RADICALS OF ENDOMORPHISM NEAR-RINGS

MARJORY J. JOHNSON ${ }^{1}$

Several radical properties have been defined for a distributively generated (d.g.) near-ring R with identity - the radical $J(R)$, the quasi-radical $N(R)$, the ideal-radical $I(R)$, the radical-subgroup, the primitive-radical $P(R)$, and the nil-radical $L(R)$. The order of containment of the various radicals is $L(R) \subseteq I(R) \subseteq N(R) \subseteq J(R) \subseteq P(R)$ (cf. [1], [2]). The radical-subgroup is also contained in $J(R)$, but it is not known how it compares with $N(R)$ in general. If R is a ring, the radical, quasi-radical, ideal-radical, and radical-subgroup are all equal to the Jacobson radical. If R is a near-ring which is not a ring, then the above radicals are not equivalent in general, even if R is finite (cf. [2], [7]).

The purpose of this paper is to examine these radicals for the particular (left) d.g. near-ring $E(G)$, the near-ring generated by the endomorphisms of G, where G is a finite group. We show that $L(E(G))=I(E(G))=N(E(G))=J(E(G))=P(E(G))$. If G is the sum of its minimal fully invariant subgroups, then $J(E(G))$ and hence all of the radicals of $E(G)$ are $\{0\}$. If G is not the sum of its minimal fully invariant subgroups, the radical $J(E(G))$ is a proper nonzero ideal of $E(G)$. In $\$ 5$ we give examples to show that in the latter situation, the radical-subgroup of $E(G)$ may or may not be equal to $J(E(G))$.

1. Definitions. It is assumed that the reader is familiar with the definitions of a (left) d.g. near-ring and of $E(G)$, the near-ring generated by the endomorphisms of a group G (cf. [8]). Note that all functions of G are written on the right and hence $E(G)$ is a left d.g. near-ring.

Let R be a (left) d.g. near-ring. The concepts of R-group, right module of R, ideal and right ideal are all defined in [7]. The radical properties which need to be defined for this paper are given below.

The radical $J(R)$ of R is the intersection of all annihilating ideals of the minimal R-groups (cf. [6]).
The nil-radical $L(R)$ of R is the sum of all nilpotent ideals of R (cf. [2]).

[^0]The radical-subgroup of R is the intersection of all maximal R groups of R (cf. [3]).

For definitions of the remaining radical properties consult the references.
2. Relationship between $J(E(G))$ and the minimal fully invariant subgroups of G. Since we are interested in radicals of near-rings which are not rings, G will always denote a finite group which is not commutative. Let $\left\{H_{i} \mid i=1, \cdots, n\right\}$ be the collection of minimal fully invariant subgroups of G.
Lemma 1. Let $\beta \in E(G) ; h_{i} \in H_{i}, i=1, \cdots, n$. Then $\left(\sum_{i=1}^{n} h_{i}\right) \beta$ $=\sum_{i=1}^{n}\left(h_{i}\right) \boldsymbol{\beta}$.

Proof. Since $E(G)$ is d.g., there exists a positive integer m and maps $s_{j}, j=1, \cdots, m$, such that $\beta=\sum_{j=1}^{m} s_{j}$, where s_{j} is either an endomorphism or an anti-endomorphism for all j. Then

$$
\left(\sum_{i=1}^{n} h_{i}\right) \beta=\left(\sum_{i=1}^{n} h_{i}\right)\left(\sum_{j=1}^{m} s_{j}\right)=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} h_{i}\right) s_{j}
$$

(*)

$$
=\sum_{i=1}^{n}\left(\sum_{j=1}^{m}\left(h_{i}\right) s_{j}\right)=\sum_{i=1}^{n}\left(h_{i}\right)\left(\sum_{j=1}^{m} s_{j}\right)=\sum_{i=1}^{n}\left(h_{i}\right) \beta
$$

Equality (*) holds since elements of distinct minimal fully invariant subgroups commute with each other.

If K is a subset of G, define $A(K)=\{\alpha \in E(G) \mid(k) \alpha=0, \forall k \in K\}$. Using Lemma 1, we obtain the following.

