RADICALS OF ENDOMORPHISM NEAR-RINGS MARJORY J. JOHNSON¹

Several radical properties have been defined for a distributively generated (d.g.) near-ring R with identity — the radical J(R), the quasi-radical N(R), the ideal-radical I(R), the radical-subgroup, the primitive-radical P(R), and the nil-radical L(R). The order of containment of the various radicals is $L(R) \subseteq I(R) \subseteq N(R) \subseteq J(R) \subseteq P(R)$ (cf. [1], [2]). The radical-subgroup is also contained in J(R), but it is not known how it compares with N(R) in general. If R is a ring, the radical, quasi-radical, ideal-radical, and radical-subgroup are all equal to the Jacobson radical. If R is a near-ring which is not a ring, then the above radicals are not equivalent in general, even if R is finite (cf. [2], [7]).

The purpose of this paper is to examine these radicals for the particular (left) d.g. near-ring E(G), the near-ring generated by the endomorphisms of G, where G is a finite group. We show that L(E(G)) = I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)). If G is the sum of its minimal fully invariant subgroups, then J(E(G)) and hence all of the radicals of E(G) are $\{0\}$. If G is not the sum of its minimal fully invariant subgroups, the radical J(E(G)) is a proper nonzero ideal of E(G). In §5 we give examples to show that in the latter situation, the radical-subgroup of E(G) may or may not be equal to J(E(G)).

1. **Definitions.** It is assumed that the reader is familiar with the definitions of a (left) d.g. near-ring and of E(G), the near-ring generated by the endomorphisms of a group G (cf. [8]). Note that all functions of G are written on the right and hence E(G) is a left d.g. near-ring.

Let R be a (left) d.g. near-ring. The concepts of R-group, right module of R, ideal and right ideal are all defined in [7]. The radical properties which need to be defined for this paper are given below.

The radical J(R) of R is the intersection of all annihilating ideals of the minimal R-groups (cf. [6]).

The nil-radical $L(\overline{R})$ of R is the sum of all nilpotent ideals of R (cf. [2]).

Copyright © 1973 Rocky Mountain Mathematics Consortium

Received by the editors March 16, 1971.

AMS 1970 subject classifications. Primary 16A76; Secondary 16A21.

¹Most of the results of this paper are included in the author's doctoral dissertation at the University of Iowa, 1970. The author thanks Professor Drury W. Wall for his guidance.

M. J. JOHNSON

The radical-subgroup of R is the intersection of all maximal R-groups of R (cf. [3]).

For definitions of the remaining radical properties consult the references.

2. Relationship between J(E(G)) and the minimal fully invariant subgroups of G. Since we are interested in radicals of near-rings which are not rings, G will always denote a finite group which is not commutative. Let $\{H_i \mid i = 1, \dots, n\}$ be the collection of minimal fully invariant subgroups of G.

LEMMA 1. Let $\beta \in E(G)$; $h_i \in H_i$, $i = 1, \dots, n$. Then $(\sum_{i=1}^n h_i)\beta = \sum_{i=1}^n (h_i)\beta$.

PROOF. Since E(G) is d.g., there exists a positive integer m and maps s_j , $j = 1, \dots, m$, such that $\beta = \sum_{j=1}^{m} s_j$, where s_j is either an endomorphism or an anti-endomorphism for all j. Then

$$\left(\sum_{i=1}^{n} h_{i}\right)\beta = \left(\sum_{i=1}^{n} h_{i}\right)\left(\sum_{j=1}^{m} s_{j}\right) = \sum_{j=1}^{m} \left(\sum_{i=1}^{n} h_{i}\right)s_{j}$$

$$(*)$$

$$=\sum_{i=1}^{n} \left(\sum_{j=1}^{m} (h_{i})s_{j}\right) = \sum_{i=1}^{n} (h_{i})\left(\sum_{j=1}^{m} s_{j}\right) = \sum_{i=1}^{n} (h_{i})\beta$$

Equality (*) holds since elements of distinct minimal fully invariant subgroups commute with each other.

If K is a subset of G, define $A(K) = \{ \alpha \in E(G) \mid (k)\alpha = 0, \forall k \in K \}$. Using Lemma 1, we obtain the following.

