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RADICALS OF ENDOMORPHISM NEAR-RINGS 
MARJORY J. JOHNSON l 

Several radical properties have been defined for a distributively 
generated (d.g.) near-ring R with identity —the radical /(R), the 
quasi-radical N(R), the ideal-radical I(R), the radical-subgroup, the 
primitive-radical P(R), and the nil-radical L(R). The order of con­
tainment of the various radicals is L(R) C I(R) C N(R) Ç J(R)CP(R) 
(cf. [1], [2] ). The radical-subgroup is also contained in /(R), but it is 
not known how it compares with N(R) in general. If R is a ring, the 
radical, quasi-radical, ideal-radical, and radical-subgroup are all 
equal to the Jacobson radical. If R is a near-ring which is not a ring, 
then the above radicals are not equivalent in general, even if R is 
finite (cf. [2], [7]). 

The purpose of this paper is to examine these radicals for the par­
ticular (left) d.g. near-ring E(G), the near-ring generated by the 
endomorphisms of G, where G is a finite group. We show that 
L(E(G)) = I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)). If G is the sum 
of its minimal fully invariant subgroups, then J(E(G)) and hence all 
of the radicals of E(G) are {0}. If G is not the sum of its minimal fully 
invariant subgroups, the radical J(E(G)) is a proper nonzero ideal of 
E(G). In §5 we give examples to show that in the latter situation, the 
radical-subgroup of E(G) may or may not be equal to J(E(G)). 

1. Definitions. It is assumed that the reader is familiar with the 
definitions of a (left) d.g. near-ring and of £(G), the near-ring gen­
erated by the endomorphisms of a group G (cf. [8] ). Note that all 
functions of G are written on the right and hence E(G) is a left d.g. 
near-ring. 

Let R be a (left) d.g. near-ring. The concepts of R-group, right 
module of R, ideal and right ideal are all defined in [7]. The radical 
properties which need to be defined for this paper are given below. 

The radical /(R) of R is the intersection of all annihilating ideals 
of the minimal R-groups (cf. [6] ). 

The nil-radical L(R) of R is the sum of all nilpotent ideals of R 
(cf. [2]). 
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The radical-subgroup of R is the intersection of all maximal R-
groupsofR(cf. [3]). 

For definitions of the remaining radical properties consult the 
references. 

2. Relationship between J(E(G)) and the minimal fully invariant 
subgroups of G. Since we are interested in radicals of near-rings which 
are not rings, G will always denote a finite group which is not com­
mutative. Let {Hi | i = 1, • • *, n} be the collection of minimal fully 
invariant subgroups of G. 

LEMMA 1. Let ß G E(G); h E. Hh i = 1, • • -, n. Then CZ?=ihi)ß 

= sr-i (h)ß. 
PROOF. Since E(G) is d.g., there exists a positive integer m and 

maps Sj, j = 1, • • % m, such that ß = 5T=i 5i> w n e r e sj *s either an 
endomorphism or an anti-endomorphism for all j . Then 

(2 *.)*- ( i fc)(S * ) - £ ( i *)* 
\ i = 1 / \ i=i / \ j=i / J = i \ »=1 / 

( * ) 

= 2 ( 2 tote )= S (M ( 2 * )= 2 ' ^ 

Equality ( * ) holds since elements of distinct minimal fully invariant 
subgroups commute with each other. 

If K is a subset of G, define A(K) = {a G E(G) | (k)a = 0, Vfc G K}. 
Using Lemma 1, we obtain the following. 

PROPOSITION 2. A(2"-iH«) = Cff^Hi). 

Since J(E(G)) is defined to be the intersection of all annihilating 
ideals of minimal E(G)-groups and since minimal fully invariant sub­
groups of G are minimal E(G)-groups, we have 

PROPOSITION 3. J(E(G)) C flf-i A(H«) = A( S ^ H i } . 

3. G equals sum of minimal fully invariant subgroups. Suppose 
G is a noncommutative finite group which is the sum of its minimal 
fully invariant subgroups. As an immediate consequence of Proposi­
tion 3, J(E(G)) = {0}. By a theorem of Beidleman (ef. [1, Theorem 
4]) if G is a finite group, then /(E(G>) = P(E(G)). Hence, L(E{G)) 
= I(E(G)) = N(E(G)) = J(E(G)) = P(E(G)) = {0-}. Also, the radical-
subgroup is {0} since it is contained in the radical. 
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4. G does not equal sum of minimal fully invariant subgroups. 
Now consider the case when G is a finite noncommutative group which 
is not the sum of its minimal fully invariant subgroups. Again we 
show the equality of the nil-radical, ideal-radical, quasi-radical, 
radical, and primitive-radical. In addition, we show that the radical 
is nonzero. 