Proposition 2. $A\left(\sum_{i=1}^{n} H_{i}\right)=\bigcap_{i=1}^{n} A\left(H_{i}\right)$.
Since $J(E(G))$ is defined to be the intersection of all annihilating ideals of minimal $E(G)$-groups and since minimal fully invariant subgroups of G are minimal $E(G)$-groups, we have

Proposition 3. $J(E(G)) \subseteq \bigcap_{i=1}^{n} A\left(H_{i}\right)=A\left(\sum_{i=1}^{n} H_{i}\right)$.
3. G equals sum of minimal fully invariant subgroups. Suppose G is a noncommutative finite group which is the sum of its minimal fully invariant subgroups. As an immediate consequence of Proposition $3, J(E(G))=\{0\}$. By a theorem of Beidleman (ef. [1, Theorem 4]) if G is a finite group, then $J(E(G))=P(E(G))$. Hence, $L(E(G))$ $=I(E(G))=N(E(G))=J(E(G))=P(E(G))=\{0\}$. Also, the radicalsubgroup is $\{0\}$ since it is contained in the radical.
4. G does not equal sum of minimal fully invariant subgroups. Now consider the case when G is a finite noncommutative group which is not the sum of its minimal fully invariant subgroups. Again we show the equality of the nil-radical, ideal-radical, quasi-radical, radical, and primitive-radical. In addition, we show that the radical is nonzero.
Since $J(E(G)) \subseteq \bigcap_{i=1}^{n} A\left(H_{i}\right)$ by Proposition 3, the first step is to show that $\bigcap_{i=1}^{n} A\left(H_{i}\right)$ is nonzero.

Lemma 4. Let M be a nilpotent right module of $E(G)$ and let $\alpha \in M$. Then $\alpha \in \bigcap_{i=1}^{n} A\left(H_{i}\right)$.

Proof. Suppose (h) $\alpha \neq 0$, where $h \in H_{p}$ for some $p, 1 \leqq p \leqq n$. Note that $(h) E(G)=\{(h) \beta \mid \beta \in E(G)\}$ is a fully invariant subgroup of G. Since H_{p} is minimal, there exists $\gamma \in E(G)$ such that ($h(\infty \gamma=h$. Then $\alpha \gamma \in M$, but $\alpha \gamma$ is not nilpotent. This contradiction establishes the lemma.

If K is a subset of $E(G)$, define $\operatorname{Im}(K)=\{(g) \beta \mid g \in G, \beta \in K\}$.
Proposition 5. $I=\left\{\alpha \in E(G) \mid \operatorname{Im}(\alpha) \subseteq \sum_{i=1}^{n} H_{i}\right\}$ is a proper nonzero ideal of $E(G)$.
Proof. Since $\sum_{i=1}^{n} H_{i}$ is a fully invariant subgroup of G, it is easy to check that I is an ideal of $E(G)$. Since $G \neq \sum_{i=1}^{n} H_{i}$, the identity

Let $x_{1}, x_{2}, \cdots, x_{m}$ be the nonzero elements of G. Since $\left(x_{p}\right) E(G)$ is a fully invariant subgroup of G and hence must contain a minimal fully invariant subgroup, $\left(x_{p}\right) E(G) \cap \sum_{i=1}^{n} H_{i} \neq\{0\}$, for all $p=1$, \cdots, m.
Define maps β_{p} inductively as follows. If $x_{1} \in \sum_{i=1}^{n} H_{i}$, let $\beta_{1}=\iota$. If $x_{1} \notin \sum_{i=1}^{n} H_{i}$, let z_{1} be a nonzero element of $\left(x_{1}\right) E(G) \cap \sum_{i=1}^{n} H_{i}$ and let β_{1} be a map in $E(G)$ such that $\left(x_{1}\right) \beta_{1}=z_{1}$.

Now suppose β_{k} has been defined for all $k \leqq t$. If $\left(x_{t+1}\right) \prod_{p=1}^{t} \beta_{p}$ $\in \sum_{i=1}^{n} H_{i}$, let $\boldsymbol{\beta}_{t+1}=i$. If $\left(x_{t+1}\right) \prod_{p=1}^{t} \boldsymbol{\beta}_{p} \notin \sum_{i=1}^{n} H_{i}$, let z_{t+1} be a nonzero element of $\left(\left(x_{t+1}\right) \prod_{p=1}^{t} \beta_{p}\right) E(G) \cap \sum_{i=1}^{n} H_{i}$ and let β_{t+1} be a map in $E(G)$ such that $\left(x_{t+1}\right) \prod_{p=1}^{t+1} \boldsymbol{\beta}_{p}=z_{t+1}$.

Then $\prod_{p=1}^{m} \boldsymbol{\beta}_{p}$ is a nonzero map in $E(G)$ whose image is contained in $\sum_{i=1}^{n} H_{i}$ and hence is a nonzero element of the ideal I.
Proposition 6. Let K be a minimal right module of $E(G)$. Then $\operatorname{Im}(K) \subseteq \sum_{i=1}^{n} H_{i}$.
Proof. Let $\boldsymbol{\beta}$ be a nonzero element of K. By the procedure used in Proposition 5 we can define a map γ such that $\beta \gamma \neq 0$ and $\operatorname{Im}(\beta \gamma)$ $\subseteq \sum_{i=1}^{n} H_{i}$.

Let I be defined as in Proposition 5. Then $\beta \gamma \in K \cap I$, so $K \cap I$ is a nonzero right module. But K is minimal, so $K \subseteq I$ and thus $\operatorname{Im}(K) \subseteq \sum_{i=1}^{n} H_{i}$.

