APPLICATIONS OF THE THEORY OF IMAGINARY POWERS OF OPERATORS

MICHAEL J. FISHER ${ }^{1}$

Abstract

Imaginary powers of directional derivatives and of certain other operators are used to study semigroups which arise in the analysis of singular integral operators. Imaginary powers of directional derivatives are used to estimate the maximal functions and the Littlewood-Paley g-function of the Poisson integral on a Hilbert space.

I. Introduction. The purpose of this paper is to study some of the implications of the existence as bounded operators of purely imaginary powers of the infinitesimal generators of certain semigroups. The setting of the paper will be Classical Analysis on Hilbert Space.
Let H be a real separable Hilbert space and let $L_{p}(H)$ denote the Banach space of p-power integrable functions with respect to the normal distribution with variance parameter 1. Let $y \rightarrow T_{y}$ denote the regular representation of the additive group of H as isometries on $L_{p}(H)$. Fix p in $1<p<\infty$. Let B denote a one-one Hilbert-Schmidt operator on H and let n_{t} denote the normal distribution on H with variance parameter $t / 2$. Then $n_{t} \circ B^{-1}$ is a Borel probability measure on H; for f in $L_{p}(H)$, set

$$
\begin{aligned}
& H_{t}(f)=\int_{H} T_{y} f d n_{t} \circ B^{-1}(y), \\
& P_{z}(f)=\int_{0}^{\infty} H_{t}(f) N_{t}(z) d t / t
\end{aligned}
$$

where $N_{t}(z)=(\pi t)^{-1 / 2 z} \exp \left(-t^{-1} z^{2}\right) . \quad P_{z}(f)$ is the Poisson integral of f. If $\left(-D_{h}\right)$ denotes the infinitesimal generator of the translation semigroup $T_{t h}, t>0$, and if $(-T)$ denotes the infinitesimal generator of $P_{z}, z>0$, then $\left(D_{h}\right)^{i c}$ and $T^{i c}$ are strongly continuous groups of

[^0]bounded operators on $L_{p}(H)$. In addition, the analytic semigroup
$$
J_{r}^{\alpha}(f)=\Gamma(\alpha)^{-1} \int_{0}^{\infty} P_{t}(f) t^{\alpha-1} e^{-r t} d t, \quad r>0, \operatorname{Re}(\alpha)>0,
$$
extends to a strongly continuous semigroup on $L_{p}(H)$ in $\operatorname{Re}(\boldsymbol{\alpha}) \geqq 0$. By using these facts and an interpolation theorem due to E. M. Stein, we shall study the semigroups I^{α} of powers of the indefinite integral, $\left(D_{B h}\right)^{\alpha} J_{r}^{\alpha}, T^{\alpha} J_{r}^{\alpha}$, and $\left(D_{B h}\right)^{\alpha} T^{-\alpha}$. Results concerning these semigroups will be applied to the study of singular integral operators.

The boundedness of imaginary powers of certain operators will also be applied to the study of the maximal functions and the LittlewoodPaley g-function for the Poisson integral.

The following table summarizes the contents and organization of the paper.

Contents

I. Introduction.
II. Preliminaries.

1. The normal distribution on Hilbert space.
2. Complex powers of operators.
3. The Poisson integral on Hilbert space.
4. Interpolation.
III. Imaginary powers of certain operators.
IV. Some analytic semigroups.
V. Singular integrals.
VI. Littlewood-Paley theory.

Throughout this paper $A, A(x), A(x, y)$, etc. denote positive constants which depend only on the parameters shown; and $K, K(x)$, $K(x, y)$, etc. denote complex constants which depend only on the parameters shown. The value of these constants may vary with the occasion of their use. If T is an operator defined in a Banach space X to $X, D(T)$ denotes the domain of T and $R(T)$ denotes the range of T. If $1<p<\infty, q$ denotes the real number conjugate to p; $p^{-1}+q^{-1}=1 .\langle f, g\rangle=\int_{S} f(s) g(s) d \mu(s)$ denotes the dual pairing between $L_{p}(\mathrm{~S}, \boldsymbol{\mu})$ and $L_{q}(\mathrm{~S}, \boldsymbol{\mu})$. An operator $T: L_{p} \rightarrow L_{p}$ has norm $\|T\|_{p}$.

Some of the results reported in this paper appeared in other forms in the papers [7] , [8] , [9], [10]. They are repeated here in order to give a more complete picture of the uses of imaginary powers of operators.

II. Preliminaries.

1. The normal distribution on Hilbert space. To minimize the discussion of measure theory on Hilbert space we refer the reader to papers [11], [12], [13] of L. Gross and [19] of I. E. Segal.

Definition. A weak distribution on a real Hilbert space, H, is an equivalence class of linear maps, F, from the conjugate space H^{*} of H to real valued measurable functions (modulo null functions) on a probability space (depending on F). Two such maps, F and F^{\prime}, are equivalent if for any finite set of vectors y_{1}, \cdots, y_{k} in $H^{*}, F\left(y_{1}\right), \cdots$, $F\left(y_{k}\right)$ and $F^{\prime}\left(y_{1}\right), \cdots, F^{\prime}\left(y_{k}\right)$ have the same joint distribution in k space. A weak distribution is continuous if a representative is a continuous linear map (the range space has the topology of convergence in measure).

In what follows we shall be most interested in the normal distribution with variance parameter $c / 2>0$. This distribution is uniquely determined by the following properties: (1) for any y in $H^{*}, n_{c}(y)$ is normally distributed with mean zero and variance $(c / 2)\|y\|^{2}$; (2) n_{c} maps orthogonal vectors to independent random variables. The normal distribution is continuous. There is an essentially unique (up to expectation preserving isomorphism) probability space ($\mathcal{S}, \boldsymbol{\Sigma}, \boldsymbol{\mu}$) and a continuous linear map, F, from H^{*} to the real valued measurable functions on (S, Σ, μ) such that F is a representative of the normal distribution. Σ has no proper sub- σ-fields with respect to which all of the $F(y), y$ in H^{*}, are measurable. The measurable functions on H are the measurable functions on $(S, \Sigma, \mu) . \quad L_{p}\left(H, n_{c}\right)=L_{p}(S, \Sigma, \mu)$, by definition. When the variance parameter $c=2$, we set $n=n_{2}$ and $L_{p}(H)=L_{p}(H, n)$. The expectation, $E(f)$, of a measurable func$\operatorname{tion} f$ is $E(f)=\int_{S} f d \mu$.

A function $f(x)$ on the points of H is a tame function if there is a Baire function g on a finite dimensional Euclidean space, E_{k}, and orthonormal vectors, h_{1}, \cdots, h_{k}, in H^{*} such that

$$
f(x)=g\left(\left(x, h_{1}\right), \cdots,\left(x, h_{k}\right)\right)
$$

The span of the $h_{i}, i=1,2, \cdots, k$, in H is called the base space of f. If F is a representative of the normal distribution and $f(x)=$ $g\left(\left(x, h_{1}\right), \cdots,\left(x, h_{k}\right)\right)$ is a tame function, then

$$
\tilde{f}(s)=g\left(F\left(h_{1}\right)(s), \cdots, F\left(h_{k}\right)(s)\right)
$$

is a measurable function on H. The expectation of f is

$$
E(f)=(\pi c)^{-k / 2} \int g(t) \exp \left[-\frac{\|t\|^{2}}{c}\right] d t
$$

where k is the dimension of the base space of f. This equality holds in the sense that if either side exists and is finite then so is the other and the two are equal.

Several very useful representatives of the normal distribution are known. Of these the one in which we shall be most interested is the mapping studied by Gross in [13] from H^{*} to Borel measurable functions on an abstract Wiener space. We adopt the notation and terminology of [13]. Let B be a one-one Hilbert-Schmidt operator on a real separable Hilbert space H. Then $\|B x\|=|x|_{1}$ is a measurable norm on H. Let H_{B} denote the completion of H in this norm. Let δ denote the σ-field generated by the closed subsets of H_{B}. The normal distribution n_{c} induces a Borel probability measure N_{c} on H_{B} such that the extension of the identity map on $H_{B}{ }^{*}\left(\subset H^{*}\right)$, regarded as a densely defined map on H^{*} to measurable functions on $\left(H_{B}, \delta, N_{c}\right)$ to H^{*} is a representative of the normal distribution on H. Continuous functions, f, on H_{B} are measurable functions on H and if g denotes the restriction of f to H and if \exists denotes the directed set (ordered by inclusion of the ranges) of finite dimensional projections on H, the net $\{\tilde{g}(Q x) \mid Q \in \exists\}$ of measurable tame functions converges in measure to f as Q tends strongly to the identity through \mathcal{F}.

Let N_{c} be as above. We may regard B as an isometry from H_{B} to H. Hence $N_{c} \circ B^{-1}$ is a Borel measure on H. This measure is usually denoted by $n_{c} \circ B^{-1}$. See [12] for a discussion of these measures. If f is a bounded and continuous function from H to a Banach space E, $\int_{H} f(x) d n_{c} \circ B^{-1}(x)=\int_{H_{B}} f(B y) d N_{c}(y)=E\left((f \circ B)^{\sim}\right)$.

If f, g, and $f g$ are absolutely integrable tame functions on $H,(f g)^{\sim}$ $=\tilde{f} \tilde{g},(a f+g)^{\sim}=a \tilde{f}+\tilde{g}$ for constants a, and if $f \leqq g$ on $H, \tilde{f} \leqq \tilde{g}$ almost everywhere. We shall use these properties often.
2. Fractional powers of operators. Early work on the theory of fractional powers of operators is surveyed in [24]. H. Komatsu [17] has developed an extensive theory of fractional powers of operators. In [17-I, II] it is assumed that A is a linear operator (not necessarily densely defined) such that the negative half line is in the resolvent set of A and $\left\|t(t+A)^{-1}\right\| \leqq N<\infty$ for all $t>0$. A^{α} is defined for all complex α in $\S 4$ of $[17-\mathrm{I}]$. For our purposes it will be sufficient to recall some of Komatsu's results for the case when ($-A$) generates a bounded, strongly continuous semigroup on a reflexive Banach space X.
$\mathrm{K}-1$. If $0<\operatorname{Re}(\boldsymbol{\alpha})<\boldsymbol{\sigma}<1$, then

$$
A^{\alpha} x=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{\alpha-1} A(t+A)^{-1} x d t
$$

when $x \in D(A)$, the domain of A.

K-2. If $0<\operatorname{Re}(\boldsymbol{\alpha})<\boldsymbol{\sigma}<n, n$ a positive integer, then

$$
A^{\alpha} x=\frac{\Gamma(m)}{\Gamma(\alpha) \Gamma(m-\alpha)} \int_{0}^{\infty} t^{\alpha-1}\left(A(t+A)^{-1}\right)^{m} x d t
$$

for $x \in D\left(A^{N}\right)$ when $N>m>n$ [17-II, p. 92].
K-3. If $(-A)$ generates a bounded strongly continuous semigroup T_{t} on $X, x \in D(A)$ and $0<\operatorname{Re}(\alpha)<\sigma<1$, then

$$
A^{\alpha} x=\Gamma(-\alpha)^{-1} \int_{0^{+}}^{\infty}\left(T_{t} x-x\right) t^{-\alpha-1} d t
$$

[17-I, p. 325].
More formally, K-1 and K-3 define an operator $A_{\sigma}{ }^{\alpha}$ on a subspace D^{σ} of $X ; D^{\sigma}$ is defined in [17-I]. If $A_{+}{ }^{\alpha}$ denotes the smallest closed extension of ${A_{\sigma}}^{\alpha}$, whose existence is proved in [17-I, Proposition 4.1], then $A^{\alpha}=A_{+}{ }^{\alpha}$. Similarly K-2 defines an operator on a natural subspace of X and its smallest closed extension is $A_{+}{ }^{\alpha}=A^{\alpha}$ as is shown in [17-II]. When $\operatorname{Re}(\alpha)<0, A_{-\sigma}^{\alpha}$ is defined by equation 4.10 of [17-I, p. 304] and $A_{-\sigma}^{\alpha}$ is shown to have a smallest closed extension $A_{-}{ }^{\alpha}$ which is independent of σ. When $\operatorname{Re}(\alpha)=0, A^{\alpha} x$ is defined by equation 4.11 of [17-I, p. 305] for x in $D^{\sigma} \cap R^{\tau}$. If $0<\sigma, \tau<1$, and if $x \in D^{\sigma} \cap R^{\tau}, A_{\sigma \tau}^{\alpha} x=x$ if $\alpha=0$ and if $\alpha \neq 0$,

$$
\begin{aligned}
& A_{\sigma \tau}^{\alpha} x=-\frac{\sin (\pi \alpha)}{\pi}\left[\int_{0}^{N} t^{\alpha}(t+A)^{-1} x d t-\frac{N^{\alpha}}{\alpha} x\right. \\
&\left.\quad-\int_{N}^{\infty} t^{\alpha-1} A(t+A)^{-1} x d t\right]
\end{aligned}
$$

here N is an arbitrary positive real number; N does not influence the value of $A_{\sigma \tau}^{\alpha} x$. The right side of the above equation is analytic in α on the strip $-\tau<\operatorname{Re}(\alpha)<\sigma$ and it coincides with $A^{\alpha}{ }_{-\tau} x$ and $A_{\sigma}{ }^{\alpha} x$ in the subdomain $-\tau<\operatorname{Re}(\alpha)<0$ and $0<\operatorname{Re}(\alpha)<\sigma$, respectively; so it is possible to give another definition of fractional powers by means of the operator $A_{\sigma \tau}^{\alpha}$ even when $\operatorname{Re}(\alpha) \neq 0$. There is the important

K-4. For every complex $\alpha, A_{\sigma \tau}^{\alpha}$ has the smallest closed extension $A_{0}{ }^{\alpha}$ which is independent of σ and τ when $-\tau<\operatorname{Re}(\alpha)<\sigma$. If $\operatorname{Re}(\alpha)>0$, $A_{0}{ }^{\alpha}=A_{+}{ }^{\alpha}$ on $D\left(A_{+}{ }^{\alpha}\right) \cap \bar{R}(A)$ and if $\operatorname{Re}(\alpha)<0, A_{0}{ }^{\alpha}=A_{-}{ }^{\alpha}$.

