ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 3, Number 1, Winter 1973

RADICALS OF ENDOMORPHISM NEAR-RINGS
MARJORY J. JOHNSON !

Several radical properties have been defined for a distributively
generated (d.g.) near-ring R with identity —the radical J(R), the
quasi-radical N(R), the ideal-radical I(R), the radical-subgroup, the
primitive-radical P(R), and the nil-radical L(R). The order of con-
tainment of the various radicals is L(R) C I(R) C N(R) C J(R) CP(R)
(cf. [1], [2]). The radical-subgroup is also contained in J(R), but it is
not known how it compares with N(R) in general. If R is a ring, the
radical, quasi-radical, ideal-radical, and radical-subgroup are all
equal to the Jacobson radical. If R is a near-ring which is not a ring,
then the above radicals are not equivalent in general, even if R is
finite (cf. [2], [7]).

The purpose of this paper is to examine these radicals for the par-
ticular (left) d.g. near-ring E(G), the near-ring generated by the
endomorphisms of G, where G is a finite group. We show that
L(E(G)) = I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)). If G is the sum
of its minimal fully invariant subgroups, then J(E(G)) and hence all
of the radicals of E(G) are {0}. If G is not the sum of its minimal fully
invariant subgroups, the radical J(E(G)) is a proper nonzero ideal of
E(G). In {5 we give examples to show that in the latter situation, the
radical-subgroup of E(G) may or may not be equal to J(E(G)).

1. Definitions. It is assumed that the reader is familiar with the
definitions of a (left) d.g. near-ring and of E(G), the near-ring gen-
erated by the endomorphisms of a group G (cf. [8]). Note that all
functions of G are written on the right and hence E(G) is a left d.g.
near-ring.

Let R be a (left) d.g. near-ring. The concepts of R-group, right
module of R, ideal and right ideal are all defined in [7]. The radical
properties which need to be defined for this paper are given below.

The radical J(R) of R is the intersection of all annihilating ideals
of the minimal R-groups (cf. [6] ).

The nil-radical L(R) of R is the sum of all nilpotent ideals of R
(cf. [2]).
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The radical-subgroup of R is the intersection of all maximal R-
groups of R (cf. [3]).

For definitions of the remaining radical properties consult the
references.

2. Relationship between J(E(G)) and the minimal fully invariant
subgroups of G. Since we are interested in radicals of near-rings which
are not rings, G will always denote a finite group which is not com-

mutative. Let {H;|i=1, - - -, n} be the collection of minimal fully
invariant subgroups of G.

Lemma 1. Let BE E(G);  €EH;, i=1, -+, n. Then (3i-1h:)B
=¥ (k)B.

Proor. Since E(G) is d.g., there exists a positive integer m and
maps s, j =1, -+, m, such that B = 2,";1 s;, where s; is either an

endomorphism or an anti-endomorphism for all j. Then

(51)e= (51)(5)=5 (3 m)s

= i=1 ji=

(%)

n m h’ . m . _ n h
=3 (S )=3 m (3 5)=3 08
Equality ( *) holds since elements of distinct minimal fully invariant
subgroups commute with each other.

If K is a subset of G, define A(K) = {a € E(G) | (k)a = 0, Vk € K}.

Using Lemma 1, we obtain the following.
ProposiTiON 2. A( Y- H;) = [ -1 A(H,).

Since J(E(G)) is defined to be the intersection of all annihilating
ideals of minimal E(G)-groups and since minimal fully invariant sub-
groups of G are minimal E(G)-groups, we have

Proposrtion 3. J(E(G)) C ML, A(H) = A(S M H).

3. G equals sum of minimal fully invariant subgroups. Suppose
G is a noncommutative finite group which is the sum of its minimal
fully invariant subgroups. As an immediate consequence of Proposi-
tion 3, J(E(G)) = {0}. By a theorem of Beidleman (ef. [1, Theorem
4]) if G is a finite group, then J(E(G)) = P(E(G)). Hence, L{E(G))
= I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)) = {0}. Also, the radical-

subgroup is {0} since it is contained in the radical.
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4. G does not equal sum of minimal fully invariant subgroups.
Now consider the case when G is a finite noncommutative group which
is not the sum of its minimal fully invariant subgroups. Again we
show the equality of the nil-radical, ideal-radical, quasi-radical,
radical, and primitive-radical. In addition, we show that the radical
is nonzero.

