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EXISTENCE THEOREMS FOR BOUNDARY VALUE 
PROBLEMS OF nTH ORDER ORDINARY DIFFERENTIAL 

EQUATIONS1 

GENE A. KLAASEN 

Consider the nth order boundary value problem 

(i) y{n) = f(x,y,y',---,y{n-l)l 

(2) y(xi) = t/i for 1 ^ i ^ n, 

where n ^ 2 , a ^ xx < • • • < xn < b and y{G R for l ^ i ^ n . 
Throughout this paper some of the following conditions will be 
assumed for the differential equation (1). 

(A) / is continuous on [a, b) X Rn. 
(B) For each a ^ xx < • • • < xn < b and y* E R, 1 ^ i ^ n? the 

boundary value problem (1), (2) has at most one solution on [xly xn]. 
(C) Solutions of initial value problems for (1) exist on [a, b) and 

are unique. 
(D) If {t/fc(x)} is a sequence of solutions of (1) which is monotone and 

bounded on some interval [c, d] C [a, b) then limfc_, *>yk(x) is a solu­
tion of (1) on [c, d\. 

The question whether conditions (A)—(C) imply that the nth order 
problem (1), (2) has a unique solution for each partition c a ^ < 
< xn< b and each y{Œ R, l ê i â n , has been the topic of much 

recent inquiry. For the case n = 2, 3 this question has been resolved 
in the affirmative with various generalizations and improvements 
given. Articles [1]—[6] represent a chronological reference of these 
results. More recently P. Hartman [7] proved that the boundary 
value problem (1), (2) has a unique solution provided (A)—(D) hold 
and left as an open question whether (D) or the equivalent hypothesis 
of "local solvability of boundary value problems" could be omitted 
and still conclude that boundary value problems are uniquely solvable. 

The purpose of this paper is to present an alternate proof of that 
existence theorem followed by an investigation into the question, 
whether condition (D) can be omitted in proving the existence of 
solutions to boundary value problems. As a consequence of this dis­
cussion another existence theorem is obtained by replacing condition 
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(D) by a condition which assumes that limits of solutions possess 
certain differentiability properties. Finally the author shows that if 
the function / of equation (1) depends only on x and y, i.e. 
f{x,y,y', • • -, y (n_1)) = g(x,y), then conditions (A), (B) and (C) are 
sufficient to imply existence. 

1. Uniqueness and denseness of solutions. In this section it is shown 
that solutions to "fc-point" boundary value problems are unique and 
that they are dense in themselves. 

If 2^ kê n and a ^ Xi < • • * < xk <b then the following 
boundary value problem is called a fc-point boundary problem. 

(1) y™ = f(x,y,y',-;y<»-»)9 

(3) y«>(Xl) = yx\ y(Xj) = yj where yY\ yj G R 

f o r O g i ^ n- & ? 2 = j = f c . 
In this section we will replace condition (C) by a slightly weaker 

condition. 
( C ) At each point in [a,b), solutions of initial value problems for 

equation (1) exist locally and are unique. 
The first two theorems are modifications of Theorems 1 and 2 of 

article [8]. The proof of the first theorem is sufficiently different 
from the proof of Theorem 1 of article [8] to require exposure. How­
ever the proof of Theorem 2 is essentially like the proof of Theorem 2 
of article [8] and hence is omitted. 

THEOREM 1. Let equation (1) he such that conditions (A), (B) and 
(C ') are satisfied. Let u and v be solutions of (1) on [x0, c] C [a, b) 
such that u{i\x0) = v^(x0) /or 0 § i § p - l but w(p)(x0) > v^(x0) 
where 2 ^§ p ^ n — 1. Then given any 8 > 0 with x0 + ô < c there 
is a solution y of (1) such that y — u has p distinct zeros on 
[x0, x0 + 8). Furthermore given any e > 0, y can be chosen such that 
\y(x) — v(x)\ < € for all x G [x0, c]. 

PROOF. Let m be chosen such that v{p\x0) < m < uip)(x0). Also, 
choose m sufficiently near vip\x0) that the solution yl of the initial 
value problem for (1) with yl

{i)(x0) = v(i)(x0) for 0 ^ i ^ n — 1, 
i ^ p, yi(p)(x0) = m exists on [x0, c]. Then there is a 8 > 0 such that 
v(x) < j/i(x) < u(x) on (x0, x0 + 8]. By the property of continuous 
dependence of solutions on initial conditions, there is an e Y > 0 such 
that if y2 is the solution of (1) with 

î/2(i,(*o) = </iw(*o), O S j g n - U / p - 1 , 

y2<"-«>(*0) = î / i < " - 1 K) + «i, 
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then v(x0 + 8) < t/2(x0 + 8) < u(x0 + 8). Furthermore since 
yiip~l)(xo) = w(p_1)(x0) = Ü ( P - 1 ) ( X 0 ) , there exists a xp_x such that 
x0 < xp_i < x0 + 8 and w(xp_!) < 1/2(^-1)- Repeating the procedure 
again there is an€2 > 0 such that if t/3 is the solution of (1) such that 

!/3(i)(*o) = !/2(i)(*o), O ^ i i n - U ^ p - 2 , 

y3 ( p - 2 ) (^0) = ! /2 ( p- 2 )(^0) - € 2 , 

then v(x0 + 8) < t/3(x0 + 8) < w(x0 + 8) and w(xp_j) < y^v-i)-
Since y3

ip~2)(x0) < y2
{p~2Kxo) = " (p-2)(*o) = ü(p~2)(*o) there is a 

xp_2 such that x0 < xp_2 < xp_x < x0 + 8 and t/3(xp_2) < Ü(XP_2) < 
w(xp_2). Proceeding in this manner we obtain a solution y = yp and 
points x0 < xx < x2 < ' ' * < %p_i < x0 + 8 such that 

yp(xk) < (̂̂ fe) if p — fc is even, and 

yP(Xk) > **(**) if p — fc is odd. 

