) 
are oscillatory solutions. Now U3(a) = U3'(a) = 0 implies f/3(ac) is 
nonoscillatory since it is a nontrivial solution of (1) which is Class II. 

Let Ui(x), u2(x), u3(x) be a basis for the solution space of (2) such 
that each is oscillatory. Let a G [0, + » ) be such that ux(a) = 0. 
Not both u2(a) and u3(a) = 0. Suppose u3(a) ^ 0. Choose a constant 
À. such that u2(a) + \u3(a) = 0. Let 

Ü2(X) = i*2(x) + Xtt3(ac). 

Now wx(ac), v2(x), and w3(x) is a basis for (2) where each oscillates. 
Since Ui(a) = v2(a) = 0 and they are linearly independent, their 
zeros separate on (a, + oo ) [1]. Suppose b is the first zero of uY(x) to 
the right of a, and c is the first zero of v2(x) to the right of a. Suppose 
further that b < c. Since 

ui(b)v2(c) - M1(c)ü2(fe) 7̂  0 

we can solve 

0 = CiUi(b) + c2v2(b) + c3u3(b), 

0 = c ^ c ) + c2t?2(c) + c3w3(c), 

where c3 j& 0. Let 

^ (*) — ClWl(*) + C2ü2(x) + C3U3(x). 

Since c3 ^ 0, Ui(x), v2(x), v3(x) is a basis for (2) where each is oscil
latory. Now 
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Wi(x) = ux(x)v2 '(x) - v2(x)ul '(x), 

W2(X) S m ( x ) ü 3 '(X) - t>3(*)t*l ' (*) , 

W3(x) = v2(x)v3 '(x) - v3(x)v2 '(x), 

is a basis for (1). Note that W^a) = Wx'(fl) = W2(b) = W2'(fc) = 
W3(c) = W3 ' (c) = 0, and since (1) is Class II each is nonoscillatory. 

The fact that (1) also has a basis with exactly one oscillatory solution 
follows immediately. 

Let Ui(x), u2(x), and u3(x) be a basis for (2) such that ux(a) = u2(a) = 
0 for some fl£[0,+ » ) and such that u3(x) > 0 for all x. Then 

Ui(x) = Ui(x)tt3'(x) - u3(x)ul '(x), 

U2(x) = u2{x)u3'{x) - u3(x)u2'(x), 

U3(x) = Ui(x)u2f(x) - u2(x)ul '(x). 

As before, Ui(x), U2(x), and U3(x) form a basis for (1), U^x) and 
U2(x) are oscillatory, but U3(x) is nonoscillatory. 

THEOREM 3. If (I) is Class II, and if£/i£ solution space of (1) has a 
basis consisting of three oscillatory solutions, then the solution space 
of (2) has a basis with one oscillatory and two nonoscillatory solutions. 

PROOF. Let C/1(JC), l/2(x), and U3(x) be as in the last paragraph. Since 
t /xMIVfr ) - £/2(x)£V(x) = ku3(x) ^ 0, since k ^ 0 and t#3(x) > 0, 
the zeros of Ux(x) and U2(x) separate. If (1) has a basis with three 
oscillatory solutions, then some oscillatory solution z(x) must be 
of the form 

z(x) = U3(x) + c^U^x) + c2U2(x). 

Let xx < x2 < • • • be the consecutive zeros of z(x). Define 

yn(x) = k^U^x) + k2fnU2(x), 

where ki,n + fc2n
 = 1 a n d yn(

xn) = 0. The zeros of yn(x) and z(x) 
separate to the left of xn by [1]. Suppose, without loss of generality, 
that lim kni = k{ for i = 1,2. Let 

</(*) = kiU^x) + fc2C72(x). 

Since {yn(x)} converges to y(x) uniformly on [Xj, xj+l], and since each 
yn(x) for n > j + 2 changes signs on [x,-, Xj+1], t/(x) must have a zero 
on [xp xj+l]. Since fcx

2 4- k2
2 = 1, t/(x) and z(x) are clearly linearly 

independent. Thus by [1] y(x) and z(x) cannot have two zeros in 
common. Hence for j ^ N for some N > 0, j/(x) has a zero in (x,-, xJ+1). 
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Since y(x) is a solution to (1) which is of Class II, it must change signs 
m(xj9xj+i). 

Suppose 

y(xo)*'(xo) - z(*o)y'(*ò) = o. 
Then the equations 

hyM + k*(*o) = °> hy'(*o) + kz'M = °> 
can be solved for lY and l2 not both zero. 