A result similar to K-4 holds for larger values of σ and τ; see [17-I].
If A has a bounded inverse, $R^{\tau}=X$ and A^{α} is everywhere defined and analytic in $\operatorname{Re}(\alpha)<0$. If $x \in D^{\sigma}, A^{\alpha} x$ is analytic in $\operatorname{Re}(\alpha)<\sigma$. If $-(n+1)<\operatorname{Re}(\alpha)<0$,

$$
A_{-}^{\alpha}=\frac{-\sin (\pi \alpha)}{\pi} \frac{n!}{(\alpha+1) \cdots(\alpha+n)} \int_{0}^{\infty} t^{\alpha+n}(t+A)^{-n-1} d t
$$

and
K-5. If $\operatorname{Re}(\boldsymbol{\alpha})>0$, then $A_{+}{ }^{\alpha}=A_{0}{ }^{\alpha}$ is the inverse of $A_{0}{ }^{-\alpha}=A_{-}{ }^{-\alpha}$; the $D\left(A_{+}{ }^{\alpha}\right)$ is contained in the $R\left(A_{-}{ }^{-\alpha}\right)$. See $\$ 5$ of [17-I].
K-6. (i) If $\operatorname{Re}(\boldsymbol{\alpha}) \cdot \operatorname{Re}(\boldsymbol{\beta})>0$, then ${A_{ \pm}}^{\alpha}{A_{ \pm}}^{\beta}={A_{0}}^{\alpha} A_{ \pm}{ }^{\beta}=A_{ \pm}{ }^{\alpha+\beta}$ in the sense of the product of operators.
(ii) If α and β are any complex numbers, then $\left[A_{0}{ }^{\alpha} A_{0}{ }^{\beta}\right]_{C}=A_{0}{ }^{\alpha+\beta}$ where $[T]_{C}$ denotes the smallest closed extension of T.
(iii) If A has a bounded inverse and if $\operatorname{Re}(\alpha)>0$, then $A_{0}{ }^{\alpha} A_{0}{ }^{\beta}=$ $A_{0}{ }^{\alpha+\beta}$.

See $\S 7$ of [17-I].
From the assumption that $\left\|t(t+A)^{-1}\right\| \leqq M$ for $t>0$ and the resolvent equation it follows that $(t+A)^{-1}$ exists for t in the sector $|\arg (t)|<\operatorname{Arcsin}\left(M^{-1}\right)$ and that $t(t+A)^{-1}$ is bounded on each ray of this sector. Let $M(\Theta)=\sup \left\{\left\|t(t+A)^{-1}\right\|:|\arg (t)|=\Theta\right\}, \Theta \geqq 0 ; M(\Theta)$ is an increasing function of Θ. An operator A is said to be of type ($\omega, M(\Theta)$), $0 \leqq \omega<\pi$, if A is closed, densely defined, the resolvent set of $(-A)$ contains the sector $|\arg (t)|<\pi-\omega$, and

$$
\sup \left\{\left\|t(t+A)^{-1}\right\|:|\arg (t)|=\Theta\right\} \leqq M(\Theta)<\infty
$$

holds for all $0 \leqq \Theta<\pi-\omega$. An operator A is of type ($\omega, M(\Theta)$) for an $\omega<\pi / 2$ if and only if $(-A)$ generates a semigroup T_{t} which has an analytic extension to the sector $|\arg (t)|<\pi / 2-\omega$ such that the extension is uniformly bounded on each sector $|\arg (t)|<\pi / 2-\omega-\epsilon, \epsilon>0$; [17-I, §10].
K-7. If A is an operator of type $(\omega, M(\Theta))$ and $0<\alpha \omega<\pi / 2$, then $\left(-A_{+}{ }^{\alpha}\right)$ is the generator of the strongly continuous semigroup $\exp \left(-t A_{+}{ }^{\alpha}\right)$ which is analytic in the sector $|\arg (t)| \leqq \pi / 2-\alpha \omega$ and uniformly bounded on each smaller sector $|\arg (t)| \leqq \pi / 2-\alpha \omega-\epsilon$, $\epsilon>0$; see $\$ 10$ of [17-I].
$\mathrm{K}-8$. Let A be of type ($\omega, M(\Theta)$), then $\left(A_{+}{ }^{\alpha}\right)^{\beta}=A_{+}{ }^{\alpha \beta}$ if $0<\alpha<\pi / \omega$ and $\operatorname{Re}(\beta)>0$.

K-9. If $0<\alpha<1$ and if $T_{t}=\exp (-t A)$, then $T_{t}{ }^{\alpha} x=\exp \left(-t A^{\alpha}\right)=$ $\int_{0}^{\infty} T_{s} x N(\alpha, t, s) d s$ where $N(\alpha, t, s)=(2 \pi i)^{-1} \int_{\sigma}^{\sigma}+i \infty \infty \exp \left(u s-t u^{\alpha}\right) d u$ [24].

If T_{t} is a bounded semigroup on X, we often need to know when $A_{+}{ }^{\alpha} T_{t}$ is a bounded operator on X; the following theorems give some information of this type.

K-10. Let A be an operator of type ($\omega, M(\Theta)$) with $\omega<\pi / 2$, and
let T_{t} be the analytic semigroup generated by $(-A)$. If $|\arg (t)|<\pi / 2$ - $\omega, t \neq 0$, then $T_{t} x$ is in $D\left(A_{+}{ }^{\alpha}\right)$ for any x in X and $\operatorname{Re}(\alpha)>0$, and we have

$$
A_{+}^{\alpha} T_{t} x=(2 \pi i)^{-1} \int_{\Gamma}(-s)^{\alpha} \exp (s t)(s+A)^{-1} x d s
$$

where Γ is the path consisting of two rays from $\infty e^{-i \theta}$ to 0 and from 0 to $\infty e^{i \theta}$ with $\pi / 2<\Theta<\pi / 2+|\arg (t)|$. There is a constant N depending only on $\alpha, \in>0$, and A such that $\left\|A_{+}{ }^{\alpha} T_{t}\right\| \leqq N|t|^{-\mathrm{Re}(\alpha)}$, when $|\arg (t)| \leqq \pi / 2-\omega-\epsilon$.

K-11. Let T_{t} be a bounded semigroup and let $(-A)$ be its generator. If there is a complex number α with $\operatorname{Re}(\alpha)>0$ such that $\left\|A_{+}{ }^{\alpha} T_{t}\right\| \leqq$ $N|t|^{-\mathrm{Re}(\alpha)}, t>0$, with constant N, then A is of type ($\omega, M(\Theta)$) for an $\omega<\pi / 2$.

K-10 and K-11 are quoted from $\$ 12$ of [17-I].
3. The Poisson integral on Hilbert space. Let H be a real separable Hilbert space. For $1<p<\infty$ let $L_{p}(H)$ denote the Banach space of p-power integrable functions with respect to the weak normal distribution (with variance parameter 1, centered at the origin) on H. Let $y \rightarrow T_{y}$ denote the regular representation of the additive group of H by isometries on $L_{p}(H)$. If f is a bounded tame function,

$$
\left(T_{y} f\right)(x)=f(x-y) \exp \left[\frac{(x, y)}{p}-\frac{\|y\|^{2}}{2 p}\right]
$$

The T_{y} are strongly continuous and play the role of the "translation operators" on $L_{p}(H)$ [5]. If μ is a finite Borel measure on H, then $T(f)$ $=f * \mu=\int_{H} T_{y} f d \mu(y)$ is a bounded operator on $L_{p}(H)$ with norm at most $\|\mu\|$, the total variation of μ. If n_{t} denotes the normal distribution on H with variance parameter $t / 2$, and if $B \neq 0$ is a HilbertSchmidt operator on H, then $n_{t} \circ B^{-1}$ is a Borel probability measure on H [12]. Let

$$
\begin{aligned}
& H_{t}(f)=\int_{H} T_{y} f d n_{t} \circ B^{-1}(y), \\
& P_{y}(f)=\int_{0}^{\infty} H_{t}(f) N_{t}(y) d t / t
\end{aligned}
$$

when $N_{t}(y)=(\pi t)^{-1 / 2} y \exp \left(-t^{-1} y^{2}\right) . \quad P_{z}(f)$ is the Poisson integral of $f . H_{t}$ and P_{z} were studied in [6]. We shall recall some of the properties of these operators; the proofs of the properties not given here can be found in [6].

P-1. H_{t} and P_{z} are strongly continuous, contraction semigroups on $L_{p}(H)$.

P-2. There is a unique Borel probability measure p_{z} on H such that $P_{z}(f)=\int_{H} T_{y} f d p_{z}(y)$.

P-3. If $a=\left(a_{1}, \cdots, a_{n}\right)$ is a multi-index of nonnegative integers with $|a|=\sum_{i=1}^{n} a_{i}$, if A_{h} is the infinitesimal generator of the translation semigroup $T_{t B h}$, and if $\mathrm{A}^{a}=A_{h_{1}}^{a_{1}} \cdots A_{h_{n}}^{a_{n}}$, then

$$
A^{a} H_{t}(f)=\int_{H_{B}} T_{B y} f C^{a}(1)(y) d n_{t}(y)
$$

where $C^{a}=C_{h_{1}}^{a_{1}} \cdots C_{h_{n}}^{a_{n}}$ and $C_{h_{i}}$ is the infinitesimal generator of $T_{s h_{i}}, s>0$, acting on $L_{1}\left(H, n_{t}\right)$. Thus if $t>0, A^{a} H_{t}$ is a bounded operator on $L_{p}(H)$ and $\left\|A^{a} H_{t}\right\|_{p} \leqq A(a, p)\left\|h_{1}\right\|^{a_{1}} \cdots\left\|h_{n}\right\|^{a_{n}} t^{-|a| / 2}$.

P-4. $\quad P_{z}$ is infinitely differentiable with respect to z and with respect to the space variable and

$$
\begin{aligned}
A^{a} P_{z}(f) & =\int_{0}^{\infty} A^{a} H_{t}(f) N_{t}(z) d t / t \\
\left(\frac{d}{d z}\right)^{n} P_{z}(f) & =\int_{0}^{\infty} H_{t}(f)\left(\frac{d}{d z}\right)^{n} N_{t}(z) d t / t .
\end{aligned}
$$

P-5. If $H_{t}=\exp (-t A)$, then $P_{y}=\exp (-y T)$ where $T=2 A^{1 / 2}$; see [24] or K-9.
P-6. $\quad P_{z}$ extends to an analytic semigroup in $|\arg (z)|<\pi / 4 . \quad P_{z}$ is a bounded semigroup in $|\arg (z)|<\pi / 4-\epsilon$ for each $\epsilon>0$.
Proof. $N_{t}(z)$ is analytic in $|\arg (z)|<\pi / 2$ and the integral $P_{z}(f)$ $=\int_{0}^{\infty} H_{t}(f) N_{t}(z) d t / t \quad$ converges uniformly on compacts in $|\arg (z)|<\pi / 4-\epsilon$ for $\epsilon>0$.
P-7. If $P_{z}=\exp (-z T), T$ is one-to-one in $L_{p}(H)$ and $R(T)$ is dense in $L_{p}(H)$.
Proof. It suffices to show that T^{2} is one-to-one. If $T^{2} f=0$, $H_{t} 2 f=f$ for all finite t. If A_{h} denotes the infinitesimal generator of $T_{t B h}, t>0$, then $A_{h} H_{t} 2 f=A_{h} f$ for all h in H. By P-3, $\left\|A_{h} f\right\|_{p} \leqq K t^{-1}\|h\|\|f\|_{p}$ for all $t>0$; let t tend to ∞. Thus $\left\|A_{h} f\right\|_{p}=0$ for all h in H, and $T_{t B h} f=f$ for all $t>0$ and all h in H. If g is a tame function on H, Hörmander's result (see the proof of Theorem 1.1 of [16]) that $\left\|\tau_{y} U+U\right\|_{p} \rightarrow 2^{1 / p}\|U\|_{p}$ for U in $L_{p}\left(E_{n}, d x\right)$ implies that $\left\|T_{t B h} g+g\right\|_{p} \rightarrow 2^{1 / p}\|g\|_{p}$. Since the tame functions are dense in $L_{p}(H)$, an $\epsilon / 3$-argument shows that $\left\|T_{t B h} f+f\right\|_{p} \rightarrow 2^{1 / p}\|f\|_{p} \quad$ as $\quad t \rightarrow \infty$. But since $\quad T^{2} f=0$, $2\|f\|_{p}=\left\|T_{t B h} f+f\right\|_{p} \rightarrow 2^{1 / p}\|f\|_{p}$, and this implies that $f=0$ and T is one-one. By Theorem 3.1 of [17-I], $R(T)$ is dense in $L_{p}(H)$ since $L_{p}(H)$ is a reflexive space and T is one-to-one.

Remark. We have to assume in what follows that B is a one-to-one

Hilbert-Schmidt operator because of the present formulation of P-3 and its influence in the proof of P-7. It is possible, however, to state $\mathrm{P}-3$ in such a way that B is not required to be one-one; then P-7 follows as above and we conclude that T is one-one whenever B is not the zero operator.
4. Interpolation. In §IV we shall rely heavily on a special case of an interpolation theorem due to E. M. Stein ([21], [25]) to estimate the norms of the operators which were mentioned in the introduction. Let B denote a dense subset of $L_{p}(H)$ and let C denote a dense subset of the dual space $L_{q}(H)$. Let S be the strip $0 \leqq \operatorname{Re}(z) \leqq 1$, and let $T_{z}, z \in S$, be a family of linear operators on $L_{p}(H)$ which maps B into $L_{p}(H)$.

Theorem. Let $T_{z}, z \in S$, be a family of linear operators which maps B into $L_{p}(H)$ and satisfies the following conditions:
(1) If $f \in B$ and $g \in C$, then $\varphi(z)=\left\langle T_{z} f, g\right\rangle$ is continuous on S and analytic in the interior of S and

$$
\log |\varphi(x+i y)| \leqq A \exp (a|y|) \text { for } 0 \leqq x \leqq 1 \text { and } a<\pi ;
$$

(2) $\left\|T_{i y} f\right\|_{p} \leqq M_{1}(y)\|f\|_{p}$ and $\left\|T_{1+i y} f\right\|_{p} \leqq M_{2}(y)\|f\|_{p}$ for f in B with $\log M_{i}(y) \leqq M_{i} \exp (a|y|), a<\pi, i=1,2$.

Then $\left\|T_{t}\right\|_{p} \leqq A(t)$ for $0 \leqq t \leqq 1 ; A(t)$ is bounded in t for $0 \leqq t \leqq 1$.
In place of the sets $B \subset L_{p}$ and $C \subset L_{q}$ Stein uses simple functions and assumes that the T_{z} map simple functions to locally integrable functions. Zygmund [25] gives an integral formula for $A(t)$ when $0<t<1$. If one replaces $\log M_{i}(y)$ by $M \exp (a|y|), a<\pi, i=1,2$, in this integral and uses $M \exp (a|y|) \leqq 2 M \operatorname{Cosh}(a y)=2 M \operatorname{Cos}(i a y)$ and a circuit integral, it follows that $A(t)$ is a bounded function in $0 \leqq t \leqq 1$.

