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ON THE REPRESENTATION OF POLYNOMIALS OVER 
FINITE FIELDS AS SUMS OF POWERS AND IRREDUCIBLES 

WILLIAM A. WEBB 

I. Introduction. There are a number of results known concerning 
the expression of an integer as the sum of a certain number of primes 
and fcth powers [2], [3], [4]. In this paper, we prove several of these 
results, specifically those found in [4], for polynomial rings over finite 
fields. 

A Hardy-Littlewood like method is used. The use of the Riemann 
hypothesis simplifies die proofs and enables us to obtain better error 
terms than those obtained in [4]. 

II. Notation and preliminary results. In general we follow the nota­
tion used in [5] and [6]. 

GF[q,x] is the ring of polynomials over the finite field with q 
elements, q = pß, p a prime. 

D( i/x is the completion of the field of rational functions over GF(q), 
with respect to *>, the degree valuation. 

<P,= {tG'Kltx:v(t)>j}. 
<P0 = &-
E(a) = k(a) where X is a fixed nonprincipal character on GF(q) and 

a is the coefficient of llx in a, where aG.Ü{ ljx. 
/ dp is the Haar integral on IP. 
All capital letters represent elements of GF[ q, x]. 
deg K = deg P4 = nk(k^ 2). 
deg Ai = n. 
Pi and Ai are primary, that is, have leading coefficient 1. 
Pi are irreducible. 
8i G. GF(q) are such that 2) 8< = sgn K = leading coefficient of K 
2) ' denotes a sum over primary polynomials. 

g ( * ) s i d e g A . » £ ( A * t ) . 

The main theorem we prove is 

THEOREM 1. Ifp>k, and N^K) is the number of representations of 
K in the form 
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(1) K = ôlPl + 82P2 + 83A
k 

then N1(K) = @19^+ 1)"/(nfc)2+0(9^+ 1-1 / 2 , c)n) where (S>l = c>0 
is defined by (11). 

III. Proof of the main theorem. Just as in the usual Hardy-Little-
woodmethod NX(K)= L* f(iit)f(B2t)g(83t)E(-Kt)dp. 

We must divide <P in major and minor arcs. We use a primordial 
subdivision of £P with respect to 2(k — l)n. GlH is primordial if 
deg G < deg H ^ (k - l)n, (G, H) = 1, and H is primary. O ^ H = 
{* E<P : v(t - G/H) > fc + (fc - l)n}. 

The set of all such <ICGIH *S * n e primordial subdivision. For a 
more complete discussion, see [5]. 

The major arcs M are all those rUG/H with deg H < n. The minor 
arcs J\K are all those ^UGIH with deg H^ n. 

Now 

Ni(K)= f mt)f(ô2t)g(83t)E(-Kt)dp 

(2) + j ^ y(8i*)/(«2«)g(*3*)£(-»)* 

= Tj + T2. 

We first estimate the integral over the minor arcs. By Lemma 5 of 
[6],iftEjH, 

(3). | g (0 |=O( 9 »a- i /2 ' - ' + . ) ) 

for any € > 0. Thus 

I7*2' = | L / ( 8 i«) / (*2*)g(8 3 *)f i ( -»)* | 

= O ( |g(«3*)l J^, l / ( 8 i * ) / ( M I * ) 

= o(9»a-i/2M J^ | / ( M / ( 8 2 ' ) | d p ) fore < 1/2* 

= o( 9 «a- i«*) ( £ I M O I 2 * ) 1 ' 2 ^ | / (8 2 *) l 2 dp)" 2 ) 

= O ( g "<'-«') ( £ £ E(8(Pi - Pa)*) * ) ) 

= CKqf»«1-1«*^*!,)) 
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since 

\ E(8(Pl-P2)t)dp = {{ 
= / l ifP1 = P2, 

0 otherwise. 

ir(r) = number of primary irreducibles of degree r. Trivially n(r) ^ qr. 
Thus 

(4) | T 2 | = o(g(fc+1-1/2^)B). 

Next, we estimate the integral over the major arcs. Hence, we 
hereafter assume deg H < n, t Œ. ^UGIH S Ö * = G/H -f y where 
v(y) >h+ (k- l)n. By equation (12) of [6] , 

5V° > \q»-*E(x"kôy)S(8G, H) i£v(y) > kn, 

where S(G, if) = £ d e g R<h E(RkGIH). Thus 

Ti = S / ^ /(«i*)/(«2*)g(*3*)E(- » ) * 
G/H primordial 

deg /f <n 

2 q"-hS(83G,H)E(-KGIH) 
G/H primordial 

deg H <n 

• f / ( i , (Glf l + y))f(82(GIH + y))E(83x"*y)E(-Ky) dp 
J iy-> »(y) > kn} 

S q"-hS(83G,H)E(-KGlH) 
GfH primordial 

deg H <n 

2 ' 2 ' E ( ( 8 i P i + 82P2)G/H) 
p, p , 

• f E((8i*"* + 82*
nfc + 83x

n* - K)w) dp. 