PROPOSITION 2. $A(\sum_{i=1}^{n} H_i) = \bigcap_{i=1}^{n} A(H_i).$

Since J(E(G)) is defined to be the intersection of all annihilating ideals of minimal E(G)-groups and since minimal fully invariant subgroups of G are minimal E(G)-groups, we have

PROPOSITION 3. $J(E(G)) \subseteq \bigcap_{i=1}^{n} A(H_i) = A(\sum_{i=1}^{n} H_i).$

3. G equals sum of minimal fully invariant subgroups. Suppose G is a noncommutative finite group which is the sum of its minimal fully invariant subgroups. As an immediate consequence of Proposition 3, $J(E(G)) = \{0\}$. By a theorem of Beidleman (cf. [1, Theorem 4]) if G is a finite group, then J(E(G)) = P(E(G)). Hence, $L(E(G)) = I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)) = \{0\}$. Also, the radical-subgroup is $\{0\}$ since it is contained in the radical.

4. G does not equal sum of minimal fully invariant subgroups. Now consider the case when G is a finite noncommutative group which is not the sum of its minimal fully invariant subgroups. Again we show the equality of the nil-radical, ideal-radical, quasi-radical, radical, and primitive-radical. In addition, we show that the radical is nonzero.

Since $J(E(G)) \subseteq \bigcap_{i=1}^{n} A(H_i)$ by Proposition 3, the first step is to show that $\bigcap_{i=1}^{n} A(H_i)$ is nonzero.

LEMMA 4. Let M be a nilpotent right module of E(G) and let $\alpha \in M$. Then $\alpha \in \bigcap_{i=1}^{n} A(H_i)$.

PROOF. Suppose $(h)\alpha \neq 0$, where $h \in H_p$ for some $p, 1 \leq p \leq n$. Note that $(h)E(G) = \{(h)\beta \mid \beta \in E(G)\}$ is a fully invariant subgroup of G. Since H_p is minimal, there exists $\gamma \in E(G)$ such that $(h)\alpha\gamma = h$. Then $\alpha\gamma \in M$, but $\alpha\gamma$ is not nilpotent. This contradiction establishes the lemma.

If K is a subset of E(G), define $Im(K) = \{(g)\beta \mid g \in G, \beta \in K\}$.

PROPOSITION 5. $I = \{ \alpha \in E(G) \mid Im(\alpha) \subseteq \sum_{i=1}^{n} H_i \}$ is a proper nonzero ideal of E(G).

PROOF. Since $\sum_{i=1}^{n} H_i$ is a fully invariant subgroup of G, it is easy to check that I is an ideal of E(G). Since $G \neq \sum_{i=1}^{n} H_i$, the identity map ι is not in I. We show $I \neq \{0\}$.

Let x_1, x_2, \dots, x_m be the nonzero elements of G. Since $(x_p)E(G)$ is a fully invariant subgroup of G and hence must contain a minimal fully invariant subgroup, $(x_p)E(G) \cap \sum_{i=1}^n H_i \neq \{0\}$, for all p = 1, \dots, m .

Define maps β_p inductively as follows. If $x_1 \in \sum_{i=1}^n H_i$, let $\beta_1 = \iota$. If $x_1 \notin \sum_{i=1}^n H_i$, let z_1 be a nonzero element of $(x_1)E(G) \cap \sum_{i=1}^n H_i$ and let β_1 be a map in E(G) such that $(x_1)\beta_1 = z_1$.

Now suppose β_k has been defined for all $k \leq t$. If $(x_{t+1}) \prod_{p=1}^t \beta_p \in \sum_{i=1}^n H_i$, let $\beta_{t+1} = i$. If $(x_{t+1}) \prod_{p=1}^t \beta_p \notin \sum_{i=1}^n H_i$, let z_{t+1} be a nonzero element of $((x_{t+1}) \prod_{p=1}^t \beta_p) E(G) \cap \sum_{i=1}^n H_i$ and let β_{t+1} be a map in E(G) such that $(x_{t+1}) \prod_{p=1}^{t+1} \beta_p = z_{t+1}$.

Then $\prod_{p=1}^{m} \beta_p$ is a nonzero map in $\widehat{E}(G)$ whose image is contained in $\sum_{i=1}^{n} H_i$ and hence is a nonzero element of the ideal *I*.

PROPOSITION 6. Let K be a minimal right module of E(G). Then $Im(K) \subseteq \sum_{i=1}^{n} H_i$.

PROOF. Let β be a nonzero element of K. By the procedure used in Proposition 5 we can define a map γ such that $\beta \gamma \neq 0$ and $\operatorname{Im}(\beta \gamma) \subseteq \sum_{i=1}^{n} H_{i}$.

