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RADICAL AND ANTIRADICAL GROUPS 
FRANKLIN HAIMO l 

1. Preliminaries. To gain a better understanding of radical rings, 
it is important to ask which abelian groups are the additive groups of 
proper radical rings, that is, of rings @ that are not zero rings (i.e., for 
some Sx, s2 Œ. ®, s{s2 J^ 0) where (§5 = /(@), the Jacobson radical of 
@. A related question asks which subgroups B of an abelian group 
A support radicals of rings on A (that is, 3f+ = A and /( 3f)+ = B). It 
is often more convenient to state these questions from within: (1) 
Given an abelian group A, what radical rings does it support? (2) 
Given a subgroup B of an abelian group A, in how many ways can A 
be turned into a ring 7i in such a way that / ( 3f ) + = B? We shall give 
answers to (1) for some types of groups and touch briefly upon (2). 

A nontrivial abelian group A is called a radical group if it supports 
at least one proper radical ring; otherwise, it is called an antiradical 
group. All groups here will be abelian, and all rings are to be associa­
tive. Some of our results will be formulated in terms of a pair of maps 
on the group called a bimultiplier, a sort of pre-bimultiplication [6]. 
We shall show (Theorem 1) that if a radical group supports a radical 
ring as the kernel of a ring extension then it supports the kernel of a 
related radical ring extension. Necessary and sufficient conditions are 
found (Theorem 2) in terms of a locus in Euclidean n-space for a given 
bimultiplier on a torsion-free divisible group of rank n to produce a 
radical ring on that group. We prove (Theorem 3) that, for rings on 
torsion-free divisible groups, the radical-supporting subgroups are 
precisely the C-submodules (where £l is the ring of rationals). The 
torsion-free groups of rank 1 that are radical groups are completely 
classified in terms of type (Theorem 4). For A © A to be antiradical 
it is necessary and sufficient (Theorem 5) that A be a nil group. If A 
and B are antiradical, sufficient conditions in terms of Horn are found 
for A® B to be antiradical (Theorem 6). We identify (Theorem 7) 
the divisible antiradical groups. The prime-power cyclic groups are 
shown to support various radical rings, and any exponent of nil-
potency can be realized (Theorem 8). The antiradical direct sums of 
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cyclic groups are completely determined (Theorem 9) as are the 
bounded antiradical groups (Theorem 10). All the countable reduced 
p-group s not of prime order turn out to be radical groups (Theorem 
11). We show (Theorem 12) that every countable reduced p-group of 
Ulm type 2 supports a proper radical ring that is the epimorphic image 
of a proper radical ring supported by an unbounded, countable 
reduced p-group of Ulm type 1, and that these roles can be reversed. 

Although there seems to be no literature directly on this subject, 
K. Eldridge [2] has discussed the quasi-regular groups of the rings 
®> /(@)> a n d @//(@)- In a private communication, C. Yohe has 
given a different proof for Lemma 2, and Dr. Eldridge has kindly 
called our attention to [ 10]. 

Notations, such as l.q.r. for left quasi regular and r.q.i. for right 
quasi inverse, are standard. In general, we follow [5], although most 
references are to [4]. The symbol i is the identity map. ln is the 
n-by-n identity matrix; 8tn stands for Euclidean n-space; St, for the 
real field; Ç = £ l + , for the additive group of rationals; 3 , for the 
ring of integers with additive group $+ = Z; £ln , for the n-by-n 
matrices over &; Z(n), for the cyclic group of order n; Z[a] , for the 
cyclic group with generator a. If a G A, a p-group, and if \a\ = pn 

then n = E(a) is called the exponent of a. If s is in a ring @ then s* 
denotes the quasi inverse (q.i.) of s (if it exists). If su s2 G @ then 
si ° s2 = si + s2 ~~ 5i52- A proper ring is a ring in which some 
product xy fails to be zero. Rings that are not proper are called zero 
rings. 

2. Bimultipliers. A pair of maps T = (TL, TR), where both TL and 
TR lie in Horn (A, Horn (A, A)), is called a bimultiplier on a group A if 

(i) rL(fli)a2 = TR(a2)au and 
(Ü) rL(ai)TR(a2) = rR(a2)rL(a1) 

for all au a2 G A. Each bimultiplier T on A allows us to construct a 
ring on A, (A, T), where (A, T)+ = A and multiplication is given by 
TL(al)a2 = a{a2. Indeed, the familiar associativity condition, 
rL(rL(öi)a2) = TL{a{)TL(a2) (or this identity with FR replacing r L ) , 
comes from (i) and (ii). Conversely, suppose that 3C is a ring sup­
ported by A, and that AL (AR) is the function that carries each a G A 
onto the left (right) multiplication aL : b i—» ab (aR : fol—» ba) for every 
b £ A . Then A = ( AL, AK) is a bimultiplier on A such that 2f = 
(A, A). Observe that if T is a bimultiplier on A, then, for each a G A, 
the pair of maps (TL(a), TR(a)) is an inner bimultiplication [6] on the 
ring (A, r) . 

If r is a bimultiplier on A then both TL and TR may be viewed as 
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ring homomorphisms from (A, T) to the ring Hom(A, A) so that Im FL 

and Im r R are subrings of Hom(A, A). 