Theorem 7. $\bigcap_{i=1}^{n} A\left(H_{i}\right) \neq\{0\}$.
Proof. Suppose $\bigcap_{i=1}^{n} A\left(H_{i}\right)=\{0\}$. Then, by Lemma 4, $E(G)$ contains no nonzero nilpotent right modules. Hence by a result of Blackett (cf. [4, Theorem 3]), $E(G)$ is a direct sum of minimal nonzero modules. This means by Proposition 6 that $\operatorname{Im}(E(G)) \subseteq \sum_{i=1}^{n} H_{i}$. In particular if ι is the identity map, then $G=(G) \iota \subseteq \sum_{i=1}^{n} H_{i}$, so $G=\sum_{i=1}^{n} H_{i}$. This is a contradiction, since by hypothesis G is not the sum of its minimal fully invariant subgroups. Hence $\bigcap_{i=1}^{n} A\left(H_{i}\right)$ $\neq\{0\}$.

Theorem 8. The nil-radical $L(E(G)) \neq\{0\}$.
Proof. By definition $L(E(G))$ is the sum of all nilpotent ideals of $E(G)$. Hence we must find a nonzero nilpotent ideal of $E(G)$.

Define $B=A\left(\sum_{i=1}^{n} H_{i}\right) \bigcap\left\{\gamma \mid \operatorname{Im}(\gamma) \subseteq \sum_{i=1}^{n} H_{i}\right\}$. Clearly B is a nilpotent ideal. Since $A\left(\sum_{i=1}^{n} H_{i}\right)$ is nonzero, by the procedure used in Proposition 5, we can show the existence of a nonzero element in B. Hence $L(E(G)) \neq\{0\}$.

In order to show the equality of the various radicals, we use the following definition and theorem of Beidleman (cf. [2]).

Definition. A proper ideal D of a d.g. near-ring R with identity is called a strong radical-ideal of R if and only if every nonzero right ideal of R / D contains a minimal right ideal which contains an idempotent element.

Theorem 9 (Beidleman). Let R be a d.g. near-ring with identity. If the nil-radical $L(R)$ is a strong radical-ideal, then $L(R)$ is the radical of R.

Hence, our goal is to show that $L(E(G))$ is a strong radical-ideal.
Lemma 10. Let B be a nilpotent right module of $E(G)$. Let $\beta \in B$; let x be a nonzero element of G. Then the fully invariant subgroup generated by $(x) \beta$ is properly contained in the fully invariant subgroup generated by x.

Proof. Let X, Y be the fully invariant subgroups generated by x and $(x) \beta$, respectively. Since $(x) \beta \in X$, then $Y \subseteq X$.

Suppose $Y=X$. Then there exists $\gamma \in E(G)$ such that $(x) \beta \gamma=x$. But then $\beta \gamma \in B$ and $\beta \gamma$ is not nilpotent. This contradiction establishes the lemma.

Lemma 11. Let B be a nilpotent right module of $E(G)$. Let $\beta \in B ; \alpha \in E(G)$. Then the right ideal $\stackrel{C}{C}$ of $E(G)$ generated by $\alpha \beta$ is a nilpotent right ideal.

Proof. Since $E(G)$ is d.g., C is the set of all finite sums of elements of the form $\lambda+\alpha \beta \nu-\lambda$, where $\nu, \lambda \in E(G)$. Since C is finite, it suffices to show that every element in C is nilpotent.

Let $\omega \in C$. Then there exists a positive integer m and maps $\delta_{i}, \gamma_{i} \in E(G), i=1, \cdots, m$, such that $\omega=\sum_{i=1}^{m}\left(\delta_{i}+\alpha \beta \gamma_{i}-\delta_{i}\right)$.

Let $x \in G$; let K be the fully invariant subgroup generated by $(x) \alpha \beta$. Then $(x) \omega=(x)\left(\sum_{i=1}^{m}\left(\delta_{i}+\alpha \beta \gamma_{i}-\delta_{i}\right)\right) \in K$. By Lemma 10, K is properly contained in the fully invariant subgroup generated by x. Since G is finite, there exists a positive integer p such that $(x) \omega^{p} \in \sum_{j=1}^{n} H_{j}$. Since $\beta \in A\left(\sum_{j=1}^{n} H_{j}\right)$ by Lemma 4 , then $(x) \omega^{p+1}=0$.

Since G is finite, there exists a positive integer q such that $(y) \omega^{q}=$ 0 , for all $y \in G$. Hence ω is nilpotent.

Laxton (cf. [6]) has shown that the sum of a finite number of nilpotent right ideals is a nilpotent right ideal. Using Laxton's theorem and Lemma 11 we have

Proposition 12. The sum of all nilpotent right ideals of $E(G)$ is a nilpotent ideal of $E(G)$.