But since p((8iXnk + 82x
n* + 83x

n* - K)t/) > -nk + 1 + nfc = 1, the 
integral is just q ~kn. Thus 

Ti = S 9n~fen~hs(Ô3G, H)E(-KGIH) 
H primordi 
deg H <n 

2 ' E(8iPQH) £ ' E(82PGIH) 

/ e \ G/H primordial 

where again P represents a primary, irreducible polynomial of degree 
nk. 
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Now 

(6) £ ' E(ôPGIH) = X E(ÔLG/H>r(nfc, H, L) 
P d e g L < d e g H ; (L, H) = l 

where 7r(nfc, H, L) is the number of primary, irreducible polynomials 
of degree nk which are = L (mod H). Since the Riemann hypothesis 
holds for the function fields considered here, 

(7) 7r(nfc, H, L) = qnklnk<P(H) + 0(qn«2) 

where 4>(H) is the number of residue classes (mod if) which are prime 
toH. 

By Theorem 6.1 of [5], 

(8) 2 E(8LGIH) = /ut(H) 
d e g L < d e g H ; (L, H) = l 

where JU, is the natural analog of the Möbius function. 
Therefore, by (6), (7), and (8), 

2 ' E^PGIH) 2 ' E(82PGIH) 
p p 

(9) ^ / g^nk J <j3nfc/2 \ \ 

" M ( H ) \ (nfc)2<D2(tf) + \nm{H))) ' 

Hence, by (5) and (9), 

û n + n f c IL2(H) 

V /MV G/H primordial; deg H <n ^ V 1 7 / 

çyjj primordial; deg H < n 

S(ô 3 G,H)E( -KG/ t f ) ) . 

We will now assume fc ^ 3; the case fc = 2 is easily handled (see 
Theorem 2). 

Let 

A(H) =q~h "Z S (^3 G , H ) E ( - KG/H) 
(G,H)=1 

where the sum is over a reduced residue system (mod H). 
Since deg H < n, O(H) < qfn, so 

<"» T '=( i feF + 0 ( J L ^))X A < H ) ^f)-
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Let @ ! be the singular series 

(ii) «1= S'A(H)M2(H)AI>(H) 
H 

where the summation is over all primary polynomials. 
By an argument which is similar to that used in [1, Theorem 8.5, p. 

258] we may show that 

(12) S ( A , F ) g ( d - l)\P\u* 

where d = (fc, \P\ - 1). 
Since A(H) and S(G, H) are also multiplicative, we are able to 

obtain 

(13) A(H)= 0(\H\-l'k4>(H)). 

This implies that @x is absolutely convergent and 

(14) £ ' A(ff)M
2(H)M>2(//) = 0(<rn/(fe+1>). 

deg H en 

Now, since 8G runs over a reduced system (mod F) as G does, 

A(F) = \P\ -l J ) J E(RkGIP) E( - KGIP) 
(G, F) = l deg f l<degP 

= l?l-1 E ( 2 E((R* - K)G/P - 1) ) 
deg R < deg P X deg G < deg P * 

where the inner sum is now over a complete system (mod F) including 
zero. 

By Theorems 3.4 and 3.7 of [5], 

S E((R*-K)GIP)=ifeP */[*-*> 
degcTdegP « i f P / R * - K . 

Letting ^p(K) be the number of R such that deg R < deg P and 
P | R* - K, we have 

A(P) = «r*« W W « « ' - i) + (qdegF- <M*Q)(-i)) 
(15) 

= <MK) - I-
Now, since A is multiplicative and @ is absolutely convergent, by 

(15), 

rr ^ f l i i / rr „„,,„— r-._ m u 

(16) 

V \ (IPI - i)2 / 

(H) H square-free P|H 

(|P| - if 
*p(K) - 1 
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where the product is over all primary irreducible polynomials. 
Since $p(K) ^ k, ^ p 1/(|F| — l ) 2 converges, and no factor in (16) 

is zero, 

(17) ( g 1 = c > 0 . 

Hence, by (10), (11), and (14), we have 

(18) TY = ®l9<*+1>»/(nfc)2 + 0(9<*+1-1/<fc+1»n). 

By (2), (4), and (18), 

Ni(K) = (gnq^+^Knk)2 + 0(q(k+1-ll2k*). 

This completes the proof of Theorem 1. 
In an entirely similar manner we may prove the following theorem. 

THEOREM 2. Let N2(K) and N3(K) be respectively the number of 
representations ofK in the forms 

(19) K = Ô!?! + • • • + ÔSPS + Ô , + 1 V + • • • + Ô, + A 2 

and 

(20) K = Ô!? + ô2Ai2 + Ô3A2
2 -h ô4B

k 

where deg K = nk= deg Fi? deg A* = nfc/2, deg B = n, and ]£ôi = 
sgn K. Then 

(21) N2(K) = (22</(r+2*~2)n/(2n)s -h O ^ 2 * - 2 - 1 ' 2 ' ) « ) 

provided p > 2 and r 4- 2s > 4; and 

(22) N3(K) = ®3q(k+Vnlnk + 0(9<fc+1-1/2fc>") 

provided p > k. 

@ 2 a n ( i @ 3 a r e singular series similar to @ x and both are positive 
constants. 

In all of the results it was assumed that the degree of each of the 
summands is the same as the degree of K. If the degree of the sum­
mands is unrestricted, the problems change considerably and are 
generally much easier. However, if the degree of K is not a multiple 
of k we must allow summands of degree at least ([degK/fc] + l)fc. 
We may do this without changing the results significantly. 
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