LEMMA 1. (i) I V '/(Im TL) = J(A, T) = I V ' / ( I m I R ) . 
(ii) (A, r ) is ö radical ring precisely if the elements of Im FL (Im FR) 

are all q.r. in the ring Hom(A, A). 

PROOF, (i) Each of the following statements is equivalent to its 
neighbors. (1) x G FL

lJ(lmFL). (2) FL(y)FL(x) is l.q.r. in Im FL for 
every y G A. (3) If y G A there exists c G A such that c + t/x — 
cyx G ker TL. (4) There exists g G ker TL such that c — g H- j/x — 
(c - g)yx = 0. (5) yx is l.q.r. in (A, T) for each i / G A . (6) x G /(A? T). 

(ii) If (A, r ) is a radical ring Im TL = /(Im TL) so that each FL(a) is 
q.r. in Im TL, hence in Hom(A, A), with TL(a)* = TL(a*). Conversely, 
if each FL(a) is q.r. in Horn (A, A), t — TL(a) G Aut A. Let a~ = 
- ( l ~ rL(fl))_1a for a G A. Then — (*— r L (a ) )a # = a so that 
Yj^ja^ — a + # \ and a" is a r.q.i. for a. Since each member of 
(A, r ) is r.q.r., (A, T) must be a radical ring. • 

LEMMA 2. Z is an antiradical group. 

PROOF. If (Z, T) is a proper radical ring Lemma l(ii) provides that 
each rL(n) is q.r. whence each i — TL(^) G Aut Z. Since T is non-
trivial, there exists m G Z such that TL(m) is nontrivial so that 
t — rL(m) = — t, the only available nonunity automorphism on Z. 
Thus, t — r z (2m) = — 3t G Aut Z, an impossibility. • 

LEMMA 3. If A is a proper subgroup of Z, then Z supports no ring 
with radical supported by A. 

PROOF. Since, as a group, A^—Z, the only possible radical on A 
would, by Lemma 2, be the zero ring. But the only possible bimulti-
pliers on Z are those T with Tiix)\j = xyk f° r fixed k G Z. Such multi­
plications never reduce to the zero multiplication on any proper sub­
group unless k = 0. In that case, the radical would be all of Z and 
not just A. • 

Let 3> be a division ring with the property that each nontrivial 
bimultiplier r on 3» + is so related to the multiplication on § that 
T(x)y = xyk for some nonzero t G f (depending only on T). Then 
$f+ is antiradical; for, if not, F(k~l)k~l = fc_1, contradicting the exclu­
sion of nonzero idempotents from proper radical rings. In particular, 
Q and Z(p) are antiradical. Further, no proper subgroup of Q can be 
the radical of any ring supported by Q. For, the only nontrivial bi-
multipliers on Ç are the F for which FL(x)y — xyk, k ^ 0, and k~l is 
thus the unity of (Ç), F) so that Ç supports only division rings, devoid 
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of proper ideals. The referee notes that Lemmas 2 and 3 and the 
remarks just above are known. 

3. Extensions. 

THEOREM 1. Let S3 >-> 21 -V-» (£ be an exact sequence of rings 
where/(») = S3. ThenJ(^) ^ * /( 2Q AJ4S / (©) is also exact. 

PROOF. We may denote the elements of It by ordered pairs (b, c) 
(b G S3 and c G 6 ) . It is assumed that the left and right actions of 
© on S3 + are known: cL(b) = cb, and cR(b) — be. We also write 
^ L ( ^ ') = bb ' for all b, b ' G S3. In 2f, addition is given by 

(&!, CL) + (fo2, C2) = (&i + &2 + C^l(Ci, C2), Ci "h C2) 

for some normalized cocycle a{; and multiplication has the form 

(&!, c1)(b2, c2) = ( f c ^ + cvb2 + fc^a + o-2(cl7 c2), c ^ ) 

for a nonnalized function cr2 from Ê X 6 to S3. (See [3], [6], 
[7], and [9] for precise conditions and details.) 

It is clear that (b, c) G /( it) implies that c G / ( © ) . Conversely, if 
c G / ( 6 ) and if (&, d) G 3f then (0, c)(b, d) = (cb + a2(c, d), cd). 
If only we could show that this last is r.q.r. in It then (0, c) G / ( %) 
from which J(7t) = {(x, c) \ x G S3 and c G / (©)} , and the proof 
would be complete. We shall show a bit more, namely that each 
(e, g), where e G S3 and g G /( ©), has a r.q.i. in 2C 

First, one proves (using, say, [9, (6)-(15)] ) that the operator 
i — gL on S3+ has the inverse 

( i - [ a 1 ( g * ) g ) - a 2 ( g * j g ) ] ? ) ( « - g i . * ) . 

Then one shows that, as operators on S3+, (L — gL*)(fc — eL ~~ go = 

i - yL where y = e + g*e + cr2(g*, g) - ^ ( g * , g) G S3. Thus, 
( l - gL) _ , ( l - e L - g L ) = * - xL where x = [^(g*, g) - a2(g*, g)] * 
°*/GS3; and ( i - eL - gL)~l = ( i - xL*)( * - gL)_ 1 . A short com­
putation shows that a r.q.i. for (e, g) is (/i, g*) where h = 
( l - ^ - g L ) - ' k 2 ( g , g * ) - C 7 l ( g , g * ) - ( t - g f l > ] G S . . 