Let 

w(x) = iit/(ac) + l2z(x). 

Since i#(x0) = u/(x0) = 0, w(x) is of constant sign for x > x0. But 
this is not possible since when j è N, Xj > x0, and l2z(x) ê 0 on 
[Xj, Xj+i] there is an a G. (Xj,xj+i) such that liy(a)^0 and 
fo G (Xj+i, Xj+2)

 s u c n t h a t 'iy(fc) = 0. Thus 

lxy(a) + Z2z(a) â 0 and /#(&) + l2z(b) g 0. 

Hence 

t / (x)z ' (x)- z(x)yf(x) 

is a nonoscillatory solution of (2). 

Now 

y(x)z'(x)-z(x)y'(x) 

- ( f c ^ x ) + fc2U2(*))(t/3'(x) + ^ ' ( x ) + c2l/2 '(x)) 

- (C/3(x) + dU^x) + Ca^WKfcilZ/W + *2IV(*)) 

= fc^w^x) + fcic2w3(x) + k2u2(x) + fc2C!M3(x)) 

where k f^ 0. Since fcx and fc2 are not both zero, y(x)z'(x) — 
z(x)y '(x) and w3(x) are linearly independent solutions of (2). 

THEOREM 4. If (I) is Class I, if some solution oscillates, and if it has 
a basis with two or three nonoscillatory elements, then (2) has a basis 
with three oscillatory elements. 

PROOF. If (1) has a basis with all nonoscillatory solutions, then it 
clearly has one with exactly one oscillatory solution. Suppose i*i(x), 
w2(x), and w3(x) is a basis for the solution space of (1) where ux(x) is 
oscillatory and w2(x) and u3(x) are nonoscillatory. Let us suppose 
u2(a) = u3(a) > 0 for some a G (0, + oo ). Now 

Wx(x) « ux(x)u2 '(x) - u2{x)ul '(x), 
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W2(x) = ux(x)u3 '(X) - u3(x)ul '(x), 

W3(x) = u2(x)u3 '(x) - u3(x)u2 '(x), 

is a basis for (2). Clearly Wx(x) and W2(x) are oscillatory. Since 
u2(a) = w3(a), we have 

y(x) = u2(x) - u3(x) 

is oscillatory. Let a < ax < a2 * * * be consecutive zeros of y(x). Then 
y'(ai)y'(aiJrl) < 0. Thus, W3(ai) = u2(ai)(u3'(ai) — w2'(«i)) must have 
opposite signs at consecutive zeros of y(x). 

An example of a differential equation satisfying the hypothesis of 
Theorem 4 will now be given. 

EXAMPLE. Consider the differential equation 

(3) y " ' + y ' + [2/(exp(x) + 2)] (y + y") = 0 

whose general solution is given by 

y(x) = Cj sin x + C2 cos x + C3 (1 + exp( —x)). 

Clearly sin x, 2(1 + exp( —x)) -f cos x, 1 + exp( —x) is a basis for the 
solution space of (3) with one oscillatory and two nonoscillatory 
elements. 

By letting y = w exp ( - ^ J0' P(«) ds), where P(«) = 2/(exp(x) + 2), 
(3) can be transformed into an equation of the form (1), which will 
have the same oscillatory properties as (3) and will be of Class I if 
(3) is of Class I. 

The equation (3) is of Class I, for if it were not there would have to 
exist a nontrivial solution of (3) satisfying y (a — S) = y (a) = y '(a) = 0 
for some a and positive 8. But that is not possible since 

I sin a cos a 1 + exp( — a) 

cos a — sin a — exp( — a) 

sin(a — 8) cos(a — 8) 14- exp( — a 4- 8) | 

= exp( — a) [cos 8 4- sin 8 — exp 8] 4- cos 8—1 

< exp( -a ) [cos8 4 sin8 — 1 - 8] ^ 0. 

Applying Theorem 4, it is clear that the adjoint of (3) satisfies the 
hypotheses of Theorem 3. The next theorem shows that this is not 
always the case. 

THEOREM 5. If in (1) q(x) > 0, p(x) = 0 (consequently it is of Class 
I), 2p(x)lq(x) 4- d2(q(x)~l)ldx2 â 0, and if some solution oscillates, 
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then every basis for (1) is of one of the types of Theorem 1. 

The proof of the theorem follows directly from a result due to Lazer 
[2, p. 444]. 
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