III. Imaginary powers of operators.

1. Singular integrals of imaginary order. In [18] Muckenhoupt studied a class of singular integral operators which is of fundamental importance in the study of imaginary powers of infinitesimal generators. We shall only restate some of the one dimensional results here.

Let c be a nonzero real number and set

$$
\left(T_{\epsilon} f\right)(x)=\left[\int_{t>\epsilon} f(x-t) t^{-i c-1} d t-\frac{f(x)}{i c} \epsilon^{-i c}\right] .
$$

Proposition 1.1. Let $g(t)$ be a measurable function on $[0,1]$ to a Banach space X. Let (S) $\int_{0}^{1} g(t) d t$ denote $\lim _{b \rightarrow 0^{+}} \int_{0}^{1} b t^{b-1} g(t) d t$. Then $\quad(T f)(x)=\lim _{\epsilon \rightarrow 0^{+}}\left(T_{\epsilon} f\right)(x) \quad$ converges almost everywhere
or in $L_{p}(-\infty, \infty)$-norm only if

$$
\text { (S) } \begin{array}{r}
\int_{0}^{1} f(x-t) t^{-i c-1} d t+\int_{1}^{\infty} f(x-t) t^{-i c-1} d t \\
=(\mathrm{S}) \int_{0}^{1}(f(x-t)-f(x)) t^{-i c-1} d t \\
\\
-\frac{f(x)}{i c}+\int_{1}^{\infty} f(x-t) t^{-i c-1} d t
\end{array}
$$

exists almost everywhere or in L_{p}-norm.
Proposition 1.1 is a consequence of the fact that (S) is a regular summability method.

Proposition 1.2. If f is in $L_{p}(-\infty, \infty),\left(T_{\epsilon} f\right)(x)$ converges almost everywhere and in L_{p} to $(T f)(x)$ as $\epsilon \rightarrow 0^{+}$. T_{ϵ} is a uniformly bounded family of operators with $\left\|T_{\epsilon}\right\| \leqq A p q(|c|+1)^{2}|c|^{-1}$.

Given a bounded semigroup $K_{t}=\exp (-t D)$ on $L_{p}(H)$ we will begin by studying the analytic semigroup $(r+D)^{-\alpha}, \operatorname{Re}(\alpha)>0, r>0$ is fixed. When D is suitably restricted, we shall see that $(r+D)^{-i c}$ is a strongly continuous group of bounded operators on $L_{p}(H)$ and that $D^{-i c}=\operatorname{S-lim}_{r \rightarrow 0^{+}}(r+D)^{-i c}$, the $(-i c)$ th power of D is the strong limit of the $(r+D)^{-i c}$. Since we are primarily interested in imaginary powers of $D_{h}, \quad T_{t h}=\exp \left(-t D_{h}\right)$, of $T, P_{z}=\exp (-z T)$, and of $(r+T)^{-1}$, we shall severely restrict the semigroup K_{t} from the start.

Let ν be a Borel probability measure on H such that $\nu(\{0\})=0$ and if $\nu_{t}(E)=\nu(E / t)$ for $t>0$ and Borel sets E, then $\nu_{t} * \nu_{s}=\nu_{t+s}$ for all $t, s>0$. Set $K_{t}(f)=\int_{H} T_{y} f d \nu_{t}(y)$ and let $(-D)$ denote the infinitesimal generator of K_{t}.

Since imaginary powers were treated in detail in [9], we shall only outline the theory in the following sections.
2. Bessel-Komatsu potentials. For $r>0$ and $\operatorname{Re}(\alpha)>0$, set

$$
L_{r}^{\alpha}(f)=\Gamma(\alpha)^{-1} \int_{0}^{\infty} K_{t}(f) t^{\alpha-1} e^{-r t} d t
$$

Theorem 2.1. $L_{r}{ }^{\alpha}$ is an analytic semigroup of bounded operators on $L_{p}(H)$ in $|\arg (\boldsymbol{\alpha})|<\pi / 2 . \quad L_{r}{ }^{\alpha}$ is one-to-one on $L_{p}(H)$ if $\operatorname{Re}(\boldsymbol{\alpha})>0$. $L_{r}^{\alpha}=\left(L_{r}^{1}\right)^{\alpha}=(r+D)^{-\alpha}$, the α th Komatsu power of $L_{r}{ }^{1}$, if $\operatorname{Re}(\alpha)>0$. The range of $L_{r}{ }^{\alpha}, R\left(L_{r}{ }^{\alpha}\right)$, is dense in $L_{p}(H)$ if $\operatorname{Re}(\alpha)>0$. $\left\|L_{r}{ }^{\alpha}\right\|_{p} \leqq$ $\boldsymbol{r}^{-\operatorname{Re}(\boldsymbol{\alpha})} \Gamma(\operatorname{Re}(\boldsymbol{\alpha}))|\Gamma(\boldsymbol{\alpha})|^{-1}$.

Proof. To check the continuity of $L_{r}{ }^{\alpha}$, let $|\arg (\alpha)| \leqq \Theta<\pi / 2$ and write

$$
L_{r}^{\alpha} f-f=\Gamma(\alpha)^{-1} \int_{0}^{\infty}\left(K_{t} f-f\right) t^{\alpha-1} e^{-r t} d t+\left(r^{-\alpha} f-f\right)
$$

The last term converges strongly to 0 as α tends to zero. Given $\epsilon>0$, let $\delta>0$ be so small that $\left\|K_{t} f-f\right\|_{p}<\epsilon$ for $0<t \leqq \delta$. Choose $\eta>0$ such that

$$
|\Gamma(\alpha)|^{-1} \int_{\delta}^{\infty} t^{\operatorname{Re}(\alpha)-1} e^{-r t} d t<\epsilon r^{-\operatorname{Re}(\alpha)} \Gamma(\operatorname{Re}(\alpha))|\Gamma(\alpha)|^{-1}
$$

when $\quad 0<\operatorname{Re}(\alpha)<\eta$. Then $\quad\left\|L_{r}^{\alpha}(f)-f\right\|_{p} \leqq\left|r^{-\alpha}-1\right|\|f\|_{p}$ $+\epsilon \boldsymbol{r}^{-\operatorname{Re}(\alpha)} \Gamma(\operatorname{Re}(\alpha))|\Gamma(\alpha)|^{-1}\left(1+2\|f\|_{p}\right) \quad$ if $\quad 0<\operatorname{Re}(\alpha)<\eta$. Since $\Gamma(\operatorname{Re}(\boldsymbol{\alpha}))|\Gamma(\boldsymbol{\alpha})|^{-1} \leqq M(\Theta)<\infty$, continuity is verified.

Since $t^{\alpha-1}$ is analytic in $\operatorname{Re}(\alpha)>0$ for $t>0$ and since $t^{\alpha-1} \log (t) e^{-r t}$ is integrable, $L_{r}^{\alpha}(f)$ is analytic in $\operatorname{Re}(\alpha)>0$. Set $\Gamma(\alpha)^{-1} t^{\alpha-1} e^{-r t}=$ $g_{\alpha}(t)$ if $t>0$ and $g_{\alpha}(t)=0$ if $t<0$. Then

$$
L_{r}{ }^{\alpha} L_{r}{ }^{\beta}(f)=\int_{-\infty}^{\infty} K_{t}(f) g_{\alpha} * g_{\beta}(t) d t
$$

and direct computation shows that $g_{\alpha} * g_{\beta}(t)=g_{\alpha+\beta}(t)$; thus $L_{r}{ }^{\alpha} L_{r}{ }^{\beta}$ $=L_{r}^{\alpha+\beta}$.

If $L_{r}{ }^{\alpha}(f)=0 \quad$ for some $\quad \alpha$ in $\operatorname{Re}(\alpha)>0$, then $L_{r}{ }^{\alpha+t}(f)=$ $L_{r}{ }^{\alpha} L_{r}{ }^{t}(f)=0$ for all $t>0$. By the principle of uniqueness for analytic functions $L_{r}^{\alpha}(f)=0$ for all $\operatorname{Re}(\alpha)>0$. Strong continuity implies that $f=0$ and that each $L_{r}{ }^{\alpha}$ is one-one. That $L_{r}{ }^{\alpha}=\left(L_{r}{ }^{1}\right)^{\alpha}$ follows from the computation: set $L(f)=\int_{0}^{\infty} e^{-r t} K_{t}(f) d t$, then, if $0<\operatorname{Re}(\boldsymbol{\alpha})<1$,

$$
\begin{aligned}
L^{\alpha}(f) & =\Gamma(\alpha)^{-1} \int_{0}^{\infty} u^{\alpha-1} e^{-r u} K_{u}(f) d u \\
& =\Gamma(\alpha)^{-1} \Gamma(1-\alpha)^{-1} \int_{0}^{\infty} \int_{0}^{\infty} t^{-\alpha} e^{-r u} e^{-t u} K_{u}(f) d t d u \\
& =\Gamma(\alpha)^{-1} \Gamma(1-\alpha)^{-1} \int_{0}^{\infty} \int_{r}^{\infty}(t-r)^{-\alpha} e^{-t u} d t K_{u}(f) d u \\
& =\Gamma(\alpha)^{-1} \Gamma(1-\alpha)^{-1} \int_{r}^{\infty}(t-r)^{-\alpha} \int_{0}^{\infty} e^{-t u} K_{u}(f) d u d t \\
& =\Gamma(\alpha)^{-1} \Gamma(1-\alpha)^{-1} \int_{r}^{\infty}(t-r)^{-\alpha}(t+D)^{-1} f d t \\
& =\Gamma(\alpha)^{-1} \Gamma(1-\alpha)^{-1} \int_{0}^{\infty} v^{-\alpha}(v+r+D)^{-1} f d v
\end{aligned}
$$

Since $(v+r+D)^{-1}=L(v L+1)^{-1}$, set $x=v^{-1}$ to get

$$
L^{\alpha}(f)=\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} x^{\alpha-1} L(x+L)^{-1} f d x=(L)^{\alpha} f
$$

by K-1 of \S II-2. If $\operatorname{Re}(\boldsymbol{\alpha}) \geqq 1$, use the semigroup property of L^{α} and K-6 to show that $L^{\alpha}=\left(L^{1}\right)^{\alpha}$.
$R\left(L_{r}{ }^{\alpha}\right)$ is dense in $L_{p}(H)$ since by Proposition 4.3 of [17-I] $D\left((r+D)^{\alpha}\right)$ is dense in $L_{p}(H)$ and by K-5, $D\left((r+D)^{\alpha}\right)$ is contained in $R\left((r+D)_{-}{ }^{-\alpha}\right)$.

Next we shall define and study the boundary value group $L_{r}{ }^{i c}$. Let $\delta>0$. If $c=0$, set ${ }_{\delta} L_{r}{ }^{i c}(f)=f$; when $c \neq 0$ set

$$
{ }_{\delta} L_{r}^{i c}(f)=\Gamma(i c)^{-1}\left[\int_{\delta}^{\infty} K_{t}(f) t^{i c-1} e^{-r t} d t+\frac{\delta^{i c}}{i c} f\right]
$$

let $L_{r}{ }^{i c}(f)=\lim _{\delta \rightarrow 0^{+}}{ }_{\delta} L_{r}{ }^{i c}(f)$ when this limit exists in the p-norm.

Theorem 2.2. For $r>0$ the ${ }_{\delta} L_{r}{ }^{\text {ic }}$ are uniformly bounded in $\delta>0$, $r>0$, and the strong limit $L_{r}{ }^{i c}$ exists as $\delta \rightarrow 0^{+}$. $\left\|_{\delta} L_{r}{ }^{i c}\right\|_{p} \leqq$ $N p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1}$ where the constant N does not depend on $\delta>0$ or $r>0$.

Proof. First consider

$$
\left(T_{\delta}{ }^{A} f\right)(x)=\int_{\delta}^{\infty} f(x-y) \exp (-y / A) y^{i c-1} d y+\frac{\delta^{i c}}{i c} f
$$

on $L_{p}((-\infty, \infty))$. Let $g(t)=t^{i c-1}$ if $t>0$ and $g(t)=0$ if $t \leqq 0$. Since $\exp (-|t| / A)=(\pi)^{-1} \int_{-\infty}^{\infty} e^{-i t y} A\left(1+A^{2} y^{2}\right)^{-1} d y$, set $h(A, y)$ $=A(\pi)^{-1}\left(1+A^{2} y^{2}\right)^{-1}$ and write

$$
\begin{aligned}
\left(T_{\delta}{ }^{A} f\right)(x) & =\int_{-\infty}^{\infty} e^{-i x y} \int_{|t|>\delta} f(x-t) e^{i(x-t) y} g(t) d t h(A, y) d y+\frac{\delta^{i c}}{i c} f \\
& =\int_{-\infty}^{\infty} e^{-i x y}\left[\int_{|t|>\delta} f(x-t) e^{i(x-t) y} g(t) d t\right. \\
& \left.+\frac{\delta^{i c} e^{i x y}}{i c} f\right] h(A, y) d y
\end{aligned}
$$

By Minkowski's integral inequality,

$$
\begin{aligned}
&\left\|T^{A} f\right\|_{p} \leqq \int_{-\infty}^{\infty} h(A, y) \| \int_{|t|>\delta} f(x-t) e^{i(x-t) y} g(t) d t \\
&+\frac{\delta^{i c} e^{i x y}}{i c} f \|_{p} d y
\end{aligned}
$$

By Proposition II.1.2, the norm in the above integral is dominated by $N p q(|c|+1)^{2}|c|^{-1}$. Thus $T_{\delta}{ }^{A}$ is a bounded operator on $L_{p}(H)$ and the bound on $\left\|T_{\delta}{ }^{4}\right\|_{p}$ does not depend on A. By Proposition III.1. 2 and the bounded convergence theorem, the $T_{\delta}{ }^{A}$ converge strongly to a bounded operator, T^{A}, on $L_{p}((-\infty, \infty), d x)$ as $\delta \rightarrow 0^{+}$.