Since J(E(G)) C Mi-, A(H;) by Proposition 3, the first step is to
show that [N\j-; A(H,) is nonzero.

Lemma 4. Let M be a nilpotent right module of E(G) and let
a €E M. Thena €\, A(H,).

Proor. Suppose (h)a 7# 0, where h € H,, for some p, L= p=n.
Note that (h)E(G) = {(h)B | B € E(G)} is a fully invariant subgroup of
G. Since H, is minimal, there exists y € E(G) such that (h)ay = h.
Then ay € M, but ay is not nilpotent. This contradiction establishes
the lemma.

If K is a subset of E(G), define Im(K) = {(g)B|g € G, B EK}.

ProposiTion 5. I = {a € E(G) |Im(a) C Yi-1H;} is a proper
nonzero ideal of E(G).

ProoF. Since ».i-1 H; is a fully invariant subgroup of G, it is easy
to check that I is an ideal of E(G). Since G 74g Y i-1 H;, the identity
map . is not in.I. We show I # {0}.

Let x), x5, * * *, x,, be the nonzero elements of G. Since (x,)E(G) is
a fully invariant subgroup of G and hence must contain a minimal
fully invariant subgroup, (x,)E(G) N Y.i-1H;# {0}, for all p=1,
cm.

Define maps B, inductively as follows. If x; € >,i=1 H;, let ; = «.
If x, $2E’=1H,~, let z; be a nonzero element of (x;)E(G) N Y./ H;
and let 8, be a map in E(G) such that (x;)8; = z,.

Now suppose Bx has been defined for all k=¢ If (xtH)H,'D:lB,,
S 2?=1Hi, let Bey1=¢ If (xt+l) :7=pr GFZL]H,', let z4; be
a nonzero element of ((xe+1)[[p-18,)E(G) N Di_1H; and let
B:+1 be a map in E(G) such that (x,+1)H;,+=11[3p = Zt+1

Then [[7-18, is a nonzero map in E(G) whose image is contained
in 371 H; and hence is a nonzero element of the ideal L.

ProposiTiON 6. Let K be a minimal right module of E(G). Then
Im(K) C D1 H;.

Proor. Let 8 be a nonzero element of K. By the procedure used in
Proposition 5 we can define a map y such that By # 0 and Im(By)
C >iuiH.
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Let I be defined as in Proposition 5. Then By EKN I, so KN I
is a nonzero right module. But K is minimal, so KC I and thus
Im(K) C ¥.i“1 H..

Tueorem 7. (-1 A(H;) # {0}.

Proor. Suppose (V-1 A(H;) = {0}. Then, by Lemma 4, E(G)
contains no nonzero nilpotent right modules. Hence by a result of
Blackett (cf. [4, Theorem 3]), E(G) is a direct sum of minimal non-
zero modules. This means by Proposition 6 that Im(E(G)) C Y\i-1 H..
In particular if . is the identity map, then G = (G).C E?=1Hi, S0
G= 2?=1H,~. This is a contradiction, since by hypothesis G is not
the sum of its minimal fully invariant subgroups. Hence MiZ, A(H))
# {0}.

Tueorem 8. The nil-radical L(E(G)) # {0}.

Proor. By definition L(E(G)) is the sum of all nilpotent ideals of
E(G). Hence we must find a nonzero nilpotent ideal of E(G).

Define B= A(Y,i1H) N{y |[Im(y) C Yi-1H;}. Clearly B is a
nilpotent ideal. Since A( 2?=1H¢) is nonzero, by the procedure
used in Proposition 5, we can show the existence of a nonzero element
in B. Hence L(E(G)) # {0}.

In order to show the equality of the various radicals, we use the
following definition and theorem of Beidleman (cf. [2]).

DeFiniTION. A proper ideal D of a d.g. near-ring R with identity
is called a strong radical-ideal of R if and only if every nonzero right
ideal of R/D contains a minimal right ideal which contains an idem-
potent element.

THeOREM 9 (BEIDLEMAN). Let R be a d.g. near-ring with identity.
If the nil-radical L(R) is a strong radical-ideal, then L(R) is the radical
of R.

Hence, our goal is to show that L(E(G)) is a strong radical-ideal.

LemMma 10. Let B be a nilpotent right module of E(G). LetB € B;
let x be a nonzero element of G. Then the fully invariant subgroup
generated by (x)B is properly contained in the fully invariant sub-
group generated by x.