Let *I* be defined as in Proposition 5. Then $\beta \gamma \in K \cap I$, so $K \cap I$ is a nonzero right module. But *K* is minimal, so $K \subseteq I$ and thus $\operatorname{Im}(K) \subseteq \sum_{i=1}^{n} H_i$.

THEOREM 7. $\bigcap_{i=1}^{n} A(H_i) \neq \{0\}.$

PROOF. Suppose $\bigcap_{i=1}^{n} A(H_i) = \{0\}$. Then, by Lemma 4, E(G) contains no nonzero nilpotent right modules. Hence by a result of Blackett (cf. [4, Theorem 3]), E(G) is a direct sum of minimal nonzero modules. This means by Proposition 6 that $\operatorname{Im}(E(G)) \subseteq \sum_{i=1}^{n} H_i$. In particular if ι is the identity map, then $G = (G)\iota \subseteq \sum_{i=1}^{n} H_i$, so $G = \sum_{i=1}^{n} H_i$. This is a contradiction, since by hypothesis G is not the sum of its minimal fully invariant subgroups. Hence $\bigcap_{i=1}^{n} A(H_i) \neq \{0\}$.

THEOREM 8. The nil-radical $L(E(G)) \neq \{0\}$.

PROOF. By definition L(E(G)) is the sum of all nilpotent ideals of E(G). Hence we must find a nonzero nilpotent ideal of E(G).

Define $B = A(\sum_{i=1}^{n} H_i) \cap \{\gamma \mid \operatorname{Im}(\gamma) \subseteq \sum_{i=1}^{n} H_i\}$. Clearly *B* is a nilpotent ideal. Since $A(\sum_{i=1}^{n} H_i)$ is nonzero, by the procedure used in Proposition 5, we can show the existence of a nonzero element in *B*. Hence $L(E(G)) \neq \{0\}$.

In order to show the equality of the various radicals, we use the following definition and theorem of Beidleman (cf. [2]).

DEFINITION. A proper ideal D of a d.g. near-ring R with identity is called a *strong radical-ideal* of R if and only if every nonzero right ideal of R/D contains a minimal right ideal which contains an idempotent element.

THEOREM 9 (BEIDLEMAN). Let R be a d.g. near-ring with identity. If the nil-radical L(R) is a strong radical-ideal, then L(R) is the radical of R.

Hence, our goal is to show that L(E(G)) is a strong radical-ideal.

LEMMA 10. Let B be a nilpotent right module of E(G). Let $\beta \in B$; let x be a nonzero element of G. Then the fully invariant subgroup generated by $(x)\beta$ is properly contained in the fully invariant subgroup generated by x.

PROOF. Let X, Y be the fully invariant subgroups generated by x and $(x)\beta$, respectively. Since $(x)\beta \in X$, then $Y \subseteq X$.

Suppose Y = X. Then there exists $\gamma \in E(G)$ such that $(x)\beta\gamma = x$. But then $\beta\gamma \in B$ and $\beta\gamma$ is not nilpotent. This contradiction establishes the lemma. **LEMMA** 11. Let B be a nilpotent right module of E(G). Let $\beta \in B$; $\alpha \in E(G)$. Then the right ideal C of E(G) generated by $\alpha\beta$ is a nilpotent right ideal.

PROOF. Since E(G) is d.g., C is the set of all finite sums of elements of the form $\lambda + \alpha\beta\nu - \lambda$, where ν , $\lambda \in E(G)$. Since C is finite, it suffices to show that every element in C is nilpotent.

Let $\omega \in C$. Then there exists a positive integer m and maps $\delta_i, \gamma_i \in E(G), i = 1, \dots, m$, such that $\omega = \sum_{i=1}^m (\delta_i + \alpha \beta \gamma_i - \delta_i)$. Let $x \in G$; let K be the fully invariant subgroup generated by $(x)\alpha\beta$. Then $(x)\omega = (x)(\sum_{i=1}^m (\delta_i + \alpha\beta\gamma_i - \delta_i)) \in K$. By Lemma 10, K is properly contained in the fully invariant subgroup generated by x. Since G is finite, there exists a positive integer p such that

 $(x)\omega^p \in \sum_{j=1}^n H_j$. Since $\beta \in A(\sum_{j=1}^n H_j)$ by Lemma 4, then $(x)\omega^{p+1} = 0$.