Since / ( £ (G) )C f1r=iA(Hi) by Proposition 3, the first step is to 
show that Plf=i A(H<) is nonzero. 

LEMMA 4. Let M be a nilpotent right module of E(G) and let 
a GM. Then a G f l ü i A(H<). 

PROOF. Suppose (h)a ^ 0, where h G Hp for some p, 1 ^ p ê n. 
Note that (h)E(G) = {(h)ß \ß G E(G)} is a fully invariant subgroup of 
G. Since Hp is minimal, there exists y G E(G) such that (h)ocy = h. 
Then ocy G M, but ocy is not nilpotent. This contradiction establishes 
the lemma. 

If K is a subset of E(G)y define Im(K) = {(g)ß | g G G, ß G K}. 

PROPOSITION 5. / = {a G E(G) | Im(a) C ]£r=i#i} is a proper 
nonzero ideal ofE{G). 

PROOF. Since ]£r=iHi is a fully invariant subgroup of G, it is easy 
to check that I is an ideal of E(G). Since G ^ ^ r = i H i , the identity 
map i is not in I. We show I ^ {0}. 

Let xiy x2i • • #, xm be the nonzero elements of G. Since (xp)E(G) is 
a fully invariant subgroup of G and hence must contain a minimal 
fully invariant subgroup, (xp)E(G) (l^j^iHi ^ {0}, for all p = 1, 
• • *, m. 

Define maps ßp inductively as follows. If x\ G^?=iHi, let ß\ = *. 
If *i ^^j=\Hi, let Zi be a nonzero element of (xi)E(G) fi ]££=-! ft 
and let 0i be a map in E(G) such that (x{ßi = Z\. 

Now suppose ßk has been defined for all k^ t. If (x*+i)I~[p=ißp 
e S r - i f f f e let Ä + 1 = *. If ( x e + O p U i i S p ^ S r - i H i , let * + 1 be 
a nonzero element of ((xt+\)1[lP=ißp)E(G) fi ^ I L i f t and let 
ßt+i be a map in E(G) such that (xt+i) Y[p+=ißp = a*+i. 

Then JJ™=ißp is a nonzero map in E(G) whose image is contained 
in 5)r=i ft and hence is a nonzero element of the ideal I. 

PROPOSITION 6. Le£ K be a minimal right module of E(G). Then 
I m ( K ) C ^ = i f t . 

PROOF. Let ß be a nonzero element of K By the procedure used in 
Proposition 5 we can define a map y such that ßy ^ 0 and lm(0y) 
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Let / be defined as in Proposition 5. Then |8y G K H /, so KC\ I 
is a nonzero right module. But K is minimal, so K C l and thus 
Im(K) ££?=!»<. 

THEOREM 7. f l IU A(Hf) ^ {0}. 

PROOF. Suppose 01*= î A(ffj) = {0}. Then, by Lemma 4, E(G) 
contains no nonzero nilpotent right modules. Hence by a result of 
Blackett (cf. [4, Theorem 3] ), E(G) is a direct sum of minimal non­
zero modules. This means by Proposition 6 that Im(E(G)) C ^?=iHi. 
In particular if i is the identity map, then G = (G)iC ^Tf=1Hj, so 
G = ^r=i / f j . This is a contradiction, since by hypothesis G is not 
the sum of its minimal fully invariant subgroups. Hence C\?=\ A(Hi) 

THEOREM 8. The nil-radical L(E(G)) / {0}. 

PROOF. By definition L(E(G)) is the sum of all nilpotent ideals of 
£(G). Hence we must find a nonzero nilpotent ideal of E(G). 

Define B = M^î-iHi) H {y | Im(<y) C ^ " - ì H , } . Clearly B is a 
nilpotent ideal. Since A(^]r=i#t) *s nonzero, by the procedure 
used in Proposition 5, we can show the existence of a nonzero element 
inB. Hence L(E(G)) ^ {0}. 

In order to show the equality of the various radicals, we use the 
following definition and theorem of Beidleman (cf. [2] ). 

DEFINITION. A proper ideal D of a d.g. near-ring R with identity 
is called a strong radical-ideal of R if and only if every nonzero right 
ideal of RID contains a minimal right ideal which contains an idem-
potent element. 

THEOREM 9 (BEIDLEMAN). Let R be a d.g. near-ring with identity. 
If the nil-radical L(R) is a strong radical-ideal, then L(R) is the radical 
ofR. 

Hence, our goal is to show that L(E(G)) is a strong radical-ideal. 

LEMMA 10. Let B be a nilpotent right module of E(G). Let ß G B; 
let x be a nonzero element of G. Then the fully invariant subgroup 
generated by (x)ß is properly contained in the fully invariant sub­
group generated by x. 