Let

$$
{ }_{\delta} U_{y}(f)=\Gamma(i c)^{-1}\left[\int_{\delta_{1}}^{\infty} T_{t y} f t^{i c-1} e^{-r t} d t+\frac{\delta^{i c}}{i c} f\right]
$$

and assume that f is a bounded tame function on H. Then the rotational invariance of the normal distribution can be used as in the proofs of Theorems 7 or 4 of [8] or [9] to show that as a consequence of the bound on $T_{\delta}\|y|l| r, \quad\|_{\delta} U_{y} f\left\|_{p} \leqq N p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1}\right\| f \|_{p}$ where N does not depend on δ, r, or y. The bounded tame functions are dense in $L_{p}(H)$, so that the desired estimate holds. The rotational invariance of the normal distribution together with the bounded convergence theorem shows that ${ }_{\delta} U_{y}$ converges strongly to a bounded operator U_{y} on $L_{p}(H)$ as $\delta \rightarrow 0^{+} .{ }_{\delta} L_{r}{ }^{i c}$ is the ν-integral with respect to y of the ${ }_{\delta} U_{y}$, so that the ${ }_{\delta} L_{r}{ }^{i c}$ are bounded uniformly in $\delta>0$ and $r>0$. The bounded convergence theorem implies that the ${ }_{\delta} L_{r}{ }^{i c}$ converge strongly; the required estimate holds.

Theorem 2.3. $L_{r}^{i c}(f)=\lim \left\{L_{r}{ }^{b+i c}(f): b \rightarrow 0^{+}\right\}$for each f in $L_{p}(H)$.
Proof. The integral $\Gamma(a)^{-1} \int_{1}^{\infty} K_{t}(f) t^{a-1} e^{-r t} d t, \quad a=b+i c$, converges strongly to ${ }_{1} L_{r}{ }^{i c}$ as $b \rightarrow 0^{+}$. It is sufficient to consider $\int_{0}^{1} K_{t}(f) t^{a-1} e^{-r t} d t$. This integral is

$$
\int_{0}^{1} b x^{b-1} \int_{x}^{1} K_{t}(f) t^{i c-1} e^{-r t} d t d x .
$$

The function $b x^{b-1}$ gives a regular summability method on $0 \leqq x \leqq 1$. Since the integral $\int_{0}^{1} K_{t}(f) t^{a-1}\left(e^{-r t}-1\right) d t$ converges strongly to $\int_{0^{+}}^{1} K_{t}(f) t^{i c-1}\left(e^{-r t}-1\right) d t$ as $b \rightarrow 0^{+}$, we consider

$$
\lim _{b \rightarrow 0^{+}} \int_{0}^{1} b x^{b-1} \int_{x}^{1} K_{t}(f) t^{i c-1} d t d x .
$$

From Proposition III. 1.1, we have that this last integral exists if

$$
\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon}^{1} K_{t}(f) t^{i c-1} d t+\frac{\epsilon^{i c}}{i c} f
$$

exists; when the limit on $\boldsymbol{\epsilon}$ exists, the limit on b exists and the two are
equal. Theorem 2.2 shows that the limit on ϵ exists, so that $L_{r}{ }^{i c}(f)$ $=\lim _{b \rightarrow 0^{+}} L_{r}{ }^{b+i c}(f)$.

Corollary 2.4. If $\operatorname{Re}(a)>0, L_{r}{ }^{a+i c}=L_{r}{ }^{a} L_{r}{ }^{i c}$.
Proof. If $0<\epsilon<\operatorname{Re}(a)$ and if $f \in L_{p}(H)$,

$$
\begin{aligned}
\| L_{r}{ }^{a+i c} f & -L_{r}{ }_{r} L_{r}{ }^{i c} f \|_{p} \\
& \leqq r^{\operatorname{Re}(\epsilon-\alpha)} \Gamma(\operatorname{Re}(a-\epsilon))|\Gamma(a-\epsilon)|^{-1}\left\|L_{r}{ }^{\epsilon+i c} f-L_{r}{ }^{\epsilon} L_{r}{ }^{i c} f\right\|_{p}
\end{aligned}
$$

by the boundedness assertion of Theorem 2.1. Since

$$
\left\|L_{r}{ }^{\epsilon+i c} f-L_{r}{ }^{\epsilon} L_{r}{ }_{r}^{i c} f\right\|_{p} \leqq\left\|L_{r}{ }^{\epsilon+i c} f-L_{r}{ }^{i c} f\right\|_{p}+\left\|L_{r}{ }^{i c} f-L_{r}{ }^{\epsilon} L_{r}{ }^{i c} f\right\|_{p}
$$

let $\epsilon \rightarrow 0^{+}$; then Theorem 2.3 and Theorem 2.1 give the desired result.
Corollary 2.5. $T_{r}{ }^{a}=L_{r}{ }^{a+i c}, a \geqq 0$, is a strongly continuous family of bounded operators on $L_{p}(H)$ with

$$
\left\|T_{r}{ }^{a}\right\|_{p} \leqq A r^{-a} p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1}
$$

Proof. By Corollary 2.4, $L_{r}{ }^{a+i c}=L_{r}{ }^{a} L_{r}{ }^{i c}$. Since $L_{r}{ }^{a}$ is strongly continuous by Theorem 2.1, $T_{r}{ }^{a}$ is strongly continuous. The bounds for $L_{r}{ }^{a}$ in Theorem 2.1 and for $L_{r}{ }^{i c}$ in Theorem 2.2 give the bound on $T_{r}{ }^{a}$.

Corollary 2.6. For each $r>0, L_{r}{ }^{i c} L_{r}{ }^{i d}=L_{r}{ }^{i(c+d)}$.
Proof. By Corollary 2.4, $L_{r}{ }^{\epsilon+i c} L_{r}{ }^{i d}=L_{r}{ }^{\epsilon+i(c+d)}$, and by Theorem 2.3, we may take the limit on each side of this equation as $\epsilon \rightarrow 0^{+}$to get the desired equality.

Corollary 2.7. $\left\{L_{r}{ }^{i c}: c\right.$ real $\}$ is a strongly continuous group of bounded operators on $L_{p}(H)$ with $L_{r}{ }^{i 0}=$ the identity operator and $\left(L_{r}{ }^{i c}\right)^{-1}=L_{r}{ }^{-i c}$.

Proof. Because of Corollary 2.6, we need only show that $\lim \left\{L_{r}{ }^{i c} f: c \rightarrow 0\right\}=f$ for each f in $L_{p}(H)$. The bound on $\left\|L_{r}{ }^{i c}\right\|_{p} \quad$ is $\quad A p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1} \leqq 4 A p q(\pi c)^{-1 / 2}(\sinh (\pi c))^{1 / 2}$ on $|c| \leqq 1$ since $|\Gamma(i c)|=(\pi)^{1 / 2}(c \sinh (\pi c))^{-1 / 2}$ as follows from the well-known identity for $\Gamma(z) \Gamma(1-z)$. Thus $\left\|L_{r}{ }^{i}\right\|$ is bounded on $-1 \leqq c \leqq 1$ and $\lim _{\epsilon \rightarrow 0^{+}} L_{r}{ }^{\epsilon+i} f=L_{r}{ }^{i} f$ uniformly on $-1 \leqq c \leqq 1$. Because of the strong continuity of $L_{r}{ }^{a}$ in $\operatorname{Re}(a)>0$, the following equality completes the proof:

$$
\begin{aligned}
\lim _{c \rightarrow 0} L_{r}{ }^{i} f & =\lim _{c \rightarrow 0} \lim _{\epsilon \rightarrow 0^{+}} L_{r}^{\epsilon+i c} f=\lim _{\epsilon \rightarrow 0^{+}} \lim _{c \rightarrow 0} L_{r}^{\epsilon+i c} f \\
& =\lim _{\epsilon \rightarrow 0^{+}} L_{r}{ }^{\epsilon} f=f
\end{aligned}
$$

Corollary 2.8. $\quad L_{r}{ }^{i c} f=(r+D)^{-i c} f=\left[(r+D)^{i c}\right]^{-1} f$ for all f in $L_{p}(H)$, and $(r+D)^{-i c}$ is a bounded operator on $L_{p}(H)$ for all real c and all $r>0$.

Proof. By Theorem 2.1, $L_{r}{ }^{a}=\left((r+D)^{-1}\right)^{a}$. By K-5, $\left((r+D)^{-1}\right)^{a}$ $=(r+D)^{-a}$. The desired result follows from K-4 when we note that $R^{r}=L_{p}(H)$ because of the invertibility of $(r+D)$ and the density in $L_{p}(H)$ of D^{σ}. A corollary of the uniform boundedness principle (p. 60 of [4]) can now be used to complete the proof.

Corollary 2.9. $L_{r}{ }^{i c}$ is the (ic)th Komatsu power of $L_{r}=L_{r}{ }^{1}$ for all real c.

Proof. By Theorem 2.1, $\left(L_{r}\right)^{a}=L_{r}{ }^{a}$. By Theorem 8.2 of [17-I], for a dense set of f in $L_{p}(H), \quad\left(L_{r}\right)^{i c} f=\lim _{a \rightarrow 0^{+}}\left(L_{r}\right)^{a+i c} f=$ $\lim _{a \rightarrow 0^{+}} L_{r}{ }^{a+i c} f=L_{r}{ }^{i c} f$. Since $L_{r}{ }^{a+i c} \quad\left(=\left(L_{r}\right)^{a+i c}\right) \quad$ is uniformly bounded in $a \geqq 0,\left(L_{r}\right)^{i c}$ is bounded because of a corollary of the uniform boundedness principle (p. 60 of [4]) so that $L_{r}{ }^{i c} f=\left(L_{r}\right)^{i c} f$ for all f in $L_{p}(H)$.
3. Imaginary powers of D. In this section we shall assume that D is one-to-one and that $\left(\pm D^{2}\right)$ generates a bounded semigroup. If $K_{t}=P_{t}, D=T$ and $\left(-T^{2}\right)$ generates $H_{4 t}$; if $K_{t}=T_{t h}, D=D_{h}$ and $+\left(D_{h}\right)^{2}$ generates the semigroup

$$
H_{t}^{h}(f)=(4 \pi t)^{-1 / 2} \int_{-\infty}^{\infty} T_{u h} f \exp \left(\left(-u^{2} / 4 t\right)\right) d u
$$

The significance of these assumptions on D is that by Theorem 3.1 of [17-1], the range of D and the range of D^{2} are dense in $L_{p}(H)$.

Define $D(i c) f=\lim _{r \rightarrow 0^{+}} L_{r}{ }^{i c}(f)$ if the limit exists in the p-norm.

Theorem 3.1. $D(i c)$ is the strong limit of $L_{r}{ }^{i c}$ as $r \rightarrow 0^{+}$and $\|D(i c)\|_{p} \leqq A p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1}$. Furthermore, $D(i c)=D^{-i c}$, the $(-i c)$ th Komatsu power of D.

Proof. If $r_{1}, r_{2}>0$,

$$
\begin{aligned}
L_{r_{1}}^{i c}(f)-L_{r_{2}}^{i c}(f) & =\lim _{\delta \rightarrow 0^{+}} \Gamma(i c)^{-1} \int_{\delta}^{\infty} t^{i c-1}\left[e^{-r_{1} t}-e^{-r_{2} t}\right] K_{t}(f) d t \\
& = \pm \lim _{\delta \rightarrow 0^{+}} \Gamma(i c)^{-1} \int_{\delta}^{\infty} t^{i c} \int_{r_{1}}^{r_{2}} \exp (-s t) d s K_{t}(f) d t \\
& = \pm i c \int_{r_{1}}^{r_{2}} L_{s}^{1+i c}(f) d s
\end{aligned}
$$

The bounded convergence theorem insures that the equality is preserved in the interchange of integrals in the last equality above. Since by Theorem 3.1 of [17-I], $L_{p}(H)=N(D) \oplus \bar{R}(D)$, and since $N(D)$, the null space of D, is 0 by our earlier assumption, $R(D)$ is dense in $L_{p}(H)$. Suppose that $f=D g$ for some $g \in L_{p}(H)$; then

$$
\left\|L_{r_{1}}^{i c}(D g)-L_{r_{2}}^{i c}(D g)\right\|_{p} \leqq|c|\left\|L_{r}{ }^{i c}\right\|_{p} \int_{r_{1}}^{r_{2}}\left\|D(s+D)^{-1} g\right\|_{p} d s
$$

Since $\left\|K_{t}\right\|_{p} \leqq 1,\left\|D(s+D)^{-1}\right\|_{p} \leqq 2$ and $\left\|L_{r_{1}}^{i c}(D g)-L_{r_{2}}^{i c}(D g)\right\|_{p} \leqq$ $A(c, p)\left|r_{1}-r_{2}\right|$. Since the range of D is dense in $L_{p}(H)$, Theorem II.3.6 of [4] implies that $D(i c)$ is a bounded operator on $L_{p}(H)$.

From the definition on p .305 of [17-I] of purely imaginary powers, $D^{-i c} f=f$ if $c=0$ and if $c \neq 0$,

$$
\begin{aligned}
D^{-i c} f= & \frac{\sin (\pi i c)}{\pi}\left[\int_{0}^{N} t^{-i c}(t+D)^{-1} f d t+\frac{N^{-i c}}{i c} f\right. \\
& \left.-\int_{N}^{\infty} t^{-i c-1} D(t+D)^{-1} f d t\right]
\end{aligned}
$$

and by using Corollary 2.8,

$$
\begin{aligned}
(r+D)^{-i c} f=\frac{\sin (\pi i c)}{\pi}[& \int_{0}^{N} t^{-i c}(t+r+D)^{-1} f d t+\frac{N^{-i c}}{i c} f \\
& \left.-\int_{N}^{\infty} t^{-i c-1}(D+r)(t+r+D)^{-1} f d t\right]
\end{aligned}
$$

where N is a positive real number. The resolvent equation implies that

$$
\begin{aligned}
D^{-i c} f-(r+D)^{-i c} f=r K(c) & {\left[\int_{0}^{N} t^{-i c}(t+D)^{-1}(t+r+D)^{-1} f d t\right.} \\
& \quad-\int_{N}^{\infty} t^{-i c-1} D(t+r+D)^{-1}(t+D)^{-1} f d t \\
& \left.\quad+\int_{N}^{\infty} t^{-i c-1}(t+r+D)^{-1} f d t\right] .
\end{aligned}
$$

The second and third integrals on the right are bounded operators on $L_{p}(H)$. If $f=D^{2} g$, the first integral on the right converges. Since ($\pm D^{2}$) generates a bounded semigroup and D^{2} is one-one, the range of D^{2} is dense in $L_{p}(H)$ by Theorem 3.1 of [17-I]. Thus

Theorem II.3.6 of [4] implies that $(r+D)^{-i c}$ converges strongly to $D^{-i c}$ as $r \rightarrow 0^{+}$and $D(i c)=D^{-i c}$; thus

$$
\left\|D^{-i c}\right\|_{p} \leqq A p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1} .
$$

Corollary 3.2. $D^{\text {ic }}$ is a strongly continuous group of bounded operators on $L_{p}(H)$.
Proof. $D^{i c} D^{i d}=D^{i(c+d)}$ by K-6(ii). The continuity of $D^{i c}$ follows from the fact that the imaginary powers are continuous on a dense subset of $L_{p}(H)$ and from the uniform boundedness of the operators $D^{i c}$ in $-1 \leqq c \leqq 1$.