Moreover 

t/p(x0) = u(x0) = ü(xo) and Ü(X0 + 8) < t/p(x0 + 8) < w(x0 + 8). 

Thus yv — u has p distinct zeros on [x0, x0 + 8) and j / p — Ü has p — 1 
distinct zeros on [x0, x0 + 8). Moreover given any € > 0 if m is 
sufficiently close to t>(p)(x0) and €1? • • % €p_! are sufficiently small 
then \v(x) — yp(x)\ < e on [x0, c ] . 

REMARK. One can show as a consequence of Theorem 1 that if u 
and v are distinct solutions of (1) and if for some xY €E [a, b), u{i)(xi) 
= ü^Xi) for i = 0 ,1 , • • -, n - 2, then tt^-^fo) 7̂  Ü ^ " 1 ^ ) and 
u(x) j£ v(x) on [a, fo) — {x^. Corollary 1 of [8, p. 544] is essen­
tially this result and can be consulted for a proof. 

THEOREM 2. Let equation (1) be such that conditions (A), (B) and 
( C ) are satisfied. Suppose u and v are distinct solutions of (1) such 
that u — v has k, 2 ^ k ^ n — 1, distinct zeros on [a, b) at 
a ^ Xi < x2 < • • • < xk < b. Assume that u — v has a zero of order 
h at xv Let yx be the number of zeros of u — v on (xl5 b) such that 
u — v > 0 in a deleted neighborhood of the zero. Let y2 be the 
number of zeros of u — v on (x1? b) such that u — v < 0 in a deleted 
neighborhood of the zero. Let p be the number of odd order zeros of 
u — v on (xi9 b). Then 1y{ + p + h < nfor i= 1, 2. 

THEOREM 3. Suppose equation (1) is such that conditions (A), (B) 
and (C ') are satisfied. If I ^ k =§ n — 1, a ^§ xY < • • • < xk < b, and 
if u and v are distinct solutions of (I) such that u{i\xi) = v{i\xi) for 
i = 0 ,1 , • • -, n — k — 1 and u(xj) = V(XJ) whenever 2^j^k then in 
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the notation of Theorem 2, yx = y2, u{n~k)(xi) ^ vin~k)(xi), u — v 
has no other zeros on (xÌ9 b) and sgn (w(n_fc)(x1) — v{n~k\xl))

 = 

sgn(-l)k-\u(x) - v(x)) forxk <x<b. 

PROOF. The case that k = 1 is discussed in the remark following 
Theorem 1 and the equality s g n ^ " - 1 ^ ) — vin~1\xi)) = 
sgn(u(x) — v(x)) for xx < x < b is obvious. 

If fc = 2 then with the notation of the previous theorem, h=n—k, 
J\ + 72 + P = & ~ 1> ^ + 2yi + p < n and ft + 2y2 + p < n. The 
first, third and fourth inequalities yield 2yx + p < k and 2y2 + p < k; 
hence yY + y2 + P < &• This implies yx H- y2 + P = & ~~ !• From 
this and h + yl + y2 + p<n it follows that h = n — k. Thus 
«<"-*>(*!) 7̂  v(n-k)(x{). But 2yx + p < k and 2y2 + p < fe imply 
that 7i = 72- Thus p and fc — 1 are both odd or both even. Thus 
sgpiu^-Vfa) - ü(n-fc)(x!)) = sgri(-l)*>(u(x) - ü(x)) for xk < x < b 
implies that sgn(u(n~k)(xi) — v^-VfaJ) = sgn( — l)k~l(u(x) — v(x)) 
for xk< x < b. 

The above relationship of signs was pointed out to me by Professor 
Jackson. 

COROLLARY 4. Suppose equation (1) is such that conditions (A), (B) 
and (C') are satisfied. If 2 ^ k= n, a^xx< • • • < xk< b and 
tji\ ijj G R for 0 ^ i ^ n — k and 2 ^ j ^ fc then the k-point problem 
(1), (3) has at most one solution. 

If a^xY< b and if ä £ f i n is denoted by ä = (OQ, • * •, On-i), 
then let y(x; xiy a) denote the unique solution of (1) such that 
j/(i)(*i; xÌ9a) = ai for 0 ^ i ^ n — 1. 

Suppose 2 ^ ) î § n , a ^ xx < • • •< xk < &, t/1
i G ß for 0 ^ 

i ^ n — fc and UjG. R for 2 ^ j â fc — 1. This last condition is 
omitted if k = 2. Then let S be the set of all solutions y of (1) 
satisfying 

(i) if y G S, y(%Xl) = y x
l for 0 g i g n - k, 

(4) 

(ii) if y G S and fc > 2 then y(x,) = % for 2 g j ' ^ k - 1. 

Let 

(5) B= {y(xk)\yGS}. 
THEOREM 5, Suppose equation (1) is such that conditions (A), (B) 

and (C ') are satisfied. For all € > 0 and y G B, (y — e, y) fi ß ^ 0 
and (y,y + e) H ß ^ 0 . Moreover if y EL S with y(xk) = y and 
K is a compact subset of the interval on which y is defined, then 
p G (y — €, y) H ß and a G (y, y H- e) D ß can foe chosen so that if 



EXISTENCE THEOREMS FOR BOUNDARY VALUE PROBLEMS 461 

M , t ) £ S with u(xk) = p and v(xk) = a then \u — y\ < e and 
\v — y\< e onK. 

PROOF. If k = 2, Theorem 3 implies that the difference between 
distinct solutions of S is nonzero on (xx, b). If y G S then the sequence 
{t / x}CS defined by yx

(n_1)(*i) = î/(n_1)(*i) + 1/A satisfies yk(x2) I 
y(x2) since initial value problems have unique solutions. Thus, for 
k = 2, (y,y + c) Pi B f (jb for all y G B and e > 0. By a similar 
argument one can conclude that (y — e,y) D B ^ 0 for all y G B 
and e > 0. That solutions can be chosen arbitrarily close to the 
solution determined by y is clear from the above argument. 