Combining Lemma 11 and Proposition 12, we obtain
Corollary 13. If M is a nilpotent right module of $E(G)$, then $M \subseteq L(E(G))$.

The next two results are routine.
Lemma 14. Let B be a nilpotent ideal of $E(G)$ and let D be a right module of $E(G)$ such that D / B is nilpotent. Then D is nilpotent.

Lemma 15. $E(G) / L(E(G))$ contains no nonzero nilpotent right modules.

Recall that Beidleman's definition of strong radical-ideal involves minimal right ideals. For reference we state the definition of minimal right ideal below.
Definition. A minimal right ideal of a near-ring R is a right ideal P which contains no proper nonzero R-groups; i.e. P is minimal as an R-group (cf. [1]).

Theorem 16. $L(E(G))=J(E(G))$.

Proof. Since $E(G) / L(E(G))$ contains no nonzero nilpotent right modules, we can apply two theorems of Blackett. By the first result, Theorem 2 of [4], every right ideal of $E(G) / L(E(G))$ contains a minimal right ideal. By Theorem 1 of [4] every minimal right module and hence every minimal right ideal of $E(G) / L(E(G))$ contains an idempotent element. Therefore $L(E(G))$ is a strong radical-ideal, so, by Theorem $9, L(E(G))=J(E(G))$.

From $\S 3$ since G is a finite group, $J(E(G))=P(E(G))$. Hence $L(E(G))=I(E(G))=N(E(G))=J(E(G))=P(E(G))$.

Using Lemmas 10 and 11 and the fact that $J(E(G))$ is a nilpotent right module of $E(G)$ which contains all nilpotent right modules of $E(G)$, we see that a map α is contained in $J(E(G))$ if and only if the fully invariant subgroup generated by $(x) \alpha$ is properly contained in the fully invariant subgroup generated by x, for all $x \in G$. In particular if G is a finite, noncommutative group which contains a unique proper fully invariant subgroup H, then $J(E(G))=A(H) \cap$ $\{\alpha \in E(G) \mid \operatorname{Im}(\alpha) \subseteq H\}$.
5. Radical-subgroup of $E(G)$. In $\S 3$ we showed that if a group G is equal to the sum of its minimal fully invariant subgroups, both the radical $J(E(G))$ and the radical-subgroup of $E(G)$ are $\{0\}$.

If G is not equal to the sum of its minimal fully invariant subgroups, the radical-subgroup of $E(G)$ need not equal $J(E(G))$. For example, consider $E\left(S_{3}\right)$, where S_{3} is the symmetric group on three elements. In Table III of [8] Malone and Lyons have listed the elements of $E\left(S_{3}\right)$. By examining this table, we see that the radical-subgroup of $E\left(\mathrm{~S}_{3}\right)$ consists of three elements, $(00000),(d d d 00)$ and (eee 00), which is a proper subset of $J\left(E\left(\mathbf{S}_{3}\right)\right)$.

On the other hand, if G is a finite, nonabelian p-group, where p is a prime number, then Beidleman has shown that $J(E(G))$ is equal to the radical-subgroup of $E(G)$ (cf. [3]).

References

1. J. C. Beidleman, On the theory of radicals of distributively generated nearrings. I: The primitive-radical, Math. Ann. 173 (1967), 89-101. MR 36 \#1492a.
2. -_, On the theory of radicals of distributively generated near-rings. II: The nil-radical, Math. Ann. 173 (1967), 200-218. MR 36 \#1492b.
3. -_, Quasi-regularity in near-rings, Math Z. 89 (1965), 224-229. MR 31 \#3464.
4. D. W. Blackett, Simple and semisimple near-rings, Proc. Amer. Math. Soc. 4 (1953), 772-785. MR 15, 281.
5. A. Fröhlich, Distributively generated near-rings. I: Ideal theory, Proc. London Math. Soc. (3) 8 (1958), 76-94. MR 19, 1156.
6. R. R. Laxton, A radical and its theory for distributively generated nearrings, J. London Math. Soc. 38 (1963), 40-49. MR 26 \#3742.
7. -_, Prime ideals and the ideal-radical of a distributively generated nearring, Math Z. 83 (1964), 8-17. MR 28 \#3057.
8. J. J. Malone and C. G. Lyons, Endomorphism near-rings, Proc. Edinburgh Math. Soc. 17 (1970), 71-78.

University of South Carolina, Columbia, South Carolina 29208

[^0]: Received by the editors March 16, 1971.
 AMS 1970 subject classifications. Primary 16A76; Secondary 16A21.
 ${ }^{1}$ Most of the results of this paper are included in the author's doctoral dissertation at the University of Iowa, 1970. The author thanks Professor Drury W. Wall for his guidance.