COROLLARY 1. A ring extension of a radical ring by a radical ring is 
a radical ring. 

PROOF. Use the notation of the theorem. To each a G It there 
exists j G /( 20 such that \(a) = k(j) since both X and À \J(tt) are 
onto /( ©) = ©. Hence o - j G ker A =S3 = /(S3)^ /( Ä) so that 
aGJ(-K). m 

This result is well known. 
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COROLLARY 2. Let B >-* A -V-» Z be an exact sequence of 
groups that supports an exact sequence of rings S3 >-> 2Ĉ ->-> © 
where S3 + = B, 2f4 = A, ©+ = Z, and f/i£ morphisms A and A induce 
the same set map. Then ifj( S3) = S3, either J( li) = li or J( li) = S3. 
If B supports a radical ring S3 which has an element with a nonzero 
square, then A will support a radical ring extension li of S3 by © in 
a nontrivial way. 

PROOF. By Lemma 3, / ( ©) = 0 or ©. Since /( 11) consists of all 
(b, c) G li where b G B and c G /( ©), the first statement of the 
corollary follows. As for the second, since A is an abelian extension of 
B by Z, A = B © Z [8, 9.5.5], and a! is trivial. Introduce the zero ring 
© on Z. Denote the members of B 0 Z by ordered pairs (fo, n), b G B 
and n Œ Z, and introduce multiplication via (fo1? n1)(fo2, n2) = 
((foi + n1Z())(fo2 + %2o)> 0) where z0 G S3 with z0

2 ^ 0. It is easy 
to check that we have a ring extension li (where li+ = B 0 C) of the 
radical ring S3 by the zero ring ©. Since each product with factors in 
It has the form (£>', 0), a radical element in 2C, each (b,n) G li has 
all its right multiples r.q.r. so that (b, n) G /( 2C). (Observe that 
(fe, n)* = (n*o + (6 + n*0)*, - n).) Since (0, l ) 2 = (z0

2, 0) 7̂  (0, 0), 
the extension is not trivial. • 

4. Torsion-free groups. 

THEOREM 2'. Let A be a torsion-free divisible group of finite dimen­
sion n as a ^-module. Let {(ijk)}, 1 ^ i,j, k^ n,be a set of n3 mem­
bers of £à (repetitions allowed) subject to the conditions 

Utk) (tji) 1 
tk) (ijt) I 

where 1 ^ k,l,i,j ~ n (giving n4 equations); and 
(b) in 8ln the locus given by 

det ( - S t f + J (i/*)xt ) = 0 

/ias no rational points. 
Then the map FR from A = $ànto Hom(A, A) = ß , n given by 

(c) rR(x„ • • -,xn) = ( ] T ((/*)*, ) E £ „ 

determines a bimultiplier F = (FL, FR) such that (A, F) is a radical ring 
with FR given by (c). 
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Conversely, suppose that (A, r ) is a radical ring with FR given by 
(c). Then the n3 coefficients (ijk) G fi obey (a) and (b). 

PROOF. Suppose that T is a bimultiplier for which (A, T) is a radical 
ring. Let uk = (0, * • -, 0,1,0, • • • , 0 ) £ A where the 1 is in the fcth 
position. Associativity yields the equivalent special conditions 
^R(^R(uk)ui) = rR(uk)rR(ui) for all integers k and I subject to 
l ^ f c , I a n . If q G fi and if w £ f î n = A then FR(qu) = qTR(u) 
since Ç is torsion-free divisible. If TR(uk) = ((ijk)) G f i n then the 
special associativity conditions provide that TR((llk), • • -, (Ink)) = 
((ijk))((ijl)), from which 

(d) ± mW = £ mm 
t=i t=i 

n4 such equations since 1 ^ i, j , k,l=n. A rewriting of (d) produces 
(a). 

Since (A, T) is radical, TR(x) has to be q.r. in Hom(A, A), by Lemma 
l(ii), for each x = (xu • • -,xn) G A. But rR(x) = ^n

t^\Xt((ijt)) so 
that Zn - 2 ? = i *«((*/*)) £ Aut A, whence det[ / n - 2 ? = i x^((^))] 
/ 0 for all rational points, the (x1? • • -, xn) G fi n. At once (b) follows. 
The converse is immediate. • 

If n > 2, the process given by the theorem is not feasible for com­
puting the radical rings on torsion-free divisible groups of rank n. 
If n = 2, a cumbersome check shows that the only multiplications turn­
ing Ç 0 Ç into a radical ring are those given by 

(xl,x2)(yl,y2) 

(e) = (bb ' fo + fe ,x2)(! / l + 6 'y2), &(x! + fc 'x2) (y, + fe 'y2)) 

(xi,x2,yl,y2 G fi) 

for fixed fo, £> ' G f i (and similar cases arising from the exchange of 
components). Except for the zero ring, each radical ring 
on Ç 0 Ç has exponent of nilpotency 3. 

THEOREM 3. A subgroup B of a torsion-free divisible group A 
supports the radical of some ring on A if and only if B is a fi -
submodule of the ^-module A. 

PROOF. Since A is a fi-module, each (A, T) is a fi-algebra so that 
(ra)x = a(rx) for a, x G (A, r ) and r G fi. In particular, if a G /(A, F)+, 
a(rx) is r.q.r. in (A, T); hence, so is (ra)x for every x G (A, T). That is, 
ra G /(A, T)+, and this last is a subspace of the fi-module A. 