Corollary 3.3. If the domain $D\left(D^{a}\right)$ is equipped with the graph norm, $D\left(D^{a}\right)=D\left(D^{b}\right)$ when $\operatorname{Re}(a)=\operatorname{Re}(b)$.

Proof. $D^{i c}$ is bounded, so $D^{a}=D^{b+i c}=D^{b} D^{i c}$ has the graph norm on $D\left(D^{a}\right)$ equivalent to the graph norm on $D\left(D^{b}\right)$.

Theorem 3.4. $D^{-i c}$ is given by Muckenhoupt's singular integral

$$
D^{-i c} f=\lim _{\delta \rightarrow 0^{+}}\left[\Gamma(i c)^{-1} \int_{\delta}^{\infty} K_{t}(f) t^{i c-1} d t+\frac{\delta^{i c}}{\Gamma(i c+1)} f\right] .
$$

Proof. Set $D(i c)$ equal to the integral operator in the statement of the theorem. By arguing as in the proof of Theorem 2.2, one sees that $D(i c)$ is a bounded operator on $L_{p}(H)$. For $f \in R(D)$,

$$
\begin{aligned}
D(i c) f & -(r+D)^{-i c} f \\
& = \pm \Gamma(i c)^{-1} \lim _{\delta \rightarrow 0} \int_{\delta}^{\infty} K_{t}(f) t^{i c-1} \int_{0}^{r} t e^{-s t} d s d t \\
& = \pm i c \int_{0}^{r} L_{s}^{i c+1}(f) d s .
\end{aligned}
$$

The dominated convergence theorem insures the last equality. Since $L_{s}{ }^{i c+1}=L_{s}{ }^{i c} L_{s}{ }^{1}$ and since $\left\|L_{s}{ }^{i}{ }^{c}\right\|$ does not depend on s, it suffices to assume that $f=D g$ for some g in $L_{p}(H)$ as the range of D is dense in $L_{p}(H)$.
Then $\left\|D(i c) f-(r+D)^{-i c} f\right\|_{p} \leqq r K$ which tends to zero as $r \rightarrow 0^{+}$. Since the set of f in $L_{p}(H)$ of the form $f=D g$ is dense in $L_{p}(H)$ by Theorem 3.1 of [17-I] and since both $D(i c)$ and $D^{-i c}$ are continuous, $D^{-i c}$ has the desired form.

Theorem 3.5. If $f \in R(D) \cap D(D)$, the infinitesimal generator of the semigroup $D^{i c}, c>0$, applied to f is

$$
V(f)=-i\left[\int_{0^{+}}^{1}\left(K_{t}(f)-f\right) d t / t+\int_{1}^{\infty} K_{t}(f) d t / t+C f\right]
$$

where C is Euler's constant. $R(D) \cap D(D)$ is dense in $L_{p}(H)$.
Proof. If $f \in R(D), \quad t^{-1} \int_{0}^{t} K_{s}(f) d s$ is in $R(D) \cap D(D)$ and as $t \rightarrow 0^{+}$, the integral converges to f. Since $R(D)$ is dense in $L_{p}(H)$, $D(D) \cap R(D)$ is dense in $L_{p}(H)$.

Let $f \in D(D) \cap R(D)$. Then by Theorem 3.4,

$$
\left.\left.\begin{array}{r}
c^{-1}\left(D^{i c} f-f\right)=\lim _{\delta \rightarrow 0^{+}}-i\left[\Gamma(1-i c)^{-1} \int_{\delta}^{1}\left(K_{t} f-f\right) t^{-i c-1} d t\right. \\
\\
+\Gamma(1-i c)^{-1} \int_{1}^{\infty} K_{t} f t^{-i c-1} d t \\
\\
\left.+f\left(\Gamma(1-i c)^{-1}-1\right)(-i c)^{-1}\right] \\
=-i \Gamma(1-i c)^{-1}\left[\int_{0^{+}}^{1}\left(K_{t} f-f\right) t^{-i c-1} d t\right.
\end{array}+\int_{1}^{\infty} K_{t} f t^{-i c-1} d t\right] . ~(1-\Gamma(1-i c))(-i c)^{-1}\right] .
$$

Because $f \in D(D)$, the first integral converges absolutely, and as $c \rightarrow 0^{+}$, the first integral converges to the appropriate integral. Since $f \in R(D), f=D g$ for some g in $L_{p}(H)$. Restrict c to $-1 \leqq c \leqq 1$; after integration by parts

$$
\int_{1}^{\infty} K_{t}(f) t^{-i c-1} d t=K_{1}(g)+(-i c-1) \int_{1}^{\infty} K_{t}(g) t^{-i c-2} d t
$$

This last integral converges absolutely and one can apply the dominated convergence theorem to take the limit as $c \rightarrow 0^{+}$. Since $C=$ $-\Gamma^{\prime}(1), V(f)$ has the desired form.
IV. Some analytic semigroups. In this section we shall use the boundedness of certain purely imaginary powers to estimate the norms of operators and to study some analytic semigroups which arise in the study of singular integrals. We shall begin with a discussion of the indefinite integral.

1. Powers of the integral. Let $\operatorname{Re}(\boldsymbol{\alpha})>0$ and set

$$
\left(I^{\alpha} f\right)(x)=\Gamma(\alpha)^{-1} \int_{0}^{x}(x-y)^{\alpha-1} f(y) d y
$$

for f in $L_{p}(0, \infty)$. In [14] Hardy and Littlewood showed that if $0<\operatorname{Re}(\boldsymbol{\alpha})<p^{-1} \quad$ and $\quad r=p(1-p \operatorname{Re}(\alpha))^{-1}, \quad$ then $\quad\left\|I^{\alpha} f\right\|_{r} \leqq$ $A(\alpha, p)\|f\|_{p}$. When restricted to $L_{p}(0,1), I^{\alpha}$ is an analytic semi-
group in $|\arg (\boldsymbol{\alpha})|<\pi / 2$. We shall define and study $I^{i c}$ for c real. Let $\epsilon>0, c$ be real, and f be in $L_{p}(0, \infty)$ and set $I^{i c} f=f$ if $c=0$ and if $c \neq 0$, set

$$
I_{\epsilon}^{i c} f(x)=\Gamma(i c)^{-1}\left[\int_{\epsilon}^{x} f(x-y) y^{i c-1} d y+\frac{\epsilon^{i c}}{i c} f(x)\right]
$$

Set $I^{i c} f(x)=\lim _{\epsilon \rightarrow 0^{+}} I_{\epsilon}^{i c} f(x)$ if this limit exists.
Theorem 1.1. $I_{\epsilon}{ }^{i c}$ is a bounded family of continuous linear operators on $L_{p}(0, \infty)$ for $\epsilon>0$ and each fixed $c ;\left\|I_{\epsilon}{ }^{i}\right\|_{p} \leqq A p q(|c|+1)^{2}$ $\cdot|\Gamma(i c+1)|^{-1}$. For f in $L_{p}(0, \infty)$, as $\epsilon \rightarrow 0^{+}, I_{\epsilon}{ }^{i c} f(x)$ converges almost everywhere and in $L_{p}(0, \infty)$. I Ic is a strongly continuous group of bounded operators on $L_{p}(0, \infty)$.

Proof. Notice that $I_{\epsilon}{ }^{i c} f(x)=0$ if $x<0$. Set $F(x)=f(x)$ if $x>0$ and $F(x)=0$ if $x<0$. Then $F \in L_{p}(-\infty, \infty)$ and $\|f\|_{p}=$ $\|F\|_{p}$ and

$$
I_{\epsilon}^{i c} f(x)=T_{\epsilon}^{c} F(x)=\Gamma(i c)^{-1}\left[\int_{\epsilon}^{\infty} F(x-y) y^{i c-1} d y+\frac{\epsilon^{i c}}{i c} F(x)\right]
$$

By Proposition III.1.2, $\left\|T_{\epsilon}{ }^{c} F\right\|_{p} \leqq A p q(|c|+1)^{2}|\Gamma(i c+1)|^{-1}\|F\|_{p}$; $I_{\epsilon}{ }_{\epsilon}$ is uniformly bounded in $\epsilon>0$ on $L_{p}(0, \infty)$. By Theorem 6 of [18], $T_{\epsilon}^{c} F(x)$ converges almost everywhere and in $L_{p}(-\infty, \infty)$ to $T^{c} F(x)$ as $\epsilon \rightarrow 0^{+}$; then, of course, $\left\|T^{c}\right\|_{p} \leqq A p q(|c|+1)^{2}$ $\cdot|\Gamma(i c+1)|^{-1}$ and $I^{i c}$ has the desired form and bound.

An integration by parts shows that the Laplace transform of $I^{i c} f$ is $t^{-i c}(L f)(t)$ and this shows that $I^{i c} I^{i d}=I^{i(c+d)}$ for all real c and d. To show that $I^{i c}$ is strongly continuous we need only show that $\lim _{c \rightarrow 0} I^{i c} f=f$ for a fundamental set in L_{p} since $\left\|I^{i c}\right\|_{p}$ is bounded on $|c| \leqq 1$. Characteristic functions of the intervals $[0, a], a>0$, generate the step functions so that we need only show that $I^{i c} f_{a}$ converges to f_{a} in L_{p} when f_{a} is the characteristic function $[0, a]$. Direct computation shows that $I^{i c} f_{a}(x)=\Gamma(i c+1)^{-1} x^{i c}$ on $0<x<a$ and $I^{i c} f_{a}(x)=\Gamma(i c+1)^{-1}\left(x^{i c}-(x-a)^{i c}\right)$ if $x>a$. By the bounded convergence theorem,

$$
\begin{array}{r}
\lim _{c \rightarrow 0} \int_{0}^{a}\left|x^{i c}-1\right|^{p} d x=0 \\
\lim _{c \rightarrow 0} \int_{a}^{2 a}\left|x^{i c}-(x-a)^{i c}\right|^{p} d x=0
\end{array}
$$

Since $\quad\left|x^{i c}-(x-a)^{i c}\right|=\left|1-(1-a \mid x)^{i c}\right|=|c|\left|\int_{0}^{a / x}(1-t)^{i c-1} d t\right|$
$\leqq|c|(a \mid x)(1-a \mid x)^{-1}=|c| a(x-a)^{-1}$, and since $(x-a)^{-1}$ is in $L_{p}(2 a, \infty)$, the dominated convergence theorem implies that

$$
\lim _{c \rightarrow 0} \int_{2 a}^{\infty}\left|x^{i c}-(x-a)^{i c}\right|^{n} d x=0
$$

$I^{i c}$ is a strongly continuous group of bounded operators on $L_{p}(0, \infty)$.
Now restrict to $L_{p}(0,1)$.
Corollary 1.2. I^{α} is an analytic semigroup on $L_{p}(0,1)$ in $|\arg (\alpha)|$ $<\pi / 2$, and I^{α} is a strongly continuous semigroup in $\operatorname{Re}(\alpha) \geqq 0$.

Proof. The analyticity is proved in [15]. I ${ }^{i c}$ is a strongly continuous group by Theorem 1.1 and by taking Laplace transforms, one shows that $I^{i c} I^{\alpha}=I^{i c+\alpha}$ for $\operatorname{Re}(\alpha)>0$. Strong continuity in $\operatorname{Re}(\alpha) \geqq 0$ follows from the strong continuity of $I^{i c}$ and $I^{t}, t>0$.

Theorem 1.3. $I^{i c}=(d / d x)^{-i c}$ for all real numbers c.
Proof. Set $D=d / d x$, the negative of the infinitesimal generator of $\left(T_{t} f\right)(x)=f(x-t)$. For $f \in L_{p}(0, \infty)$, extend f to $(-\infty, \infty)$ by setting $f(x)=0$ if $x<0$. Then

$$
\begin{aligned}
(r+D)^{-i c} f(x) & =\lim _{\epsilon \rightarrow 0^{+}} \Gamma(i c)^{-1}\left[\int_{\epsilon}^{\infty} f(x-y) e^{-r y} y^{i c-1} d y+\frac{\epsilon^{i c}}{i c} f(x)\right] \\
& =\lim _{\epsilon \rightarrow 0^{+}} \Gamma(i c)^{-1}\left[\int_{\epsilon}^{x} f(x-y) e^{-r y} y^{i c-1} d y+\frac{\epsilon^{i c}}{i c} f(x)\right]
\end{aligned}
$$

has $(r+D)^{-i c} f(x)=0$ if $x<0$. Thus $(r+D)^{-i c}$ and $D^{-i c}$ map $L_{p}(0, \infty)$ to $L_{p}(0, \infty)$. For f in $R(D)$,

$$
\begin{aligned}
{\left[(r+D)^{-i c}-I^{i c}\right] f(x) } & =\lim _{\delta \rightarrow 0^{+}} \Gamma(i c)^{-1} \int_{\delta}^{x} f(x-y)\left(e^{-r y}-1\right) y^{i c-1} d y \\
& =-\Gamma(i c)^{-1} \lim _{\delta \rightarrow 0^{+}} \int_{\delta}^{x} f(x-y) \int_{0}^{r} e^{-s y} d s y^{i c} d y \\
& =-i c \int_{0}^{r}(s+D)^{-1-i c} f(x) d s
\end{aligned}
$$

Since $\quad f \in R(D), \quad f=D g \quad$ and $\quad\left\|(r+D)^{-i c} f-I^{i c} f\right\|_{p} \leqq$ $r A(c, p)\|g\|_{p}$, so that $(r+D)^{-i c}$ converges strongly to $I^{i c}$. Thus $D^{-i c}=I^{i c}$.