If k > 2, let y G B and suppose y(x) = t/(x; xl5 5) is the corre­
sponding solution of (1) such that y(xk) = y. Without loss of generality 
suppose â = (0,0, • • -,0) and write y(x;xly a) = y(x; x1? 0,0, • • *,0). 
If c is such that xk< c < b then there is a 8 > 0 such that if ä G Rn 

and |ä| < 8 then every solution t/(x; x1? a) exists on [x1? c]. In the re­
mainder of this proof all the initial conditions will be restricted to 
have norm less than 8. If en_l > 0 then Corollary 4 implies that 
2/(x;xl50, • • -,0, ~ € n _ ! ) < y(x;xx,0, • • -,0) < t/(x;x1?0, • • s O ^ . x ) 
on (xl9 c). Since solutions depend continuously on initial conditions 
there is a *i > 0 such that if 0 ^ |at| = #cx for n — k + 1 = i = n — 2 
then 

t/(x; Xi, 0, • • -, 0, an_fc+1, • • -, a,,^, - € n - i ) < t/(x; x1? 0, • • -, 0) 

< y(x; xu 0, • • -, 0, a^-fc+i, * • -, a„_2, €„_i) 

on [x2, xfc]. The continuous dependence property of solutions again 
implies that for each set of cç with 0 ^ |of| = #c1? n — k + 1 ^ i ^ 
n — 2, there is an <*„_! such that — €n_x < <*„_! < en_l and 
y(a*-i;*i>0, • • •,0,on_ f c + 1 , • • -, Û^-2 , c^.i) = y(xk_i; x1? 0, • • -, 0). 
Corollary 4 implies that ccn-i is uniquely determined by an_k+l, • * -, 
an_2. In fact it will now be shown that a^-i is a continuous function of 
On-k+i, • • *,ari_2. It suffices to show continuity of an^l at an-k+i, 
' * % Û^_2 = 0. For h > 0 chosen, let €n_x = h and ic-x = 8 in the 
above argument. Then |of| < 8 for n» — fc+l^i^n — 2 implies 

k-il<h. 
From now on when we write t/(x; x1? 0, • • -, 0, £*„_*+!, ' • *, «n-i) we 

will mean that a ^ x = a^-^û^-fc+i, • • -, ak_2) as described above. Let 
a„_2 = Kx be fixed. Then Corollary 4 implies that 

y(x; Xi, 0, • • -, 0, - 0 ^ - 2 , «n-i) < */(*; *i, 0, • • -, 0) 
< y(x; xl9 0, • • -, 0, a„_2, c^-i) 

on (*i,Xfr_i). By the continuous dependence property there is a 
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K2 > 0 such that if 0 ^ |at| ^ K2 for n - k + 1 ^ i ^ n - 3 then 

t/(x;x1?0, • • ' , 0 , ^ . ^ 1 , • • %an-3, - a ^ , « ^ ) < t/(x;x1?0, • • -,0) 

< y(x; xx, 0, - • -, 0, a„-fc+i> * * -, a ^ , <*n_2, a^_i) 

on [x2, ^ - 2 ] • Thus for all 0 ^ |at| = /c2? n — fc + 1 § i S n — 3, there 
is an «„_£ such that — KX < 0 ^ 2 < kx and 

y(Xk-2>*i>Q> ' ' -,0,a^_fc+1, • • •,au_3 ,a r i_2, a^-i) 

= y(**-2;*i>0, • • -,0). 

Corollary 4 implies that ori_2 is uniquely determined by an_k+i, • • -, 
aVt-3 and a similar argument to the one above confirms that an_2 is a 

continuous function of a^_jt+1, * • •,aw_3. If we repeat this argument 
fc — 4 more times we conclude that there exist a #c^_2 > 0 such that for 
each otn-k+i ^vith 0 ^ |a^_fc+1| ^ /cfc_2 there exists a^-fc+2 = 
<xn-.k+2(<*n-k+i)> * • *, ovl_1(a^_fc+1, • • ', 0^2) = otn-i such that each 
ô _y is a continuous function of o^-fc+i, * * *, «n-j-i f° r 1 = 7 = & "~ 2 
and y(xj; xl5 0, • • -, 0, ah_fc+i, • • -, o^_i) = t /fe x1? 0, • • -, 0) for 
2 S i g f c - 1. 

Thus for each a„_k+i with 0 ^ |an_fe+1| ^ K/t_2 and z(x) — 
y(x; x1? 0, • • -, 0, a^-jfc+i, a^.fc+s, • • -, a ^ ) , the difference z(x) -
y(x; x1? 0, • • -, 0) has a zero of order n — k + 1 at xx and zeros at 
^ 2 > "> •*-& — 

!• By Theorem 3, if a^-fc+i = 0 then the two solutions are 
identical otherwise sgn[z(xfc) — y(xk;Xi,0, • • *,0)] = ( —l)fcsgn(an_fc+1). 
For a given e > 0, we have \z(x) — y(x; x1? 0, • • -, 0)| < € on [xi9 c]. 
Under those conditions z(xk) Œ (y — e,y) D B or z(xk) G (y, y + e) 
fi B depending on the sign of av,_fc+1. Given a compact subset of 
[a, b), 8 > 0 can be chosen sufficiently small that u,v £ S can be 
determined satisfying the inequalities of the theorem. 

2. The existence theorem. To prove the existence theorem, some 
results concerning convergence of sequences of solutions are required. 