PROOF. Let X? Y be the fully invariant subgroups generated by 
x and (x)ß, respectively. Since (x)ß G X, then Y Ç X. 

Suppose Y = X. Then there exists y G E(G) such that (x)ßy = x. 
But then ßy Œ. B and ßy is not nilpotent. This contradiction establishes 
the lemma. 
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LEMMA 11. Let B be a nilpotent right module of E(G). Let 
ß G B; a G E(G). Then the right ideal C of E(G) generated by aß 
is a nilpotent right ideal. 

PROOF. Since E(G) is d.g., C is the set of all finite sums of elements 
of the form k + aßv — X, where vy X G E(G). Since C is finite, it 
suffices to show that every element in C is nilpotent. 

Let co G C. Then there exists a positive integer m and maps 
8i,yi G E(G), i = 1, • • -, m, such that (o = 2™ i(«« + «0y< ~ ft)-

Let x G G; let K be the fully invariant subgroup generated by 
(x)aß. Then (x)a> = (x)(2îLi(«< + <*ßyi - ô*)) E K By Lemma 10, 
K is properly contained in the fully invariant subgroup generated by 
x. Since G is finite, there exists a positive integer p such that 
( Ä ) » " G ST-i ffi- S i n c e £ G A( XT=i Hi) by Lemma 4, then 
(X)COP+1 = 0. 

Since G is finite, there exists a positive integer c/ such that (y)(oq = 
0, for all y G G. Hence o> is nilpotent. 

Laxton (cf. [6] ) has shown that the sum of a finite number of 
nilpotent right ideals is a nilpotent right ideal. Using Laxton's 
theorem and Lemma 11 we have 

PROPOSITION 12. The sum of all nilpotent right ideals of E(G) is 
a nilpotent ideal of E(G). 

Combining Lemma 11 and Proposition 12, we obtain 

COROLLARY 13. If M is a nilpotent right module of E(G), then 
M C L ( £ ( G ) ) . 

The next two results are routine. 

LEMMA 14. Let B be a nilpotent ideal of E(G) and let D be a right 
module ofE(G) such that DIB is nilpotent. Then D is nilpotent. 

LEMMA 15. E(G)IL(E(G)) contains no nonzero nilpotent right 
modules. 

Recall that Beidleman's definition of strong radical-ideal involves 
minimal right ideals. For reference we state the definition of minimal 
right ideal below. 

DEFINITION. A minimal right ideal of a near-ring R is a right ideal 
P which contains no proper nonzero R-groups; i.e. P is minimal as 
an R-group (cf. [1]). 

THEOREM 16. L(E(G)) = J(E(G)). 



6 M.J. JOHNSON 

PROOF. Since E{G)IL(E(G)) contains no nonzero nilpotent right 
modules, we can apply two theorems of Blackett. By the first result, 
Theorem 2 of [4], every right ideal of E(G)IL(E(G)) contains a mini­
mal right ideal. By Theorem 1 of [4] every minimal right module 
and hence every minimal right ideal of E(G)IL(E(G)) contains an 
idempotent element. Therefore L(E(G)) is a strong radical-ideal, 
so, by Theorem 9, L(E(G)) = J(E(G)). 

From §3 since G is a finite group, J(E(G)) = P(E(Q). Hence 
L(E(G)) = 7(E(G)) = N(E(G)) = J(E(G)) = P(E(G)). 

Using Lemmas 10 and 11 and the fact that J(E(G)) is a nilpotent 
right module of E(G) which contains all nilpotent right modules of 
E(G), we see that a map a is contained in J(E(G)) if and only if the 
fully invariant subgroup generated by (x)a is properly contained in 
the fully invariant subgroup generated by x, for all x G G. In par­
ticular if G is a finite, noncommutative group which contains a unique 
proper fully invariant subgroup H, then J(E(G)) = A(H) D 
{a G E(G) | Im(a) Ç H}. 

5. Radical-subgroup of E(G). In §3 we showed that if a group G 
is equal to the sum of its minimal fully invariant subgroups, both the 
radical J(E(G)) and the radical-subgroup of E(G) are {0}. 

If G is not equal to the sum of its minimal fully invariant subgroups, 
the radical-subgroup of E(G) need not equal J(E(G)). For example, 
consider E(S3), where S3 is the symmetric group on three elements. 
In Table III of [8] Malone and Lyons have listed the elements of 
E(S3). By examining this table, we see that the radical-subgroup of 
E(S3) consists of three elements, (00000), (dddOO) and (ee^OO), which 
is a proper subset of/(E(S3)). 

On the other hand, if G is a finite, nonabelian p-group, where p is 
a prime number, then Beidleman has shown that J(E(G)) is equal to 
the radical-subgroup of E(G) (cf. [3] ). 
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