We shall continue to let $D=d / d x$ in the next theorem.
Theorem 1.4. Let $\omega>\pi / 2$, let $p \geqq r$, and set

$$
\mu(f, r)(x)=\left(\int_{0}^{\infty}\left|\exp (-\omega|c|) D^{i c} f(x)\right|^{r} d c\right)^{1 / r}
$$

Then $\|\mu(f, r)\|_{p} \leqq A(p, r, \omega)\|f\|_{p}$.
Proof. By Theorems 1.1 and 1.3, $\left\|D^{i c} f\right\|_{p} \leqq A(p, \eta) \exp (\eta|c|)\|f\|_{p}$ where $\eta>\pi / 2$ and $\eta-\pi / 2$ is arbitrarily small. Minkowski's integral inequality implies that $\|\mu(f, r)\|_{p} \leqq A(p, r, \omega)\|f\|_{p}$ if $p \geqq r$.

In the next section we shall study another semigroup which consists of smoothing operators.
2. Bessel potentials. In §III let K_{t} be the semigroup P_{t}, the Poisson integral. Then for $r>0, L_{r}{ }^{\alpha}=J_{r}{ }^{\alpha}$ is the semigroup of Bessel potentials. The following theorem restates the main properties of $L_{r}{ }^{\alpha}$ for $J_{r}{ }^{\alpha}$.

Theorem 2.1. $J_{r}{ }^{\alpha}$ is an analytic semigroup of bounded operators in $|\arg (\alpha)|<\pi / 2$ and J_{r}^{α} is a strongly continuous semigroup in $\operatorname{Re}(\alpha) \geqq 0$. For $\operatorname{Re}(\alpha) \geqq 0, J_{r}{ }^{\alpha}$ is the α th Komatsu power of $J_{r}{ }^{1}, J_{r}{ }^{\alpha}$ is one-to-one, and the range of $J_{r}{ }^{\alpha}$ is dense in $L_{p}(H)$.

Definition. Let $L_{p}{ }^{\alpha}(H)$ be $R\left(J_{1}{ }^{\alpha}\right)$ with the norm $\|g\|_{p, \alpha}=\|f\|_{p}$ when $g=J^{\alpha} f=J_{1}{ }^{\alpha} f$.

Corollary 2.2. If $\operatorname{Re}(\alpha)=\operatorname{Re}(\beta), L_{p}{ }^{\alpha}(H)=L_{p}{ }^{\operatorname{Re}(\beta)}(H)$ with equivalent norms.

This corollary follows from the fact that $J^{i c}$ is a bounded operator with a bounded inverse. We shall see soon that $L_{p}{ }^{\alpha}(H)$ could have been defined with any of the $J_{r}{ }^{\alpha}$ and an equivalent space of functions would have resulted. We want to show that $L_{p}{ }^{\alpha}(H)=D\left(T^{\alpha}\right)$ with equivalent norms when $D\left(T^{\alpha}\right)$ is equipped with the graph norm; $(-T)$ is the infinitesimal generator of the Poisson integral. To do this we shall study the semigroup $(r+T)^{\alpha} J_{u}{ }^{\alpha}$ when $r \geqq 0$ and $u>0$.

Theorem 2.3. $(r+T)^{\alpha} J_{u}{ }^{\alpha}$ is an analytic semigroup of bounded operators on $L_{p}(H)$ in $|\arg (\alpha)|<\pi / 2$ and a strongly continuous semigroup of bounded operators on $L_{p}(H)$ in $\operatorname{Re}(\alpha) \geqq 0$ for $r \geqq 0$ and $u>0$. If $\operatorname{Re}(\alpha) \leqq n$,

$$
\left\|(r+T)^{\alpha} J_{u}{ }^{\alpha}\right\|_{p} \leqq A(p) \exp (2 \pi|\operatorname{Im}(\alpha)|)\left[u^{-1}(u+|r-u|)\right]^{n}
$$

Proof. $\quad(r+T) J_{u}{ }^{1}=I-(r-u) J_{u}{ }^{1} \quad$ so that $\left\|(r+T)^{n} J_{u}{ }^{n}\right\|_{p} \leqq$ $\left(u^{-1}(u+|r-u|)\right)^{n}$. By Theorem III.2.2 and Corollary III.2.8,

$$
\begin{aligned}
\left\|(r+T)^{i c} J_{u}{ }^{i c}\right\|_{p} & \leqq A^{2} p^{2} q^{2}(|c|+1)^{4}|\Gamma(i c+1)|^{-2} \\
& \leqq A(p) \exp (2 \pi|\operatorname{Im}(\boldsymbol{\alpha})|)
\end{aligned}
$$

By Proposition 6.3 of $[17-\mathrm{I}],(r+T)^{\alpha} J_{u}{ }^{\alpha}=\left[(r+T)(u+T)^{-1}\right]^{\alpha}$ for
$\operatorname{Re}(\alpha)>0$, so that by Proposition 8.2 of $[17-\mathrm{I}]$ and by K-6, $(r+T)^{\alpha} J_{u}{ }^{\alpha}$ is an analytic semigroup in $|\arg (\alpha)|<\pi / 2$. Strong continuity on $\operatorname{Re}(\alpha) \geqq 0$ follows from the strong continuity of $(r+T)^{i c} J_{u}{ }^{i c}$ and the strong continuity of $(r+T)\left(u+T^{-1}\right)^{t}$ in $t \geqq 0$. By Stein's interpolation theorem,

$$
\left\|(r+T)^{\alpha} J_{u}{ }^{\alpha}\right\|_{p} \leqq A(p) \exp (2 \pi|\operatorname{Im}(\alpha)|)\left(u^{-1}(u+|r-u|)\right)^{n}
$$

when $\operatorname{Re}(\boldsymbol{\alpha}) \leqq n$.
Remark. An exact computation can be used to show that $(r+T)^{\alpha} J_{u}{ }^{\alpha}$ is given by convolution with a finite Borel measure if $\operatorname{Re}(\alpha)>0$. See [7] where this is done for $r=0$ and $u=1$.

Since $J^{i c}$ is bounded and invertible and since $T^{i c}$ is bounded and invertible, $L_{p}{ }^{\alpha}(H)=L_{p}{ }^{\operatorname{Re}(\alpha)}(H)$ and $D\left(T^{\alpha}\right)=D\left(T^{\operatorname{Re}(\alpha)}\right)$. Thus to prove that $L_{p}{ }^{\alpha}(H)=D\left(T^{\alpha}\right)$, it suffices to verify this equivalence for real α.

Theorem 2.4. $L_{p}{ }^{\alpha}(H)=D\left(T^{\alpha}\right)$ with equivalent norms for $\operatorname{Re}(\alpha) \geqq 0$.
Proof. It will be sufficient to prove equivalence when α is real. For $f \in L_{p}{ }^{\alpha}(H),\|f\|_{p, \alpha}=\left\|(1+T)^{\alpha} f\right\|_{p}$. Thus

$$
\begin{aligned}
\|f\|_{p}+\left\|T^{\alpha} f\right\|_{p} & \leqq\|f\|_{p}+\left\|T^{\alpha} J^{\alpha}(1+T)^{\alpha} f\right\|_{p} \\
& \leqq\left\|J^{\alpha}(1+T)^{\alpha} f\right\|_{p}+\left\|T^{\alpha} J^{\alpha}(1+T)^{\alpha} f\right\|_{p} \\
& \leqq\left(1+\left\|T^{\alpha} J^{\alpha}\right\|_{p}\right)\left\|(1+T)^{\alpha} f\right\|_{p} \\
& \leqq A(\alpha, p)\|f\|_{p, \alpha}
\end{aligned}
$$

by Theorem 2.3, and $L_{p}{ }^{\alpha}(H) \subset D\left(T^{\alpha}\right)$.
Let $f \in D\left(T^{\alpha}\right)$ and suppose first that $0 \leqq \alpha \leqq 1$. Then $(1+T)^{\alpha} f$ $=T^{\alpha} f+B f$ where B is a bounded operator of $L_{p}(H)$. For

$$
\begin{aligned}
(1+T)^{\alpha} f= & \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{\alpha-1}(T+1)(t+1+T)^{-1} f d t \\
= & \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{\alpha-1}(t+1+T)^{-1} f d t \\
& +\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{\alpha-1} T(t+1+T)^{-1} f d t
\end{aligned}
$$

Since $\left\|(t+1+T)^{-1}\right\| \leqq A(t+1)^{-1}$, the first integral on the right represents a bounded operator on $L_{p}(H)$. By the resolvent equation $(t+1+T)^{-1}-(t+T)^{-1}=-(t+1+T)^{-1}(t+T)^{-1}$. Thus

$$
\begin{aligned}
& \frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{\alpha-1} T(t+1+T)^{-1} f d t \\
& \quad=T^{\alpha} f-\frac{\sin (\pi \alpha)}{\pi} \int_{0}^{\infty} t^{\alpha-1} T(t+T)^{-1}(t+1+T)^{-1} f d t
\end{aligned}
$$

Since $\left\|T(t+T)^{-1}\right\| \leqq A$ and $\left\|(t+1+T)^{-1}\right\| \leqq A(t+1)^{-1}$, the last integral on the right represents a bounded operator on $L_{p}(H)$. Thus if $\quad 0 \leqq \alpha<1, \quad\|f\|_{p, \alpha}=\left\|(1+T)^{\alpha} f\right\|_{p} \leqq\|B f\|_{p}+\left\|T^{\alpha} f\right\|_{p}$ $\leqq A(p, \alpha)\left(\|f\|_{p}+\left\|T^{\alpha} f\right\|_{p}\right)$. For $\alpha=n+\partial, 0 \leqq \partial<1, n$ a positive integer, $\quad(1+T)^{\alpha}=(1+T)^{n}\left(T^{\partial}+B\right)=\sum_{k=0}^{n} A_{k} T^{k}+\sum_{k=0}^{n} B_{k} T^{k+a}$ where the A_{k} and the B_{k} are bounded operators on $L_{p}(H)$. By Theorem 6.5 of $[17-\mathrm{I}], D\left(T^{\alpha}\right) \subset D\left(T^{\beta}\right)$ continuously for $\beta \leqq \alpha$, so that

$$
\left\|(1+T)^{\alpha} f\right\|_{p} \leqq A(p, \alpha)\left(\|f\|_{p}+\left\|T^{\alpha} f\right\|_{p}\right) \quad \text { and } \quad D\left(T^{\alpha}\right) \subset L_{p}^{\alpha}(H)
$$

3. Directional derivatives. Let $h \in H$ and let A_{h} denote the infinitesimal generator of the translation semigroup $T_{t B h}$. We shall study the semigroup $\left(-A_{h}\right)^{\alpha} J^{\alpha}$ for $\operatorname{Re}(\alpha) \geqq 0$ when J^{α} is the Bessel potential of order $\boldsymbol{\alpha} ; J^{\alpha}=J_{1}{ }^{\alpha}$.

Proposition 3.1. $\left(-A_{h}\right)^{i c} J^{i c}$ is a strongly continuous group of bounded operators on $L_{p}(H) .\left\|\left(-A_{h}\right)^{i c} J^{i c}\right\|_{p} \leqq A(p) \exp (2 \pi|c|)$.

Proof. $\left(-A_{h}\right)^{i c}$ and $J^{i c}$ are strongly continuous groups of bounded operators by Corollary III.3.2 and Corollary III.2.7. Since Theorems III.2.2 and III.3.1 give estimates for the norm of each of these operators of the form $A p q(|c|+1)^{2}|\Gamma(1+i c)|^{-1}$, and since $|\Gamma(i c)|=$ $(\pi)^{1 / 2}(c \sinh (\pi c))^{-1 / 2}$, we have the desired estimate for $\left(-A_{h}\right)^{i c} J^{i c}$.

Proposition 3.2. $A_{h} J$ is a bounded operator on $L_{p}(H)$.
Proof. The proof requires the following useful lemma.
Lemma 3.3. If f is in $L_{p}(H), 1<p<\infty$, and if $\varphi(t)$ is the Fourier transform of a bounded, even, Borel measure μ on the real line, then

$$
\Phi_{A}(f)=\lim _{\epsilon \rightarrow 0} \int_{|t|>\epsilon} T_{t y} f \varphi\left(t A^{-1}\right) d t / t
$$

satisfies $\left\|\Phi_{A}(f)\right\|_{p} \leqq N(p)\|\mu\|\|f\|_{p}$ where the constant $N(p)$ is independent of A and y in H.

Proof. First set

$$
\left(T_{A} f\right)(x)=\lim _{\epsilon \rightarrow 0} \int_{|t|>\epsilon} f(x-t) \varphi\left(t A^{-1}\right) d t / t
$$

for f in $L_{p}[(-\infty, \infty), d x]$. Then for smooth f with compact
support

$$
\left(T_{A} f\right)(x)=\int_{-\infty}^{\infty} e^{i u x} \lim _{\epsilon \rightarrow 0} \int_{|y|>\epsilon} f(x-y) e^{i u(y-x)} \frac{d y}{y} d \mu_{A}(u)
$$

where $\mu_{A}(E)=\mu(A E)$ for Borel sets E in the real line. By the M. Riesz theorem on the Hilbert transform, $\left\|T_{A} f\right\|_{p} \leqq N(p)\|\mu\|\|f\|_{p}$, since $\|\mu\|=\left\|\mu_{A}\right\|$ for all $|A|>0 ; N(p)$ depends only on p.

Let f be a bounded continuous tame function on H which is based in the finite dimensional subspace E of H; dimension of $E=k$. Since the normal distribution on H is rotationally invariant, let K be the span of E and y and let e_{1}, \cdots, e_{k+1} be an orthonormal basis for K with $e_{1}=\omega=y\|y\|^{-1}$. Then

$$
\begin{aligned}
& \| \int_{\delta<|t|<\rho} T_{t y} f \varphi\left(t A^{-1}\right) d t / t \|_{p}^{p} \\
&=\int_{K} \mid \int_{\delta\| \|\|\leqq|t|<\rho\| y \|} g(x-t \omega) D_{p}(x, t \omega) \\
& \cdot \varphi\left(t\|y\|^{-1} A^{-1}\right) d t /\left.t\right|^{p} d n(x)
\end{aligned}
$$

where g is the restriction of f to K and where $D_{p}(x, t \omega)=$ $\exp \left[(x, t \omega) / p-t^{2} / 2 p\right]$. If we write the integral over K as an iterated integral and write the first integral as

$$
\begin{aligned}
& M \int_{-\infty}^{\infty} \mid \int_{\delta\| \| y\||t|<\rho\| y \|} g\left(x_{1}-t, x_{2}, \cdots, x_{k+1}\right) \\
& \cdot \exp \left[-\frac{\left(x_{1}-t\right)^{2}}{2 p}\right] \varphi\left(t\|y\|^{-1} A^{-1}\right) d t /\left.t\right|^{p} d x_{1}
\end{aligned}
$$

it follows from the discussion of T_{A} over $(-\infty, \infty)$ in the first paragraph of this proof and from the dominated convergence theorem that $\left\|\Phi_{A}(f)\right\|_{p} \leqq N(p)\|\mu\|\|f\|_{p}$, the desired conclusion.