Conversely, let ß be a fi-submodule of the fi-module A. One can 
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find a Q-submodule C of A such that A = B 0 C, a module-direct 
sum. On B place any radical ring structure (B, F). (If dim B ̂  2, and 
only then, T can be chosen to be nontrivial.) On C place any semi-
simple ring structure (C,A). (Since C is a direct sum of copies of Ç 
use the corresponding ring-direct sum of £l's to obtain a semisimple 
ring supported by C.) Endow A with the direct-sum ring structure 
(A, A) = ( B , r ) 0 ( C , A ) . Clearly, (B, r ) ^ /(A, A) so that B S /(A, A) + 
= B © K, a direct sum of Sl-modules for some submodule K of C. 
Hence K ^ /(A, A) + T i C = /(C, A)+; for, (C, A) is an ideal in (A, A). 
Since, however, (C, A) is semisimple, B = /(A, A)+. • 

THEOREM 4. TTie torsion-free groups of rank 1 £/ia£ are radical 
groups are precisely those of type represented by (kl7 k2, ' ' ') where 
each ki is either 0 or oo ? and where almost all, but not all, these k{ are 
oo. Each such group supports at least one nonradical proper ring, 
the radical of which is supported by a subgroup also of type (kY, fc2, * • • ). 
The torsion-free, rank 1 antiradical groups that support proper rings 
are precisely those of type represented by (Zl512, ' ' •) where each l{ 

is 0 or oo ? and where none or an infinite number of the l{s consists of 
zeros. The remaining torsion-free, rank 1 groups support only zero 
rings. 

PROOF. By the Rêdei-Szele theorem [4, p. 270, Theorem 70.1], 
unless the type numbers in some representative of the type are chosen 
from the set {0, oo } only the zero ring is supported. If a representative 
of the type has only oo's we have Q, an antiradical group. Suppose, 
now, that a representative of the type of A has an infinite number of 
O's. By the Rédei-Szele theorem, each proper ring 3f on A is, to within 
a ring isomorphism, a subring of ß , consisting precisely of the elements 
of the form mkv ~ ' where m( li) = m > 0 is an integer, not divisible 
by the primes from some set Yl(l£) = U (possibly void) of positive 
primes. Also, k and v (j£ 0) are relatively prime integers if k j ^ 0; 
and if v ^ ± 1 all the positive prime factors of v lie in II. If II is void 
then A =. Z, an antiradical group. 

Now suppose that II is nonvoid. Since the hypothesis provides an 
infinite number of O's in a representative öf the type of A, there must 
be at least one prime p ^ II such that (m, p) — 1, and am + bp = 1 
for appropriate integers a and b. Since ma Œ. li any q.i. in li of this 
element would have the form mk'v'~l which reduces to —ma(bp)~l 

provided b ^ 0. But such an element does not lie in li since p ^ II. 
If b = 0, ma = 1 G U. In neither case can /( 2C) = li. Thus A is 
antiradical if an infinite number of O's can appear in the type. 

Suppose that at most a finite number r = 1 of zeros can occur in the 
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type of A. If m — ± 1, or if m ^ ± 1 and there exists a prime 
p (f II such that p\ m, then, as before, It is not a radical ring. 
Suppose, however, that m is so chosen that it is divisible by each of the 
r primes at which the type can be 0, and that II is nonvoid. The formal 
q.i. of the typical element mkv~{ E li is mk(mk — v)~K Since no 
prime factor in m can divide u, the prime factors (if any) of mk — v 
must lie in II. Since the formal q.i. of mkv~l thus lies in 3C, this last is 
a radical ring. 

Consider any radical group A of type represented by (kl,k2, ' ' ') 
where almost all, but not all, the k{ are oo ? and the rest are zero. As 
before, let II be the set of primes at which the /q are <*>. Decompose 
the set of r primes at which the fc/s are 0 into two disjoint subsets 
{pu • • ',ps} and {qu • • -, qt) where the first set may be void but the 
second set not. Let m be a positive integer, the prime factors (if any) 
of which are chosen from the p{. (If there are no p/s take m = 1.) 
Let U be the set of all rational numbers mkv~l where k and v (^ 0) 
are integers, relatively prime if k ^ 0, and where the prime factors 
(if any) of v lie in II. We saw that U is a nonradical ring, a subring 
of Let §5 = {u | u G U and u = mq{ • • • qtkv~]} (k and v as 
above), an ideal in U. Since the formal q.i. of mql • • • qtkv~l is 
mql • • • qtk(mql • • • qtk — v)~l which lies in S5, we have S S ^ / ( U ) . 