LEMMA 6. Suppose equation (1) is such that conditions (A), (B), 
(C) and (D) are satisfied. Let 2 ^ f c ^ n , a ^ x 1 < • • • < xk< b and 
yi\ yj Œ. R for O ^ i ^ n — k — 1, 2^j^k. Suppose {yx} is a 
sequence of solutions of (1) on [a,b) such that t/x(i)(*i) = yx\ 
yk(xj) = yj for 0^ i^ n — k — 1 and 2^j^k. If {yk} is monotone 
and bounded on some subinterval of [x1? b) then {yk} converges to a 
solution of(\) on [a, b), uniformly on compact subsets of [a, b). 

PROOF. Let 0(x) = limx_ *yk(x) for x G / where / is the interval of 
monotonicity and boundedness of {t/x}. By restricting the size of / 
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if necessary assume / = [c,d] and x ^ [c,d] for l ^ i ^ k . By 
property (D), <£ is a solution of (1) on [c, d]. Also by Dini's theorem 
{yk} converges to <f> uniformly on [c, d]. Let 4> be the unique solution 
of (1) on [a, fo) satisfying 4> = <f> on [c, d]. To prove the theorem it 
suffices to show that for all compact K = [a, r], d < r < fo, {yk} con­
verges uniformly to 4> on K. Let c < TX < r2 < • • • < rn_! < d. 

Consider the case that n is odd. Let e > 0 be given. Using Theorem 
5 choose a solution v of (1) on [a, r] such that \v — 4>| < €, Ü(T<) = 
<£(TÌ) for i = 1, 2, • • -, n — 1 and t>(d) < 0(d). Condition (B) and 
Theorem 3 imply that v(c) < tf>(c). If 71,72 a n d P are defined for 
^ — t) as in Theorem 2 then yx = y2 as a result of Theorem 3. More­
over, if Tj is such that there is a deleted neighborhood on which 
<f> — v > 0 then for X sufficiently large yk crosses v twice in that 
neighborhood. Also for X large v(c) < yk(c) < <f>(c) and v(d) < yk(d) 
< <f*(d). Thus for large k, yk crosses v 2y2 + p + 1 times in (c, d), but 
v was chosen such that yl+y2 + p+l=n— 1 and hence yx crosses 
t? n — 1 times in (c, d). Consequently v(x) < yk(x) on [a,c)D (d, r] 
for X sufficiently large. Similarly there is a solution u;(x) of (1) on 
[a, r] with \w — * | < € on [a, r ] , tufo) = 4>(TJ) for i = 1,2, • • -, n — 1, 
tf (c) > <f>(c) and u;(d) > <l>(d). By a similar argument for X sufficiently 
large w > yk on [a, c) fi (d, r ] . Hence for X large, \yk — <ï>| < € on 
[a, r]. 

The case that n is even can be handled in a similar manner. 

COROLLARY 7. Le£ equation (1) foe SUC/Ï £/ia£ conditions (A), (B), 
(C) and (D) are satisfied. Let S and B be described by (4) and (5). 
77ien B is a connected open set. 

PROOF. If a < ß, a, ß G B and u, Ü £ S such that u(xk) = a and 
ü(xfc) = ß then if j / G S such that a < y(xk) < ß, u(x) < y(x) < v(x) 
on (xk_l,xk). Hence Lemma 6 implies that ß f l [ct,ß] is closed. 
This property of B in addition to the property of B exposed in Theorem 
5 imply that B is connected and open. 

COROLLARY 8. Suppose equation (1) is such that conditions (A), (B), 
(C) and (D) are satisfied. If the set S of (4) is nonempty then S cannot 
be uniformly bounded above or below on any subinterval of [x1? fo). 

PROOF. If S ^ 0, Theorem 5 and Corollary 7 imply that B is open. 
If S is uniformly bounded on some subinterval of [xi9 fo) then Lemma 
6 implies that B is closed and bounded which is a contradiction. 
Minor alterations in the argument lead to the same contradiction if 
S is bounded below or bounded above on some subinterval of [xly fo). 

THEOREM 9. Suppose equation(l) is such that conditions (A), (B), 
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(C) and (D) are satisfied. Let 2^k^n, a^xl< • • • < xk< b and 
yi\ yj G Rfor 0 ^ i ^ n — k and 2^j^ k then the boundary value 
problem y{n) = f(x,y,y', • •-, y{n-l)\ yii}(xl) = yl

i, y(xj) = yj for 
O g i ^ n - t and 2^j^ k has a unique solution. 

PROOF. The uniqueness condition has been established and we will 
probe the existence of solutions using induction on k. 

The case when k = 2. Let Sx be the set of all solutions y of (1) such 
that y{i)(xY) = yx

{ for 0 g i § n - 2 . Let Sx(x) = {y(x) | y G S^. 
Then Corollary 7 implies that S1(x2) is an open interval. Suppose 
lub{S1(x2)} = y2- Let u be a solution of (1) such that u(x2) = y2- We 
will consider three cases as u(xx) > yi°, u(xx) < y^ or u(xx) = y^. 
First it u(xi) > t/x0, then by Corollary 8, there is a solution t/i(x) G Si 
such that j/i(x) > w(ac) for some x G (x1? x2). Let xx < TX < r2 < x2 

such that tfi(Tj) = U(TJ) for j = 1, 2. 
Inductively suppose for l â À < [n/2] and xx < T2X_X < r2x_3 < 

• • • < Tx < r2 < r4 < • • • < T2X < x2, the set Sx of all solutions y 
of (1) satisfying 

(i) y«>(*!) = yi< for 0 g i g n - 2X, 
(ii) y(Ti) = U(TJ) for 1 ^ j ^ 2X - 2, if X ? 1, 

also satisfies the properties 
(iii) If y G Sx then t/(x2) < t/2. 
(iv) There is a yK G Sx such that J/(TJ) = W(TJ) for 1 ^j â 2X. 
Then let Sx + 1 be the set of all solutions y of (1) such that t/(i)(xx) — 

yx
{ for 0 ^ i ^ n - 2(X + 1) and y(j3) = ufo) for 1 ^j g 2X. 