Proof of Proposition 3.2. By P-3 of §II.3,

$$
A_{h} H_{t} 2(f)=t^{-1} \int_{H_{B}} T_{t B y} f C_{h}(1)(y) d n_{1}(y)
$$

where C_{h} is the infinitesimal generator of $T_{s h}$ acting on $L_{1}\left(H, n_{1}\right)$. Since A_{h} is a closed operator,

$$
A_{h} J(f)=\int_{0^{+}}^{\infty} \int_{H_{B}} T_{t B y} f C_{h}(1)(y) d n_{1}(y) \varphi(t) d t / t
$$

where

$$
\varphi(t)=t^{-2} \int_{0}^{\infty} z \exp \left(-z^{2} t^{-2}\right) e^{-z} d z, \quad t>0
$$

Since $C_{h}(1)(y)$ is a homogeneous polynomial of degree 1 in y, this last integral may be written as

$$
\left.A_{h} J(f)=\frac{1}{2} \lim _{\epsilon \rightarrow 0} \int_{|t|>\epsilon} \int_{H_{B}} T_{t B y} f C_{h}(1)(y) d n_{1}(y) \varphi(t) d t \right\rvert\, t
$$

when $\varphi(t)=\varphi(-t)$ for negative t. By Minkowski's integral inequality,

$$
\left\|A_{h} J f\right\|_{p} \leqq M \int_{H_{B}}\left\|\Phi_{\|B y\|}(f)\right\|_{p}\left|C_{h}(1)(y)\right| d n_{1}(y) \leqq N(p)\|\mu\|\|f\|_{p}
$$

by Lemma 3.3, if $\varphi(t)$ is the Fourier transform of a finite even Borel measure μ on the real line. Note that $\varphi(t)$ is even by definition and that, on $t>0$,

$$
\varphi(t)=\int_{0}^{\infty} z \exp \left[-z^{2}-t z\right] d z
$$

so that $\varphi^{\prime}(t) \leqq 0$ and $\varphi^{\prime \prime}(t)>0$. Thus Polya's criterion [3, p. 169] guarantees that $\varphi(t)$ is the Fourier transform of a finite even Borel measure on the line.

Theorem 3.4. $\left(-A_{h}\right)^{\alpha} J^{\alpha}$ is an analytic semigroup of bounded operators on $L_{p}(H)$ in $|\arg (\alpha)|<\pi / 2$ and $\left(-A_{h}\right)^{\alpha} J^{\alpha}$ is a strongly continuous semigroup in $\operatorname{Re}(\alpha) \geqq 0$. For $\operatorname{Re}(\alpha) \leqq n$,
$\left\|\left(-A_{h}\right)^{\alpha} J^{\alpha}\right\|_{p} \leqq A(p)\|h\|^{\mathrm{Re}(\alpha)} \exp (2 \pi|\operatorname{Im}(\alpha)|)\left(1+\left\|A_{\omega} J\right\|_{p}\right)^{n}, \quad\|\omega\|=1$.
Proof. If $f \in D\left(A_{h}{ }^{N}\right)$ for $N>\operatorname{Re}(\alpha),\left(-A_{h}\right)^{\alpha} J^{\alpha} f$ is analytic in $0<\operatorname{Re}(\alpha)<N$ by Theorem 8.2 of [17-I]. Since $D\left(A_{h}{ }^{N}\right)$ is dense in $L_{p}(H)$, Stein's interpolation theorem applies if we set $U_{z}=$ $\left(-A_{h}\right)^{n+z} J^{n+z}$ when n is a nonnegative integer and $0 \leqq \operatorname{Re}(z) \leqq 1$. Then the boundedness of $\left(-A_{h}\right)^{i c} J^{i c}$ and the boundedness of $\left(-A_{h}\right)^{n} J^{n}$ $=\left(-A_{h} J\right)^{n}$ imply that $\left\|U_{t}\right\|_{p} \leqq A(t, p) \leqq A(n, p)$. Since $\left(-A_{h}\right)^{\alpha}=$ $\left(-\|h\| A_{\omega}\right)^{\alpha}=\|h\|^{\alpha}\left(-A_{\omega}\right)^{\alpha},\|\omega\|=1$, and since $\left(-A_{h}\right)^{\alpha} J^{\alpha}=\left(-A_{h}\right)^{t} J^{t}$ $\left(-A_{h}\right)^{i c} J^{i c}$ when $\alpha=t+i c$, we have boundedness for $\left(-A_{h}\right)^{\alpha} J^{\alpha}$ if $\operatorname{Re}(\alpha) \geqq 0$. Set $\mathrm{S}_{\alpha}=\left(-A_{h}\right)^{\alpha} J^{\alpha}$. Then if $f \in L_{p}(H)$,

$$
\begin{aligned}
\left\|\mathrm{S}_{t} f-f\right\|_{p} & \leqq\left\|\mathrm{~S}_{t} f-\mathrm{S}_{t} J^{\epsilon} f\right\|_{p}+\left\|\mathrm{S}_{t} J^{\epsilon} f-J^{\epsilon} f\right\|_{p}+\left\|J^{\epsilon} f-f\right\|_{p} \\
& \leqq A(p)\left\|J^{\epsilon} f-f\right\|_{p}+\left\|\mathrm{S}_{t} J^{\epsilon} f-J^{\epsilon} f\right\|_{p}
\end{aligned}
$$

since $\left\|S_{t}\right\|$ is bounded on $0<t<1$. Let $\delta>0$ and take ϵ sufficiently small that $\left\|J^{\epsilon} f-f\right\|_{p}<\delta$. Let $t<\epsilon$; then $J^{\epsilon} f \in D\left(\left(-A_{h}\right)^{t}\right)$ and $\lim _{t \rightarrow 0^{+}}\left\|S_{t} J^{\epsilon} f-J^{\epsilon} f\right\|_{p}=0$. Thus S_{t} is strongly continuous in $t \geqq 0$. Let N be a positive integer and let $0<\operatorname{Re}(\boldsymbol{\alpha})<N$. If
$f \in D\left(A_{h}{ }^{N}\right), \mathrm{S}_{\alpha} f$ is analytic in $\operatorname{Re}(\boldsymbol{\alpha})<N$ by Theorem 8.2 of [17-I]. For any $f \in L_{p}(H)$, let $\left\{f_{n}\right\} \subset D\left(A_{h}{ }^{N}\right)$ converge to f in $L_{p}(H)$. Since $\left\|\left(-A_{h}\right)^{\alpha} J^{\alpha}\right\|_{p}$ is bounded in $\operatorname{Re}(\boldsymbol{\alpha}) \leqq N,|\operatorname{Im}(\boldsymbol{\alpha})| \leqq A<\infty, \mathrm{S}_{\alpha} f$ is a uniform limit of analytic functions so that $\mathrm{S}_{\alpha} f$ is analytic in $\operatorname{Re}(\alpha)>0$. If $|\arg (\alpha)| \leqq \Theta<\pi / 2, \alpha=t+i c$,

$$
\begin{aligned}
\left\|S_{\alpha} f-f\right\|_{p} & \leqq\left\|S_{\alpha} f-\mathrm{S}_{t} f\right\|_{p}+\left\|\mathrm{S}_{t} f-f\right\|_{p} \\
& \leqq A(p, t)\left\|\mathrm{S}_{i c} f-f\right\|_{p}+\left\|\mathrm{S}_{t} f-f\right\|_{p}
\end{aligned}
$$

Since both S_{t} and $S_{i c}$ are both strongly continuous semigroups, if $\alpha \rightarrow 0$ in $|\arg (\alpha)| \leqq \Theta<\pi / 2, \mathrm{~S}_{\alpha} f$ tends to $f . \mathrm{S}_{\alpha}$ is an analytic semigroup in $|\arg (\alpha)|<\pi / 2$ and S_{α} is strongly continuous in $\operatorname{Re}(\boldsymbol{\alpha}) \geqq 0$. Stein's interpolation theorem gives the desired estimate for $\left\|S_{\alpha}\right\|_{p}$.

Corollary 3.5. Let $r>0 .\left(-A_{h}\right)^{\alpha} J_{r}{ }^{\alpha}$ is an analytic semigroup of bounded operators on $L_{p}(H)$ in $|\arg (\alpha)|<\pi / 2$ and $\left(-A_{h}\right)^{\alpha} J_{r}{ }^{\alpha}$ is a strongly continuous semigroup in $\operatorname{Re}(\boldsymbol{\alpha}) \geqq 0$. For $\operatorname{Re}(\alpha) \leqq N$,

$$
\left\|\left(-A_{h}\right)^{\alpha} J_{r^{\alpha}}\right\|_{p} \leqq A(N, p) \exp (2 \pi|\operatorname{Im}(\alpha)|)\left(r^{-1}(r+|r-1|)\right)^{N}
$$

Proof. Since $\left(-A_{h}\right)^{\alpha} J_{r}^{\alpha}=\left(-A_{h}\right)^{\alpha} J^{\alpha}\left[(1+T)^{\alpha} J_{r}^{\alpha}\right]$, and since $\left(-A_{h}\right)^{\alpha} J^{\alpha}$ and $(1+T)^{\alpha} J_{r}{ }^{\alpha}$ have the properties of analyticity and continuity, $\left(-A_{h}\right)^{\alpha} J_{r}{ }^{\alpha}$ has these properties. The estimate follows from Theorems 2.3 and 3.4.

Corollary 3.6. There is a constant $A_{1}(t, p)$ such that

$$
\left\|(\partial / \partial t)\left[\left(-A_{h}\right)^{t} J^{t}(f)\right]\right\|_{p} \leqq t^{-1} A_{1}(p, t)(1+|\log \|h\||)\|h\|^{t}\|f\|_{p}
$$

$A_{1}(p, t)$ is bounded for $0 \leqq t \leqq N<\infty$. Furthermore,

$$
(\partial / \partial t)\left[\left(-A_{h}\right)^{t+i c} J^{t+i c}(f)\right]=-i(\partial / \partial c)\left[\left(-A_{h}\right)^{t+i c} J^{t+i c}(f)\right]
$$

Proof. The last derivative formula is a consequence of the analyticity of $\left(-A_{h}\right)^{\alpha} J^{\alpha}$ in $\operatorname{Re}(\boldsymbol{\alpha})>0$. Set $S_{t}=\left(-A_{\eta}\right)^{t} J^{t}$ for $\eta=h\|h\|^{-1}$ and
 $M=M(\omega)$, and $e^{-\omega t} S_{t}=U_{t}$ is a bounded, strongly continuous semigroup in $t \geqq 0$ which extends to an analytic semigroup in $|\arg (\boldsymbol{\alpha})|<$ $\pi / 2$. By K-11 of $\S I I-2,\left\|(\partial / \partial t) U_{t}\right\| \leqq N / t$ where N is a finite constant. Thus $\left\|(\partial / \partial t) S_{t}\right\| \leqq\left(M_{1} / t\right) \exp \left(\omega_{1} t\right)$ for $\omega_{1}>\omega>\omega_{0}$. Since $\left(-A_{h}\right)^{t} J^{t}=\|h\|^{t} S_{t}$, the desired estimate of $\left\|(\partial / \partial t)\left[\left(-A_{h}\right)^{t} J^{t}\right]\right\|$ holds.
4. Riesz operators. If $(-T)$ denotes the infinitesimal generators of the Poisson integral and if A_{h} denotes the infinitesimal generator of the translation semigroup $T_{t B h}, t>0$, then $\left(-A_{h}\right) T^{-1}$ is the Riesz operator for the direction h. We shall consider the semigroup $\left(-A_{h}\right)^{\alpha} T^{-\alpha}$ for $\operatorname{Re}(\alpha) \geqq 0$. Since P_{z} is an analytic semigroup in $|\arg (z)|<\pi / 4, \quad T^{-\alpha} f=\lim _{N \rightarrow \infty} \Gamma(\alpha)^{-1} \int_{0}^{N} P_{t}(f) t^{\alpha-1} d t$ for each f in
$D\left(T^{-\alpha}\right)$ by Theorem 6.3 of [17-III].
Theorem 4.1. $\left(-A_{h}\right)^{\alpha} T^{-\alpha}$ is an analytic semigroup of bounded operators on $L_{p}(H)$ for $|\arg (\alpha)|<\pi / 2 .\left(-A_{h}\right)^{\alpha} T^{\alpha}$ is strongly continuous in $\operatorname{Re}(\alpha) \geqq 0$. For $\operatorname{Re}(\alpha) \leqq n$,

$$
\left\|\left(-A_{h}\right)^{\alpha} T^{-\alpha}\right\|_{p} \leqq A(p)\|h\|^{\operatorname{Re}(\alpha)} \exp (2 \pi|\operatorname{Im}(\alpha)|)\left(1+\left\|A_{\omega} T^{-1}\right\|_{p}\right)^{n}
$$

when $\omega=-h\|h\|^{-1}$.
Proof. $\left(-A_{h}\right)^{i c} T^{-i c}$ is a strongly continuous group of bounded operators on $L_{p}(H)$ since both $\left(-A_{h}\right)^{i c}$ and $T^{-i c}$ have this property by Corollary III.3.2. By Theorem III.3.1, $\left\|\left(-A_{h}\right)^{i c} T^{-i c}\right\|_{p} \leqq$ $A(p) \exp (2 \pi|\operatorname{Im}(\alpha)|)$.