If mkv ~ ' G U\ 8$, at least one q{ fails to divide k so that mka + bq{ 

= 1 for appropriate integers a and b. If such an mkv~[ (E/(U) then 
mkv~l(av) = mka = 1 — bq{ would be q.r. in U. If b = 0 then 1 is 
q.r. in U, an impossibility. If b ^ 0, 1 — bq{ has the formal q.i. 
— (1 — bqi)b~lqi~

l
y an irreducible rational. Since q{ (£ 11, this 

q.i. $ U. Consequently, /(U) g $, and / ( U ) = $$. Finally, type 
( SS+), type (A), and type ( tl+) are all represented by (fcb fc2, * • •)• • 

If A is a torsion-free rank 2 group, consider it in its representation 
[1] as a subdirect sum of two groups of rank 1, a subgroup of Q © Ç. 
If r is a bimultiplier on Q © Q such that TL(al)a2 G A for every 
al7 a2 G A, then T induces a bimultiplier T | A on A, and (A, T | A) is 
a subring of (Ç © Ç, T). It is not hard to see [1, p. 106, (4)] that any 
ring 3C on A must arise in this way. The only radical rings on A are 
the (A, r | A) where each a E A is q.r. in (Ç © Q, T) with a* G A. 
Thus, to find all the radical rings supported by the torsion-free rank 
2 groups, first determine all bimultipliers T on Ç © Ç (these being 
fairly easy to classify); then find criteria for membership in the set of 
q.r. elements of (Ç © Q, T) (somewhat harder to do); finally, look for 
those subrings (g? of (Ç © Ç, T), each element of which is q.r. in 
(Ç © Ç, T) with its q.i. in (§5 (not always apparent). We shall discuss 
this method elsewhere; it suffices here to give some examples. 
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Let It = {(r, m(2n + l)"1) | r G & and m, n G $ }. The set 2f is an 
abelian group under componentwise addition, a torsion-free group of 
rank 2. For (rb s{), (r2, s2) G It, let (r1? s J (r2, s2)

 = (°> 2*1*2) ^ Ĉ> 
and 3f is a proper radical ring with 

(r, ra(2n -f l )"1)* = ( - r , - m [ 2 ( n - m) + 1] - 1 ) . 

Let S3 be the set of all (w + 2v,u) with w = m(2n -f 1)_1 , t> = 
m'(2n ' + 1) ~*, and m, n, m ', n ' G 3 • Then S3, an ideal in the ring % 
above, is a proper radical ring where (u -f 2v,u)* = ( — u —2v, —u 
— 2(u + 2v)2). The multiplication on S3 is a special case of (e) above, 
while It arises from the consideration of another species of multiplica­
tion on Q © Q. 

5. Direct sums. 

LEMMA 4. If Hom(A ® A, B) is nontrivial then A © B is a radical 
group. 

PROOF. If f G Horn, / ^ 0, define multiplication on A ffi B by 
setting (a b by)(a2, b2) = (0,/(a! ® a2)), turning Aff iß into a ring 
forthwith. The q.i. of (fl, &) is ( — a,—b — f(a®a)), and the ex­
ponent of nilpotency of the resulting proper radical ring is 3. • 

COROLLARY. If® and X are rings, and if there exists <p G Hom(@, X ) 
such that Im <p is a proper ring as a subring of X then @ + 0 & + is a 
radical group. If ' @ is a proper ring (g+ 0 (g + is a radical group. 

PROOF. Define / E H o m ( @ + ® ( g + , £ + ) by setting f(sì ® s2) 

= ^ ( « 1 * 2 ) - • 

From this corollary it is immediate that each of the following groups 
supports at least one proper radical ring (where A is any group): 

Z(n) © Z 0 A, Ç 0 Z 0 A, Z(n) 0 Z(n) 0 A, 

Z 0 Z 0 A , Ç 0 Ç 0 A 

(in particular [5, p. 105], the additive groups of the real numbers and 
of the complex numbers, and the group of reals modulo 1). 

Recall that a nil group [4, p. 272] is a group A such that 
Hom(A, Hom(A, A)) is trivial. 

THEOREM 5. A nontrivial group A is a nil group if and only if 
A® A is antiradical. 

PROOF. If A 0 A is antiradical, Lemma 4 shows that Hom(A ® A, A) 
is trivial. 

Conversely, if A © A is a radical group it has a nontrivial bimulti-
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plier r . For each a G A, rfl(tf, 0) is some endomorphism 

/ a(a) ß(a) \ 
\y(a) 8(a) I 

of A © A where the four entries of the matrix are in Hom(A, A). We 
lose no generality in assuming that, for some a G A, FR(a, 0) is non-
trivial so that at least one of a, ft y J E Hom( A, Hom(A, A)) is non-
trivial. By definition, A is nonnil. • 

COROLLARY. If Ais a mixed group, then A 0 Ais a radical group. 

PROOF. [4, p. 272, Theorem 71.1]. • 
If A and B are antiradical then their direct sum need not be (e.g., 

Z® Z). A partial converse to Lemma 4 does, however, exist. 

THEOREM 6. Let A and B be antiradical groups, (i) If 
Hom(A ® B, A), Hom(B <8> A, B), Hom(B ® B, A), and Hom(A <8> A, B) 
are a// 0 tfien A® Bis antiradical, (ii) If Hom(A, B) = 0 = Hom(B, A) 
£/ien A © Bis antiradical. 