t/x G Sx + 1 and if y G Sx+1 is such that t/(x2) ^ t/2 then as a consequence 
of Theorem 3, y^-^-^xJ > t/x(ri~2x-1)(xi) = yin_2A_1- Hence for 
each Ü G Sx there is a 8 > 0 such that y(x) > v(x) on (x1? xx H- 8). 
But if X > 1, Sx is not bounded above on any of the intervals (xl5 T 2 X _ 3 ) , 

(T2 X_2 , x2) and (x2,b). Since v(x2) < t/2 for all t; G Sx there is a 
Ü G Sx such that v crosses j / in (x1,r2x_3), (T2X_2 , X2) and (x2,b) in 
addition to the common zeros at r, for 1 ^ j ^ 2X — 2. In case X = 1, 
Sx is not bounded above on (xl5 x2) or (x2, b) and since v(x2) < J/2 

for all v G Sx there is a Ü G Sx such that v > y for some x in (x1? x2) 
and some x in (x2, b). But for X = 1 this violates Corollary 4 because 
t/ and v then have 2X + 1 zeros .on (x1? b) and a zero of multiplicity 
n — 2X — 1 at xx. Hence for all y G Sx + 1, y(x2) < t/2. As a conse­
quence of Corollary 8, there is a solution j / x + 1 G Sx+1 such that 
j / x + 1 > u at points in (x1? r2x_!) and (r2x, x2) and hence there are points 
*i < T2x + i < Tax-i < * * * < T2X < r2x+2 < x2 such that yk+l(Tj) = 
U(TJ) for 1 ^ j ^ 2X + 2. Sx+1 satisfies the analogue of conditions (iii) 
and (iv) which Sx satisfied. As a consequence of this inductive argu-
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ment, for X = [n/2], there are points xx < T2[n/2]-i < T2[n/2]-3 < 

• • • < rx < r2 < T4 < • • • < T2[„/2] < x2 and the nonempty set S[n/2] 
of all solutions y of (1) such that t/(i)(*i) = yY

{ for 0 ^ i ê n - 2[n/2] 
and y(Tj) = U(TJ) for 1 â j ^ 2[n/2] — 2. In addition S[n/2] satisfies 
the analogue of conditions (iii) and (iv); namely, for all y G S[n/23, 
y(x2) < y2 and there is a y[n/2] G S[n/2] such that t/[n/2](^i) = 
tt(Tf) for 1 = 7 = 2[n/2]. If n is even this contradicts condition (B). 
If n is odd then since S[n/2] is not bounded above in (x1? T2[n/2]-3), 
(T2[n/2]-2> *2) and (x2, b), there is a solution t/ G S[n/2] such that t/ 
crosses u in each of these intervals. But y equals u at the n — 3 points 
fi , T2, • • •, Tn_3. This again contradicts condition (B). Hence we con­
clude that u(xi) ^ j / ! 0 . 

The second alternative is that u(xx) < yx°. Then u crosses each 
y G Sj in the interval (xl5 x2). Let j/i G Sl be fixed and xx < rx < x2 

such that t/i^x) = M(TI). In this case define S2 to be the set of all 
solutions y of (1) such that y{i)(xx) = f/i* for 0 ^ i ^ n — 3 and 
!/(Ti) = w(Ti)- Th e remaining part of this argument is similar to the 
previous inductive argument and we conclude that u{x{) ^ t/i°. 
This leaves the only remaining possibility that u(xi) = y^ but then 
by Theorem 5 there is another solution v(x) of (1) such that v(xx) > yx° 
and v(x2) = y2 which case we have already eliminated. Hence 
lubfSjX^)} > Î/2- Similarly the gib {S^XQ)} < y2 and so y2 G S^a^) 
and the theorem is true for k = 2. 

Suppose the theorem is true for all k < X where X is some fixed 
integer with 2 < X = n and that a ^ xl < • • • < xx < b with 
yx\ j / j Ê R f o r O g i ^ n - X and 2 ^ j ^ X. Let S be the set of all 
solutions y of (1) such that t/(i)(*i) = i/i* for 0 ^ i ^ n — X and y(xj) — 
yj for 2^j=*k — 1. By the induction hypothesis S ^ 0 and by 
Corollary 7 S(xx) = {*/(*x) | y G S} is an open interval. If yk G S(xx) 
then we are through. Suppose for example that lub{S(xx)} ^ yk and 
let u(x) be a solution of (1) such that u{i\xx) — yx

l for 0 S i ^ n — X 
and u(Xj) = iß for 2 ^ j ^ X, j f ̂  X — 1. For all y G S, u — y has a 
zero of order n — X 4- 1 at xx and zeros at x2, x3, • • %xx_2. If 
u(xk-i) < î/x-i = î/O^x-i) f° r all j / G S then each y G S crosses u in 
(xx_1? xx). S is not bounded above on (xx, b) and hence there is a 
y i G S which crosses u in (xx, b) as well. But then y1 — u has a zero of 
order n — X + 1 at xx and X — 1 zeros on (x1? fo) which violates 
Corollary 4. If w(xx_1) > yk_Y = t/(*x_i) then since S is not bounded 
above in either of (xk_u xx) and (xx, b) there is a ^ G S such that yx 

crosses u in (xk_l, xx) and (xx, b). Hence we again arrive at a contra­
diction. If w(xx_i) = t/x-i ti^11 w G S and as a consequence of 
Theorem 5 lub{S(xx)} > t/x. Therefore it must be the case that 
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lub{S(xJ} > yx. Similarly glb{S(xx)} < yk and hence yK G S(xx) and 
the boundary value problem is solved for the case k = k. Thus by the 
induction principle the theorem is true for all 2 = k = n. 

The existence of solutions to the n-point problem evolves from this 
theorem by setting k = n and will be stated separately for emphasis. 