Proor. Let X,Y be the fully invariant subgroups generated by
x and (x)B, respectively. Since (x)8 € X, then Y C X.

Suppose Y = X. Then there exists y € E(G) such that (x)By = x.
But then By € B and By is not nilpotent. This contradiction establishes
the lemma.
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Lemma 11. Let B be a nilpotent right module of E(G). Let
B € B; a € E(G). Then the right ideal C of E(G) generated by of
is a nilpotent right ideal.

Proor. Since E(G) is d.g., C is the set of all finite sums of elements
of the form A + aBv — A, where v, A € E(G). Since C is finite, it
suffices to show that every element in C is nilpotent.

Let @ € C. Then there exists a positive integer m and maps
8, EEG), i=1, -+, m, such that o =Yi"(§; + aBy; — &)

Let x € G; let K be the fully invariant subgroup generated by
(x)aB. Then (x)o = (x)( X it1(8: +aBy; — 8)) EK By Lemma 10,
K is properly contained in the fully invariant subgroup generated by
x. Since G is finite, there exists a positive integer p such that
(x)w” € X H. Since BE A(Yj-1H;) by Lemma 4, then
(x)wP*l = 0.

Since G is finite, there exists a positive integer g such that (y)w? =
0, for all y € G. Hence w is nilpotent.

Laxton (cf. [6]) has shown that the sum of a finite number of
nilpotent right ideals is a nilpotent right ideal. Using Laxton’s
theorem and Lemma 11 we have

ProposiTioN 12. The sum of all nilpotent right ideals of E(G) is
a nilpotent ideal of E(G).

Combining Lemma 11 and Proposition 12, we obtain

CoroLLary 13. If M is a nilpotent right module of E(G), then
MC L(E(G)).

The next two results are routine.

LemMma 14. Let B be a nilpotent ideal of E(G) and let D be a right
module of E(G) such that DIB is nilpotent. Then D is nilpotent.

Lemma 15. E(G)/L(E(G)) contains no nonzero nilpotent right
modules.

Recall that Beidleman’s definition of strong radical-ideal involves
minimal right ideals. For reference we state the definition of minimal

right ideal below.

DeFINITION. A minimal right ideal of a near-ring R is a right ideal
P which contains no proper nonzero R-groups; i.e. P is minimal as

an R-group (cf. [1]).
TueoREM 16. L(E(G)) = J(E(G)).
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Proor. Since E(G)/L(E(G)) contains no nonzero nilpotent right
modules, we can apply two theorems of Blackett. By the first result,
Theorem 2 of [4], every right ideal of E(G)/L(E(G)) contains a mini-
mal right ideal. By Theorem 1 of [4] every minimal right module
and hence every minimal right ideal of E(G)/L(E(G)) contains an
idempotent element. Therefore L(E(G)) is a strong radical-ideal,
so, by Theorem 9, L(E(G)) = J(E(G)).

From §3 since G is a finite group, J(E(G)) = P(E(G)). Hence
L(E(G)) = I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)).

Using Lemmas 10 and 11 and the fact that J(E(G)) is a nilpotent
right module of E(G) which contains all nilpotent right modules of
E(G), we see that a map a is contained in J(E(G)) if and only if the
fully invariant subgroup generated by (x)a is properly contained in
the fully invariant subgroup generated by «x, for all x € G. In par-
ticular if G is a finite, noncommutative group which contains a unique
proper fully invariant subgroup H, then J(E(G))= A(H)N
{a € E(G) | Im(a) C H}.

5. Radical-subgroup of E(G). In §3 we showed that if a group G
is equal to the sum of its minimal fully invariant subgroups, both the
radical J(E(G)) and the radical-subgroup of E(G) are {0}.

If G is not equal to the sum of its minimal fully invariant subgroups,
the radical-subgroup of E(G) need not equal J(E(G)). For example,
consider E(S3), where S; is the symmetric group on three elements.
In Table III of [8] Malone and Lyons have listed the elements of
E(S;). By examining this table, we see that the radical-subgroup of
E(S;) consists of three elements, (00000), (ddd00) and (eee00), which
is a proper subset of J(E(S3)).

On the other hand, if G is a finite, nonabelian p-group, where p is
a prime number, then Beidleman has shown that J(E(G)) is equal to
the radical-subgroup of E(G) (cf. [3]).
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