PROOF, (i) Suppose that (A 0 B, T) is a radical ring. For b G B, the 
endomorphism FR(&) of A 0 B has the representation 

/ «i(fe) cx2(b) \ 
V a3(b) a4(b) 1 

where av G Hom(B, Hom(A, A)), a2 £ Hom(B, Hom(A, B)), a3 G 
Hom(B, Hom(B, A)), and a4 G Hom(B, Hom(B, B)). By hypothesis, 
the first three double "Horns" vanish so that aY = 0, a2 — 0, and 
a3 = 0. Similarly, if a G A, FR(a) can be represented as 

(ßvifl) ß2(a) \ 
\ß3(a) ß4(a) I 

where ßx G Hom(A, Hom(A, A)), ß2 G Hom(A, Hom(A, B)), ß3 G 
Hom(A, Hom(B, A)), and /34 G Hom(A, Hom(B, B)), so that all but 
ß{ vanish. Thus, (a1 0 bv)(a2 0 ^2) = ö i a2 + ^1^2 f° r all au a2 G. A 
and £>l5 fo2 €=• #• 

For a G A, a* = a ' 0 £> for some a ' G A and b G B. Then 
(a + a ' ) 0 b = a(a' 0 b ) = (a' © b)a = aa' = a'a. Let nA be the 
projection of A © B onto A, so that, here, a + a' = ïlA(aa') = YiA(a'a). 
Since, however, a{a2 = rL(al)a2 = ß\{av)a2 G A for all alt a2 G A, 
in particular a - f a ' = aa ' = a ' a G A , and (A, T | A) is a radical ring. 
But A is antiradical so that this ring is the zero ring on A. Hence, each 
a{a2 = 0. Likewise, each bvb2 = 0, and (A © B, T) is the zero ring on 
A® B. We now have (i), from which (ii) follows. • 
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THEOREM 7. The only divisible antiradical groups are Q and the 
torsion divisible groups. 

PROOF. By Szele's theorem [4, p. 272, Theorem 71.1], the torsion 
divisible groups are precisely the torsion groups that support only zero 
rings, so that all these groups are antiradical. If D is divisible, 
D = C © T where C is trivial or is some X © Q, and where T is trivial 
or is some Xi © (2 © Z(pi

cc)). If more than one summand Ç appears, 
an earlier remark shows that D is a radical group. Hence consider the 
case D = Q © T. It is well known [4, pp. 25~26] that the nontrivial 
homomorphic images H of Ç are all possible direct sums of quasi-
cyclic groups with no repetitions of primes allowed. If, therefore, T is 
nontrivial then T has such an H as a direct summand, and Hom(Ç), T) 
is nontrivial. Since, as 3 -modules, Q = Q ® Ç, we have 
Hom(Ç <8> Q, T) nontrivial, so that, by Lemma 4, D — Q © T is a 
radical group. • 

THEOREM 8. For each positive integer n and for each prime p, 
Z(pn) supports exactly pn~l radical rings (including the zero ring). 
The proper radical rings on Z(pn) fall into n — 1 isomorphism classes, 
and the members of each such class are commutative nilpotent with 
fixed exponent of nilpotency 1 — [ —nlj] ,forj = 1, 2, • • -, n — 1. 

PROOF. Each bimultiplier T on Z(pn) corresponds to a unique 
integer k, 0 ^§ k < pn : TL(^I ')m2 ' = (w1m2fc) ' where m' G Z(pn) is 
the residue class, modulo pn, in which the integer m lies. Each such k 
determines a ring 3(pn; k) supported by Z(pn). For this ring to be 
radical the equation FL(a ')x' = (a + %)' must have a solution x £ Z , 
once a G Z is given. That is, the congruence (ak — l)x = a(pn) must 
be solvable. If p \ k then p\(ak — 1), and the congruence has a 
solution. If p\k then there exist integers c{ and c2 such that 
cxk + c2p — 1 so that p\ cv. Now if we choose a = c{, the congru­
ence reduces to —c2px = cY(pn) so that p \cl if a solution exists, con­
tradicting p\c{. Thus, for a radical ring, k must be one of the pn~l 

multiples of p on the interval 0 ^i k < pn. Of these, only k = 0 pro­
vides us with the zero ring. If such a fc^O then k = p*t where 
l^j< n and (p,t)= 1. It is easy to show that ^(pn;pJltY) and 
3(p n ; pJ2^) a r e r m g isomorphic if and only ifjl = j 2 . 

Suppose that k = pit where 1 ^ j < n and where (p, t) = 1. De­
note the multiplication on &(pn; pit) by FL(m{ ')m2 ' = ml ' # m2 . 
Then ml' # • • • # mr' = (r^ • • • mrp

j{r~lHr'1)'. The least posi­
tive integer r = r, for which (r — l ) j = n must be the exponent of 
nilpotency. Thus, ^ = 1 — [ — nlj] with minimum value 3 realized 
for all j such that — [ — n/2] = j < ft. It has maximum value n -f 1 
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a t j = 1, so that to construct a proper radical ring of exponent of nil-
potency m = 3 take n = m — 1 and k = p. m 

THEOREM 9. If {p{} is a (finite or infinite) set of distinct primes then 
Xi © Z(pi) is antiradical. Such sums and Z are the only antiradical 
direct sums of cyclic groups. 