THEOREM 10. Suppose equation (1) is such that conditions (A), 
(B), (C) and (D) are satisfied. If a ^ xx < x2 < ' • * < xn < b and 
j / j Ë K for l^kj^n then the boundary value problem j / ( n ) = 
fix, y,y', ' ' ', yin~1}), y(%j) = yj far l â j â n has a unique solution. 

COROLLARY 11. If 2 ^ k ^ n, a ^ xx < • • • < xk < b, y/ G Rfar 
0 ^ i ^ fjij; — 1, 1 = /Aj and 25= i Mj = n ^ n the boundary value 
problem t/(n) = f(x, y,y', • • -, y(n_1))> !/(i)(*/) = î / / / o r O g i ^ ^ - 1 , 
1 ^ j ^ fc, foas a unique solution on [xx, xk]. This result follows from 
the major theorem of [9] since Theorem 10 asserts that the solution 
set of equation (1) isann parameter family. 

3. Properties of limits of solutions. Suppose <f> is the limit of a 
monotone, bounded sequence of solutions of (1) on some compact 
subinterval of [a,b) and suppose / is such that conditions (A), (B) 
and (C) are satisfied. Without assuming condition (D) we will show 
that <f> satisfies a uniqueness property with respect to solutions of (1) 
and that 0 has differentiability properties. 

A preliminary lemma is required to develop the properties of <f>. 

LEMMA 12. Suppose f satisfies condition (A). For every e > 0, 
1 < k ^ n, [c, d] C [a, b) and M > 0 there is a 8 > 0 such that if 
c ^ xl < x2 < ' ' ' < xk ^ d with \xk — xx\ < 8, y^, yj G R for 
O ^ i ^ n — k, 2 ^ j ^ k and if the unique n — 1 degree polynomial 
p(x), with pii\xl) = yx

l for 0 ^ i^ n — k, p(xj) = yj for 2^j^k 
satisfies \p{i\x)\ ^ M for 0 ^ i ^ n — 1 and xY ^ x ^ xk then the 
boundary value problem y{n) = fix, y, y', • • -, yin~l)), y{i\x\) — y\\ 
y(Xj) = yj for O ^ i ^ n — k, 2^j^k has a solution y G Cn[xu xk] 
and \p{i)(x) — y(i)(x)\ < e on [xi9 xk] forO ^ i ^ n — 1. 

The proof of this lemma is a standard application of Schauder fixed 
point theorem to the mapping 

Ty(x) = P G(x, s)f(s, y(x), y'(s), • • -, y<-»(*)) ds + p(x) 

defined on Cn~l[xi,xk] where G(x,s) is the Green's function for the 
boundary value problem y(n} = 0, yl(xi) = 0, y(Xj) = 0 for 0 ^ i â 
n- k,2^j^ k. 
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The following property is shared by monotone limits of solutions as 
well as solutions themselves. 

DEFINITION 13. A function <f> defined on an interval Id [a,b) is 
said to be a generalized solution of (1) on I if for each a ^ xx < • • • < 
xn< b with [xh xn] C I and any solution y of (1), 

(i) if (-iy[y(Xi) - *(*)] > 0 for 1 g i ^ n then - [y(x) - <*>(*)] 
> Oon [a9xx] PI Zand(- l ) n [ t / (x ) - <f>(x)] > Oon [xn,b) D I, 

(ii) if ( - l ) ' [y(x,) - 0(x,)] < 0 for 1 ^ i ^ n then - [y(x) - #x) ] 
< Oon [a,xx] H I and (-l)n[«/(*) - </>(*)] < Oon [xn, fo) H 7. 

Notice that condition (B) implies that a solution of (1) is a 
generalized solution of (1). 

THEOREM 14. Suppose equation (1) is such that conditions (A), 
(B) and ( C ) are satisfied. If {yk} is a monotone, bounded sequence 
of solutions which converge to <f> on [c, d] C [a, b) then <j> is a 
generalized solution on [c, d]. 

PROOF. For definiteness assume {yk} is an increasing sequence. In 
order to show that <f> is a generalized solution of (1) on [c, d], suppose 
C ^ T ! < T 2 <

 # • * < rn ^ d and that y is a solution of (1) on 
[c, d] such that ( - l ^ f / f a ) - 0(T<)) > 0 for 1 ^ i ^ n. The most 
difficult case arises if c < rx and rn < d. Since yk —> <f> on [c, d ] , 
there is a fc0

 s uch that fc== fc0 implies ( —1)*(J/(TÌ) — yk(ji)) > 0 for 
1 ^ i ^ n. Hence for /c ^ fc0> î/fc crosses y n — 1 times in (r^ rn) and 
y < yk< <l> o n [ c , r j . If n is odd and k^ k0 then y < yk < <f> on 
[rn, d]. If n is even then y > yk for fc ^ fc0 on [rn, rf] and hence 
y = 0 = lim^oot/fc on [rn, d ] . But if y(x0) — <t>(x0) for some x0 €E 
(rn, d] then replace y by a solution u of (1) such that t/fa) = ufo) 
for l ê i â n - 1 and <£(rn) < w(rn) < t/(rn). This can be accom­
plished by Theorem 5. Then u(x0) < y(x0) = <f>(x0) which implies 
that for k sufficiently large u and yk cross n times on [r1? d]. Since this 
violates condition (B), y > 0 on [rn, d] if n is even. Hence <f> satisfies 
condition (i) of the definition of generalized solution. A similar argu­
ment is required to show that <f> satisfies condition (ii) ofthat definition 
and hence <f> is a generalized solution of (1) on [ c, d]. 