Since G is finite, there exists a positive integer q such that $(y)\omega^q = 0$, for all $y \in G$. Hence ω is nilpotent.

Laxton (cf. [6]) has shown that the sum of a finite number of nilpotent right ideals is a nilpotent right ideal. Using Laxton's theorem and Lemma 11 we have

PROPOSITION 12. The sum of all nilpotent right ideals of E(G) is a nilpotent ideal of E(G).

Combining Lemma 11 and Proposition 12, we obtain

COROLLARY 13. If M is a nilpotent right module of E(G), then $M \subseteq L(E(G))$.

The next two results are routine.

LEMMA 14. Let B be a nilpotent ideal of E(G) and let D be a right module of E(G) such that D/B is nilpotent. Then D is nilpotent.

LEMMA 15. E(G)/L(E(G)) contains no nonzero nilpotent right modules.

Recall that Beidleman's definition of strong radical-ideal involves minimal right ideals. For reference we state the definition of minimal right ideal below.

DEFINITION. A minimal right ideal of a near-ring R is a right ideal P which contains no proper nonzero R-groups; i.e. P is minimal as an R-group (cf. [1]).

THEOREM 16. L(E(G)) = J(E(G)).

M. J. JOHNSON

PROOF. Since E(G)/L(E(G)) contains no nonzero nilpotent right modules, we can apply two theorems of Blackett. By the first result, Theorem 2 of [4], every right ideal of E(G)/L(E(G)) contains a minimal right ideal. By Theorem 1 of [4] every minimal right module and hence every minimal right ideal of E(G)/L(E(G)) contains an idempotent element. Therefore L(E(G)) is a strong radical-ideal, so, by Theorem 9, L(E(G)) = J(E(G)).

From §3 since G is a finite group, J(E(G)) = P(E(G)). Hence L(E(G)) = I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)).

Using Lemmas 10 and 11 and the fact that J(E(G)) is a nilpotent right module of E(G) which contains all nilpotent right modules of E(G), we see that a map α is contained in J(E(G)) if and only if the fully invariant subgroup generated by $(x)\alpha$ is properly contained in the fully invariant subgroup generated by x, for all $x \in G$. In particular if G is a finite, noncommutative group which contains a unique proper fully invariant subgroup H, then $J(E(G)) = A(H) \cap$ $\{\alpha \in E(G) \mid \text{Im}(\alpha) \subseteq H\}.$

5. Radical-subgroup of E(G). In §3 we showed that if a group G is equal to the sum of its minimal fully invariant subgroups, both the radical J(E(G)) and the radical-subgroup of E(G) are $\{0\}$.

If G is not equal to the sum of its minimal fully invariant subgroups, the radical-subgroup of E(G) need not equal J(E(G)). For example, consider $E(S_3)$, where S_3 is the symmetric group on three elements. In Table III of [8] Malone and Lyons have listed the elements of $E(S_3)$. By examining this table, we see that the radical-subgroup of $E(S_3)$ consists of three elements, (00000), (ddd00) and (eee00), which is a proper subset of $J(E(S_3))$.

On the other hand, if G is a finite, nonabelian p-group, where p is a prime number, then Beidleman has shown that J(E(G)) is equal to the radical-subgroup of E(G) (cf. [3]).

References

1. J. C. Beidleman, On the theory of radicals of distributively generated nearrings. I: The primitive-radical, Math. Ann. 173 (1967), 89-101. MR 36 #1492a.

2. —, On the theory of radicals of distributively generated near-rings. II: The nil-radical, Math. Ann. 173 (1967), 200-218. MR 36 #1492b.

3. —, Quasi-regularity in near-rings, Math Z. 89 (1965), 224-229. MR 31 #3464.

4. D. W. Blackett, Simple and semisimple near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785. MR 15, 281.

5. A. Fröhlich, Distributively generated near-rings. I: Ideal theory, Proc. London Math. Soc. (3) 8 (1958), 76-94. MR 19, 1156.

6. R. R. Laxton, A radical and its theory for distributively generated nearrings, J. London Math. Soc. 38 (1963), 40-49. MR 26 #3742.

7. ——, Prime ideals and the ideal-radical of a distributively generated nearring, Math Z. 83 (1964), 8-17. MR 28 #3057.

8. J. J. Malone and C. G. Lyons, *Endomorphism near-rings*, Proc. Edinburgh Math. Soc. 17 (1970), 71-78.

University of South Carolina, Columbia, South Carolina 29208