PROOF. W e could handle the finite case by Theorem 6. In general, 
however, if ( Xi © Z(p{), T) is a proper ring, there exists at least one 
q G Si such that TL(q) ^ 0. Since the orders of the Z(p{) are all co-
prime, rL(q) I Z(pi) = (ti)L, a left multiplication on Z(p{) by some in­
teger ti, 0 ^ ti< pi. At least one t{ ^ 0 since TL(q) ^ 0. If the ring is 
radical, for each x G Xi, L ~ TL(X) G A u t Xi, by Lemma l(ii). Thus, 
for each k G 3 > (L~ I\(/cg)) | Z(pi) = (1 — kti)L, an induced auto­
morphism on Z(jpi). That is, (1 — kth pi) = 1 for every k, a contradic­
tion since the congruence t{x = l(pi) always has a solution when 
ti 7^ 0. The second statement of the theorem follows from Lemma 4, 
Corollary, and Theorem 8. • 

Thus, if {pi} and {qt} are two disjoint, nonempty sets of positive 
primes where the first set may not have repetitions, but where the 
second set may, then (Xi © Z(p{)) © (Xj © Z(qj

oc)) is antiradical, by 
Theorems 6, 7, and 9. Likewise, ( S i © Z(pi)) © Ç is antiradical, 
although in this case all positive primes p{ without repetitions may be 
used. 

THEOREM 10. The bounded antiradical groups are precisely the 
Z(m) where m is a product of distinct primes. 

PROOF. That these Z(m) are antiradical follows from Theorem 9. 
Bounded groups are the direct sums A = Xp © [Xi © (X © Z(p1))] 
where each X © Z(pi) is a direct sum of copies of Z(p*), where i is 
bounded for each pr ime p , and where only a finite number of primes 
p can appear. If A is to be antiradical then Theorem 8 shows that no 
i > 1, and A reduces to S p f f i ( 2 f f iZ (p ) ) . By an earlier remark, 
X © Z(p) reduces to Z(p) if it is nontrivial. Consequently, A = Xj © 
Z(pj) for a finite number t of distinct primes. • 

6. p g r o u p s . 

L E M M A 5. For a, ß G E n d A, suppose that (i) U i = i ker a' = A = 
U y i i kerßJ', and £/ia£ (ii) £foere exists a nontrivial 

y G Horn ( A, Horn ( A, H [(Im a1) fi (ImjS*)] ) ) 

suc/i that, for every a G A, y(/3a) = y(a)a. Then A is a radical group 
that supports a proper radical ring of exponent ofnilpotency 3. 
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PROOF. For ax, a2 G A, let a{a2 = y{aY)a2 from which two distribu­
tive laws hold. From (i), ax G kerß n for some n. Since y(a2)a3 G 
n r = i Ima*, y(a2)a3 = an(b) for some fcEA. Then av{a2a3) = 
ava

n(b) = y(a{)a
nb = {yßna{)h = 0, from (ii). Similarly, (ava2)a3 = 0. 

The q.i. for a G A is a* = — a — a2. • 
Recall that A1 is the subgroup of elements of infinite height in the 

p-group A. 

COROLLARY. //, for a p-group A, Hom(A, Hom(A, A1)) ^ 0 then A 
is a radical group. 

PROOF. Let a = pL = ß where pL : at-> pa. m 

THEOREM 11. (i) Each p-group that has a nonzero basic subgroup 
and a nonzero subgroup of elements of infinite height is a radical 
group, (ii) The only countable reduced p-group that is antiradical is 
Z(p). 

PROOF, (i) Let G be a p-group with nontrivial basic subgroup B. 
Then G <8> G = B ® B, a direct sum of cyclic p-groups, since B is 
nontrivial. Now Hom(B <8> B, G1) is nontrivial; for, we can map all but 
one cyclic summand of B ® B onto 0 and the remaining one onto 
some cyclic subgroup of order p of G1. But Hom(G, Hom(G? G1)) = 
Hom(B ® B, G1) so that we can now apply Lemma 5, Corollary. 

(ii) Let G be a nontrivial, countable, reduced p-group, and suppose, 
first, that G1 ^ 0. If the basic subgroups of G were to be trivial, 
then G would be divisible, a contradiction, so that G is a radical 
group by (i). If G1 = 0 then, by Prufer's theorem [4, p. 44], G is a 
direct sum of cyclic p-groups. From earlier results, all such examples 
but Z(p) support proper radical rings. • 

THEOREM 12. (i) Let G be a countable reduced p-group of Ulm 
type 2. Then there exists an unbounded, countable, reduced p-group 
H of Ulm type 1 such that G and H support respective, proper, radical 
commutative rings © and $ for which there is a ring epimorphism 
£^@. 

(ii) Let G be an unbounded, countable, reduced p-group of Ulm 
type 1. Then there exists a countable, reduced p-group H of Ulm type 
2 such that G and H support respective, proper, radical commutative 
rings ($$ and $ for which there is a ring epimorphism $ —*-»• ©. 