The next result displays the differentiability properties of gen­
eralized solutions. If <f> is defined in a right-hand neighborhood of 
x0, let D°<É>(x0 H- 0) = \imx-+x0+<l>(x) if it exists. Inductively, if 
Dty(x0 + 0) exists for 0 g i â k - 1 then let 
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if it exists. In a similar fashion D*0(xo — 0) are defined by 
taking the appropriate left-hand limits. If for some x0, Dty(x0 — 0) = 
Dl<l>(x0 + 0) then we will denote their common value by DV^XQ). It 
should be noted that if <f>{k)(x0) exists then Dfy(x0) exists and <t>{k)(x0) 
= Dtyxo). 

THEOREM 15. Suppose equation (1) is such that conditions (A) 
and (B) are satisfied. If <j> is a bounded generalized solution of (I) 
on an interval I C [a, b), then D°<l>(x + 0) and D°<f>(x — 0) exist for 
all x G 1° with the appropriate one-sided limits at the extreme points 
of I. Moreover if for some x £ I , Dfy(x -I- 0) exists and is finite for 
0^ i = k — 1 where k ^ n — 1 then Dk<f>(x + 0) exists as an extended 
real number. Similarly if Dty(x — 0) exists for 0=i=k— 1 then 
Dk$(x — 0) exists as an extended real number. 

PROOF. Suppose for some x0 G I, D°$(x0 + 0) does not exist. Then 
there are a,ß G R such that 

(6) lim inf<f>(x) < a< ß < lim sup</>(x). 
X—**Q+ X-*XQ + 

With p(x) = (a + ß)l2 on [x0, fe), M = (a + 0)/2 and € = \ß - a|/2, 
Lemma 12 asserts the existence of a ô > 0 such that the boundaiy value 
problem 

(/<»> = f(x,y,y', • • • , y<»- 1 ) ) , 

y(x0) = (a + 0)/2 = y(x0 + 8), ^>(x0) = 0 

for 1 ^ i ^ n — 2 has a solution t/(x) on [x0, x0 + 8] and a < y(x) < ß 
on [x0?x0 + 8]. This bound on t/ and inequality (6) imply that x0 

is an accumulation point of real numbers x for which </>(x) > y(x) 
and <£(x) < t/(x). But this is incompatible with </> being a generalized 
solution. Thus lim x_>x + <£(x) exists and is finite since <f> is bounded. 
A similar argument will show that D°$(x — 0) exists for any x G Z 
which is not a left extreme point of I. 

Secondly, suppose for some x0 G I, Dl(l>(x0 + 0) exists for 0 ^ i =§ 
k — 1 but Dk<f>(x0 + 0) does not exist as an extended real number. 
Then there are a,ß G R such that 

hm inf <{ r r ( <J>(x) - 2 , M / r< a 

x^x0+ I (x - x0)
fc \ ^V ~ 0 *! / J 

(7) 
^o^v r M / w x V Dfofa + Q)(x- x0y \ ì 
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Let p(x) be the n — 1 degree polynomial such that p(i)(x0) = 
Dty(x0 + 0) for O S t ü - 1 , p{k\x0) = (a + /3)/2, p^ fo ) = 0 for 
l t + l i j i n - 1 . Also let M = max0êisn_i|p( i )(x)| for c ^ x 
g d where a ë c < x 0 < r f < f o . Let € = (ß — a)/2. Then Lemma 
12 implies the existence of a 8 > 0 such that the boundary 
value problem y{i)(x0) = p(i)(x0) for 0 ^ i ^ n - 2, y(x0 + 8) = 
p(x0 + 8) has a solution t/ on [x0, x0 + 8] and |t/(fc)(x) - p(fc)(x)| < e 
on [x0, x0 + 8]. In particular a < y(k)(x0) < ß and t/(i)(x0) = 
Dty(x0 + °) for ° = { = fc - L Also 

y*K*o) = ,hm+ { T ^ T ^ F ( »<*> - S fl J j 

and hence in view of inequality (7) we arrive at the same incom­
patibility with <j> being a generalized solution. Thus Dk<j>(x0 + 0) 
must exist as an extended real number. The existence of Dk<f>(x0 — 0) 
can be similarly handled. This completes the proof of Theorem 15. 

This result, by means of the following lemma, yields an existence 
theorem. 

LEMMA 16. Suppose equation (1) is such that conditions (A), (B) 
and ( C ) are satisfied. If <f> is a generalized solution of (1) on an 
interval Id [a,b) and x0 is an interior point of I at which 
Din~l)<l>(x0 + 0) exists and is finite then there exists a 8 > 0 such that 
<f)isa solution of(l)on [x0, x0 + 8). 

PROOF. Let x0 G (c, d) C I be such that D (n_1ty(x0 + 0) exists and 
is finite. Then Dty(*o + °) a r e finite for all 0 g i ^ n - 1 by defini­
tion. Let x0< xn< d and p(x; xn) be the unique n — 1 degree poly­
nomial such that p(i)(x0; xn) = Dty(x0 + 0) for O â i â n - 2 and 
p(xn; xn) = <f>(xn). Then 

p(x; xn) = p(x0; xn) + p'(x0; xn)(x - x0) + * * * 

(n - 1)! 

=
 ny2 / DtyjXo + 0)(x - Xp)' \ 

(n - 1)! 