PROOF, (i) Since G is of type 2 its Ulm sequence consists of G0, G{ 

where G() = X{® Z[bi] for suitable b{ G G0, each of order p"< where 
E(bi) = ri; == 1, and the set N of the n/s is unbounded. See [4, pp. 
117-123]. Since Gx is a direct sum of cyclic groups, assume first that 
G{ = Z[a] where E(a) = n ^ l . As in the proof of Zippin's theorem 
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[4, loc. cit.], let H = Xi © Z[Xi] where E(xi) = n + n{. The only 
significant member of the Ulm sequence for H is H, itself. Let K be 
that subgroup of H which is generated by all the pn% — pnJXj 
(i,j= 1, 2, • • •). Each group Z[xJ supports the proper, radical 
commutative ring ß(pn*Hi;pn), as in the proof of Theorem 8. Let 
# = Si © 3(pn + Hi; Pn) so that £ + = H, and # is a proper, radical 
commutative ring. The subgroup K supports an ideal Ä of $ since 
the constructed multiplication (denoted by #) on $ introduces a 
numerical factor pn that nullifies each pniXi — p'^Xj. Further, at least 
one product in $ fails to lie in the ideal Ä. For, choose nt > ny 

which is always possible since N is unbounded. Then xt # xt = pnxt, 
and if the latter were in <& there would exist a finite set of integers 
{öy} such that 51 aij(p"ixi ~~ p"-tt/) = P%- Matching coefficients, we 
obtain (5L ,flo— X*ö*t)P"'~ pnrnod(p"'+n), which is impossible since 
nt > n. 

By the proof of Zippin's theorem, H/K has Ulm sequence G0, Gt 

so that, by Ulm's theorem, H/K = G. Since $ is a proper, radical 
commutative ring with at least one product not in Ä, # / Ä is a 
proper radical ring supported, to within an isomorphism, by G. 

If Gy = Sr © Z(p-V') for positive integers sr, it is possible to construct 
a countable reduced p-group G' of type 2 with Ulm sequence G0, G{ 

where G ' = 2 r © G(r>, each G<r> of type 2 where G<r> = H^IK{r\ each 
H{r) of type 1, and each G(r) with Ulm sequence G0, Z(pSr). Further, 
G' = H/K where H = 2 r © H<r> is of type 1, and K = Xr © K<'>. Each 
// ( r ) supports a proper, commutative radical ring $ = 2* © $ ( r ) with 
ideal Jt = Xr © Ä(r) supported by K Also,® = ^ / 1 is a proper, 
commutative radical ring; and© + = G'. But G and G' have the same 
Ulm sequence so that © + = G, and (i) holds. 

(ii) For any countable, reduced p-group G of Ulm type 3, let H(G) 
be the group of type 2, and let K(G) be the subgroup of H(G)1, pro­
vided by the proof of Zippin's theorem, such that H(G) has the Ulm 
sequence G0, H(G)[, and such that G= H(G)IK(G). As a group of 
type 2, H(G) can be given a proper, commutative, radical ring struc­
ture #(G) by the proof of (i), but it remains an open question whether 
a suitable radical ring structure can be imposed on H(G) in such a 
way that K(G) will support an ideal. If, however, a p-group U sup­
ports a ring U then Ul supports an ideal U1 of U, so that H(G)1 

supports an ideal $(G)1 of $(G). As in the proof of (i), H(G) is a 
direct sum of the form Xt © H[t]IK[t] (one summand for each Sum­
mand Z(p"') of G2), and each summand supports a proper, commuta­
tive radical ring. In fact, H[t] = Xi © Z[xti] where E(xti) = nt + nti 

(nt,nti=l, and Nt = {nti} unbounded). Each Z[xti] supports the 
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radical ring c3(^""+"'; Pn,)> a n ( ^ the ring-direct sum # [ f ] of these 
last is reduced by the ideal St[t] on K[t], the group on all pntixti — 
pn<ixtj- Since Nt is unbounded, choose any ntr G Nt such that ntr > nt. 
In $[t]l &[t], (xtr + ^[t])2 = P'"xir + ^m- If this square were to 
lie in (H[t]IK[t]) ' then, in particular, one could solve for the coset 
y 4- K[t]in the group equation 

W e can assume that y + K[f] = ^ c ^ + K[t] for integers cfi so 
that C^iCti))"'{ lxti) — p"<xtr £E K[t]. Since, however, the elements 
of K[t] are nullified by p"' , ^£JiCtip

2n'+ixti — p2ntxtr = 0. The co­
efficient of xtr reduces to p2'l'(pctr — 1). But direct sum considerations 
show that this coefficient must nullify xtr. Since p\ (pctr — 1), 
2nt ^ nt -h nfr, contradict ing the assumption that nfr > nt. Thus, 
«^[t]/Ä[f] has at least one product not in its subgroup of elements 
of infinite height. Hence $ ( G ) / # ( G ) ' is a proper, radical commuta­
tive ring. 

Since H(G)IH(G)1 = G0 we have proved that, for groups G of 
type 3, Go supports a proper, commutat ive radical ring © 0 , a ring 
epimoiph of the proper, commutat ive radical ring # ( G ) supported by 
the type 2 group H(G). But any unbounded, countable, reduced, type 
1 p-group G0 is the initial member of the Ulm sequence for a countable, 
reduced, type 3 p-group. • 

Precisely, because it is not clear how one would turn K(G) into an 
ideal, a suitable generalization of (i) for groups of type = 3 remains 
to be found. It is t rue that an unbounded, type 1 p-group G0 can be 
represented as H(G)IH(G)[ where H(G) has finite type = 3 chosen 
at will, that H(G) supports some proper, radical ring, and that H(G)[ 

supports an ideal of the latter; bu t it is not apparent how we would 
show that the resulting radical ring on G0 is proper, so that (ii), also, 
awaits an extension. 

ADDED IN PROOF. Professor K. E. Eldr idge has kindly indicated that 
the results in Theorem 8 of this paper overlap those of [11] . 
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