Setting x = xn above with p(xn; xn) = <f)(xn) and solving for p (n_1)(x0; xn) 
we have 
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thus limx _„Xo pn~\x0; xn) = Dn~l(f>(x0 + 0). Hence if p(x) is the n — 1 
degree polynomial such that p(i)(x0) = Dty(xo + 0) for 0 ^ i ^ n — 1 
then limx„_>Xo p(x; xn) = p(x) in Cn~l[x0,d]. Thus for y > 0 suf­
ficiently small there exists an M such that if x0 < xn ^ x0 + y, 
\p(i)(x; xn)\ ^ M for 0 â i ^i n — 1 and x0 ä= x ^ x0 + y. By Lemma 
12, there exists a Ô > 0 such that if x0 < xn < x0 + Ô then the 
boundary value problem t/(n) = f{x,y, • • *,j/(n_1)), y(i)(x0) = 
P(i)(x0; xn) = Dty(*0 + 0) for 0 ^ i ^ n - 2, j/(xn) = p(xn; xn) has 
a solution y on [x0, xn] . Suppose y(x) ^ </>(x) for some x in [x0, xn] . 
To be specific assume y{xn_{) > <f>(xn_l) where x0 < xn_l < xn. Let 
yi(x) be a solution of (1) such that t/i(i)(*o) = y(i)(x0) = Dty(x0 + 0) 
for 0 â i ^ n - 2 but the difference t/i(n_1)(x0) - t/(n_1)(*o) < 0 and 
sufficiently small that f/i(%n-i) > <Kxn-i) a n d ï/iCO < !/(xn) = 

0(xn). Let yi{x) be the solution of (1) such that j/2(i)(xo) = î/i(i)(xo) 
for 0 ^ i ^ n — 1, i ^ n — 2, but the difference y2(n_2)(JCo) ~~ 
t/1

(n_2)(x0) < 0 and sufficiently small that J^fan-i) > <K*n-i) a n d 
J/2(xn) < 0(xn) then there exists an xn_2 such that x0 < xn_2 < xn_l 

and î/2(xn-2) < <K*n-2)- Define yk(x) inductively as follows. Given 
that 2 ^ fc ^ n — 1 and yk-\{x) is a solution (1) such that yjk-\(x0) 
= ygi>.(^) for 0 ^ i ^ n - l , i ^ n - k + 1, (-l)%fc.ïfc+1>(*b) 
— yjP_T2C+lKxo)) > 0 and there are x0 < *n-fc+i < ' ' ' < xn s u c n 

that (-l)n+1- i(t/fc_i(x i) - <f>(Xi)) > 0 for n - H l ^ i g n ; define 
yk(x) to be a solution of (1) such that yk

(i)(x0) = t/fcii(x0) for 
0 ^ i ^ n - 1, ifn-k, (-l)k+1(yk^

n-k\x0) - y(gr^(x0)) > 0 
so small that (-l)n+1- i(j/ fe(x i) - ^(x,)) > 0 for n - A: + 1 ^ f ^ n. 
Then there exists an xn_k such that x0 < xn_fc < xn_fe+1 < • • • < xn 

and ( — l)fc+1(yfc(*n-fc) — <f>(xn_k)) > 0. In particular for k = n — 1 
( —l)n~1~i(t/n_1(xi) — <£(*t)) > 0 for 1 = * = n where x0 < xx < x2 < 
• • • < xn < b. But then t/„_i(x0) = <Kxo) violates the hypothesis that 

<f> is a generalized solution. Hence </> — t/ on [x0, xn]. 
As a consequence of this result we can conclude an existence 

theorem. 

THEOREM 17. If equation (1) is such that (A), (B) and (C) are 
satisfied and if for each generalized solution <\> of (1) there exists an 
x0E.[a,b) such that either D{n-^(/>(x0 + 0) or Din-lty(x0 - 0) 
exists and is finite then for each a ^ xx < • • • < xn < b and y{ G R, 
1 â i = n, £/i£ boundary value problem (1), (2) /ias a unique solution. 

PROOF. It suffices to show that property (D) is valid. But the <f> 
expressed in property (D), being a generalized solution, is a solution 
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on some subinterval of [c, d] as a consequence of Lemma 16. The 
proof of Lemma 6 provides a technique for proving that <f> is then a 
solution on [c, d] and property (D) is satisfied. 

Using a theorem about differentiation of arbitrary real valued 
functions, see [ 10, p. 16 ff.], one can conclude that if <f> is a 
generalized solution of (1) on [c, d] C [a, b) then D'<j)(x + 0) exists 
and is finite for almost all x Œ. [c, d]. The author however, has not 
been able to extend these results to higher differentiation. 

We conclude with an existence theorem for the case when / 
depends on x and y only. 

THEOREM 18. Suppose f(x,y, • • -,y (n_1)) = g(x>y) and conditions 
(A), (B), and (C) are valid, then the boundary value problem (1), (2) 
has a unique solution for each fl^x}< • • • < xn< b and y{ G R, 
l S i S n . 

PROOF. Suppose {yk} is a monotone, bounded sequence of solutions 
which converges pointwise to a function <f> on [c, d] C [a, b). Let 
c = xx < x2 < • * • < xn = d and pk be the unique polynomial of degree 
n — 1 such that pk(

xï) = yk{x{) f° r 1 = i = n and Jc = 1, 2, 3, • • \ 
Then pk converges uniformly to p where p is the unique polynomial 
of degree n — 1 such that pfa) = limfc_ «t/jfefo) for 1 ^ i ^ n. Thus 
if G(x, s) is the Green's function for the boundary value problem 
y(n) = o, y(Xi) = 0 for 1 g i g n then 

yfc(x) = G(x, s)g(s, yk(s)) ds + pfc(x) for all x G [c, d ] . 

Let 

J c 

Since j/fc(x) are uniformly bounded on [c, d], 

M s sup{|g(x, yfc(x))| : c ^ x § d , ^ l } 

exists. Aso dGldx exists and is continuous on [c?d] X [c,d] and 
hence there is a constant K > 0 |dG(x? s)ldx\ ^â K for x, s E. [c, d]. 
Thus if £ ^ x, 

!«*(*) - «*(*)l^ \d \G(x>S) - G(*,*)| |g(s,yfc(s))|ds 
J c 

g MK|x - t\(d - c). 
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Hence o)k(x) is uniformly bounded and equicontinuous on [c, d]. 
Thus a subsequence and by monotonicity the sequence {yk} converges 
uniformly to (f> on [ c, d]. Taking limits through the integral repre­
sentation of yk yields that <f> is a solution on [c, d] and hence property 
(D) is satisfied. 
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