Let $f \in D\left(A_{h}\right) \cap R(T)$, then

$$
\begin{aligned}
A_{h} T^{-1} f & =\int_{0}^{\infty} A_{h} P_{y}(f) d y=\int_{0}^{\infty} \int_{0^{+}}^{\infty} A_{h} H_{t} 2(f) N_{t} 2(y) \frac{d t}{t} d y . \\
U_{h}(f) & =\int_{0^{+}}^{\infty} A_{h} H_{t} 2(f) d t \\
& =\frac{1}{2} \int_{\tilde{H}} P \int_{-\infty}^{\infty} T_{t B y} f \frac{d t}{t} C_{h}(1)(y) d N(y)
\end{aligned}
$$

by P-3 of §II-3. Lemma 3.3 and Minkowski's integral inequality show that $\left\|U_{h}\right\|_{p} \leqq A(p)\|h\|$. Since the operators $\int_{\epsilon \leqq|t| \leqq R} T_{t B y} f d t / t$ are uniformly bounded in ϵ and R, we may interchange integrals above and write $A_{h} T^{-1} f=K U_{h}(f)$. Thus $\left\|A_{h} T^{-1}\right\|_{p} \leqq A(p)\|h\|$. Now apply Stein's interpolation theorem to the family of operators $U_{z}=\left(-A_{h}\right)^{n+z} T^{-(n+z)}$; the boundedness of the operators $\left(-A_{h}\right)^{\alpha} T^{-\alpha}$ follows.
To see that $\left(-A_{h}\right)^{\alpha} T^{-\alpha}(f)$ is analytic in $\operatorname{Re}(\alpha)>0$, let $f \in R(T)$, $f=T g$, and consider

$$
\begin{aligned}
&\left(-A_{h}\right)^{\alpha} T^{-\alpha}(f)-\left(-A_{h}\right)^{\alpha} J_{r}^{\alpha}(f) \\
&= \Gamma(\alpha)^{-1} \int_{0^{+}}^{\infty}\left(-A_{h}\right)^{\alpha} P_{t}(f) t^{\alpha-1}\left(1-e^{-r t}\right) d t \\
& \quad= \Gamma(\alpha)^{-1} \int_{0^{+}}^{\infty}\left(-A_{h}\right)^{\alpha} P_{t}(f) t^{\alpha} \int_{0}^{r} e^{-u t} d u d t \\
& \quad=\alpha \int_{0}^{r}\left(-A_{h}\right)^{\alpha} J_{u}^{\alpha+1}(f) d u \\
& \quad=\int_{0}^{r} \alpha\left(-A_{h}\right)^{\alpha} T^{-\alpha} T^{\alpha+1} J_{u}^{\alpha+1}(g) d u
\end{aligned}
$$

Since $\left\|\left(-A_{h}\right)^{\alpha} T^{-\alpha}\right\|_{p} \leqq A(p, \alpha)\|h\|^{\operatorname{Re}(\alpha)} \leqq A<\infty \quad$ for $0 \leqq \operatorname{Re}(\alpha) \leqq N$ and $|\operatorname{Im}(\alpha)| \leqq \Gamma<\infty$, and since $\left\|T^{\alpha+1} J_{u}^{\alpha+1}\right\|_{p} \leqq A(p, \alpha)<A$ (independent of u) for $0 \leqq \operatorname{Re}(\boldsymbol{\alpha}) \leqq N$ and $|\operatorname{Im}(\boldsymbol{\alpha})| \leqq \Gamma<\infty$,

$$
\left\|\left(-A_{h}\right)^{\alpha} T^{-\alpha} f-\left(-A_{h}\right)^{\alpha} J_{r}^{\alpha}(f)\right\|_{p} \leqq r A\|g\|_{p}
$$

for α in a compact subset of the right half-plane. Thus $\left(-A_{h}\right)^{\alpha} J_{r}{ }^{\alpha} f$ converges uniformly on compact subsets of $\operatorname{Re}(\alpha)>0$ to $\left(-A_{h}\right)^{\alpha} T^{-\alpha} f$ as $r \rightarrow 0^{+}$and $\left(-A_{h}\right)^{\alpha} T^{-\alpha} f$ is analytic in $\operatorname{Re}(\boldsymbol{\alpha})>0$ if $f \in R(T)$. Since $R(T)$ is dense in $L_{p}(H)$ and since $\left\|\left(-A_{h}\right)^{\alpha} J_{r}{ }^{\alpha}\right\|_{p} \leqq$ $\left\|\left(-A_{h}\right)^{\alpha} T^{-\alpha}\right\|_{p}\left\|T^{\alpha} J_{r}\right\|_{p} \leqq A<\infty$ if α is in a compact subset of the right half-plane, for $r>0$, an $\epsilon / 3$-argument shows that $\left(-A_{h}\right)^{\alpha} T^{-\alpha}(f)$ is analytic in $\operatorname{Re}(\boldsymbol{\alpha})>0$ for all f in $L_{p}(H)$. To see that $S_{t}=$ $\left(-A_{h}\right)^{t} T^{-t}$ is strongly continuous in $t \geqq 0$, let $f \in R(T)$ and write

$$
\left\|S_{t} f-f\right\|_{p} \leqq\left\|S_{t} f-\left(-A_{h}\right)^{t} J_{r}^{t} f\right\|_{p}+\left\|\left(-A_{h}\right)^{t} J_{r}{ }^{t} f-f\right\|_{p}
$$

let $\epsilon>0$ and take r sufficiently small that $\left\|S_{t} f-\left(-A_{h}\right)^{t} J_{r}{ }^{t} f\right\|_{p}<\epsilon$ for $0 \leqq t \leqq 1 ; \quad\left\|\left(-A_{h}\right)^{t} J_{r}{ }^{t} f-f\right\|_{p}$ tends to zero as $t \rightarrow 0$. Since $R(T)$ is dense in $L_{p}(H)$ and since S_{t} is bounded on $0 \leqq t \leqq 1, S_{t}$ is strongly continuous. Since S_{t} and $S_{i c}$ are strongly continuous, S_{α} has the required continuity properties.
5. A characterization of $L_{p}{ }^{\alpha}(H)$. We know that $L_{p}{ }^{\alpha}(H)$ is equivalent to $D\left(T^{\alpha}\right)$ and that if $f \in L_{p}{ }^{\alpha}(H)$, then $\left(-A_{h}\right)^{\alpha} f$ is in $L_{p}(H)$ for all $h \in H \quad$ with $\quad\left\|\left(-A_{h}\right)^{\alpha} f\right\|_{p} \leqq A(p, \alpha)\|h\|^{\operatorname{Re}(\alpha)}\|g\|_{p} \quad$ when $\quad f=J^{\alpha} g$. We shall prove a converse of this last fact.

Let B be the one-one Hilbert-Schmidt operator in the definition of the Poisson integral and let $G: H^{*} \rightarrow$ Borel measurable functions on H_{B} denote the Wiener space representative for the normal distribution on H. Let p^{\prime} be a Borel probability measure on H_{B} such that $P_{t} f=$ $\int_{H_{B}} T_{t B y} f d p^{\prime}(y)$. In [12] it is shown that such a measure p^{\prime} exists.

Theorem 5.1. Let $f \in L_{p}(H)$ and suppose that $\varphi(y)=\left(-A_{y}\right)^{\alpha} f$ is a Borel measurable function from H_{B} to $L_{p}(H)$ such that $\int_{H_{B}}\left(-A_{y}\right)^{\alpha} f d p^{\prime}(y)$ is in $L_{p}(H)$. Then f is in $L_{p}{ }^{\alpha}(H)$.

Proof. By Theorem 4.4 of [17-II], if $0<\operatorname{Re}(\alpha) \leqq m$ and if $f \in D\left(\left(-A_{y}\right)^{\alpha}\right)$,

$$
\left(-A_{y}\right)^{\alpha} f=K(\alpha, m)^{-1} \int_{0^{+}}^{\infty}\left(I-T_{t B y}\right)^{m} f t^{-\alpha-1} d t
$$

where $K(\alpha, m)=\int_{0^{+}}^{\infty}\left(1-e^{-t}\right)^{m} t^{-\alpha-1} d t$. Since $\left(-A_{y}\right)^{\alpha} f$ is p^{\prime}-measurable and $\int_{H_{B}}\left(-A_{y}\right)^{\alpha} f d p^{\prime}(y) \in L_{p}(H)$,

$$
\begin{aligned}
T^{\alpha} f & =K(\alpha, m)^{-1} \int_{0^{+}}^{\infty}\left(I-P_{t}\right)^{m} f t^{-\alpha-1} d t \\
& =K(\alpha, m)^{-1} \int_{0^{+}}^{\infty} \int_{H_{B}}\left(I-T_{t B y}\right)^{m} f d p^{\prime}(y) t^{-\alpha-1} d t \\
& =\int_{H_{B}}\left(-A_{y}\right)^{\alpha} f d p^{\prime}(y)
\end{aligned}
$$

and $f \in D\left(T^{\alpha}\right)$ which is equivalent to $L_{p}{ }^{\alpha}(H)$.
V. Singular integrals. In this section we shall use the analytic semigroups of §IV to study the singular integrals of CalderonZygmund, Muckenhoupt, and Wheeden. Let $T_{t B y}$ denote the translation semigroup for the direction $B y$ and let A_{y} denote its infinitesimal generator. Let n be a nonnegative integer and set

$$
\begin{array}{rlrl}
R_{n}(f, y, t) & =(n!)^{-1} \int_{0}^{t}(t-u)^{n} T_{u B y} A_{y}^{n+1} f d u & \\
& =\Gamma(n)^{-1} \int_{0}^{t}(t-u)^{n-1}\left[T_{u B y} A_{y}^{n} f-A_{y}{ }^{n} f\right] d u & & \text { if } n \geqq 1 \\
& =T_{t B y} f-f & & \text { if } n=0
\end{array}
$$

Let μ be a Borel measure (possibly unbounded) on H such that $d \mu_{\alpha}(y)=\|y\|^{\alpha} d \mu(y)$ is finite and has zero mass at $y=0$ and set

$$
G^{\alpha}(f)=\int_{0^{+}}^{\infty} \int_{H} R_{n}(f, y, t) d \mu(y) t^{-\alpha-1} d t
$$

when $0 \leqq n \leqq \operatorname{Re}(\alpha)<n+1$. The operators G^{α} include the classes of singular integral operators mentioned above when μ is suitably restricted. We shall state three theorems regarding these operators. The proofs will be given after all of the theorems have been stated.

Theorem 1. Let μ be a Borel measure on H such that $\int_{H}\|y\|^{\operatorname{Re}(\alpha)} d|\mu|(y)<\infty$. If $n<\operatorname{Re}(\alpha)<n+1, \quad n \quad a \quad$ nonnegative integer, then

$$
G^{\alpha} J^{\alpha}(f)=\frac{-\pi}{\Gamma(\alpha+1) \sin (\pi \alpha)} \int_{H}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f) d \mu(y)
$$

when J^{α} is the Bessel potential of order $\alpha . G^{\alpha} J^{\alpha}$ is a bounded operator on $L_{p}(H)$ with norm

$$
\left\|G^{\alpha} J^{\alpha}\right\|_{p} \leqq A(p, \alpha) \int_{H}\|y\|^{\operatorname{Re}(\alpha)} d|\mu|(y)
$$

Theorem 2. Let $\operatorname{Re}(\alpha)=n$, a nonnegative integer, and let
$\operatorname{Im}(\alpha)=c \neq 0$. Suppose that $\int_{H}\|y\|^{n} d|\mu|(y)<\infty \quad$ and that $\int_{H} p_{n}(y) d \mu(y)=0$ for all Borel measurable functions $p_{n}(y)$ with $\left|p_{n}(y)\right| \leqq M\|y\|^{n}$ which are homogeneous of degree n. Then

$$
G^{\alpha} J^{\alpha}(f)=\frac{-\pi}{\Gamma(\alpha+1) \sin (\pi \alpha)} \int_{H}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f) d \mu(y)
$$

when J^{α} is the Bessel potential of order $\alpha . G^{\alpha} J^{\alpha}$ is a bounded operator on $L_{p}(H)$ with norm

$$
\left\|G^{\alpha} J^{\alpha}\right\|_{p} \leqq A(p, \alpha) \int_{H}\|y\|^{n} d|\mu|(y)
$$

Theorem 3. Let $\operatorname{Re}(\alpha)=n$, a positive integer, and let $\operatorname{Im}(\alpha)=0$. Suppose that $\int_{H}\left(\|y\|^{n+\epsilon}+\|y\|^{n-\epsilon}\right) d|\mu|(y)<\infty$ for all sufficiently small $\epsilon>0$ and suppose that $\int_{H} p_{n}(y) d \mu(y)=0$ for all Borel measurable functions $p_{n}(y)$ with $\left|p_{n}(y)\right| \leqq M\|y\|^{n}$ which are homogeneous of degree n. Then

$$
G^{n} J^{n}(f)=\left.\frac{(-1)^{n+1}}{n!} \int_{H} \frac{\partial}{\partial \alpha}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f)\right|_{\alpha=n} d \mu(y)
$$

when $J^{n}\left(J^{\alpha}\right)$ is the Bessel potential of order $n(\alpha) . G^{n} J^{n}$ is a bounded operator on $L_{p}(H)$ with norm

$$
\left\|G^{n} J^{n}\right\|_{p} \leqq A(p, n) \int_{H}(1+|\log \|y\||)\|y\|^{n} d|\mu|(y)
$$

Proof of Theorem 1. Set $\alpha=n+\beta$ where $0<\operatorname{Re}(\beta)<1$ and $R_{n}(f, y, t)=T_{t B y} f-f$ if $n=0$ and

$$
R_{n}(f, y, t)=\Gamma(n)^{-1} \int_{0}^{t}(t-u)^{n-1}\left(T_{u B y} A_{y}^{n} f-A_{y}^{n} f\right) d u \quad \text { if } n \geqq 1
$$

Since $A_{t y}^{n} f=t^{n} A_{y}{ }^{n} f, R_{n}(f, y, t)=R_{n}(f, t y, 1)$ and

$$
\int_{0^{+}}^{\infty}\left[T_{t u B y} A_{y}{ }^{n} J^{\alpha} f-A_{y}{ }^{n} J^{\alpha} f\right] t^{-\beta-1} d t=(-1)^{n} \Gamma(-\beta) u^{\beta}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f)
$$

by K-3. Since $\Gamma(n)^{-1} \int_{0}^{1}(1-u)^{n-1} u^{\beta} d u=\Gamma(\beta+1) \Gamma(\alpha+1)^{-1}$, we have that

$$
\begin{aligned}
G^{\alpha} J^{\alpha}(f) & =\frac{(-1)^{n} \Gamma(-\beta) \Gamma(\beta+1)}{\Gamma(\alpha+1)} \int_{H}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f) d \mu(y) \\
& =\frac{-\pi}{\Gamma(\alpha+1) \sin (\pi \alpha)} \int_{H}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f) d \mu(y)
\end{aligned}
$$

The estimate for the norm of $G^{\alpha} J^{\alpha}$ follows from Minkowski's integral inequality and Theorem IV.3.4.

Proof of Theorem 2. Since $\int_{H} p_{n}(y) d \mu(y)=0$ for measurable functions which are homogeneous of degree n and have $\left|p_{n}(y)\right| \leqq$ $M\|y\|^{n}, \int_{H} A_{y}{ }^{n} J^{\alpha} f d \mu(y)=0$ for all f in $L_{p}(H)$. Thus

$$
\int_{H} R_{n}\left(J^{\alpha} f, y, t\right) d \mu(y)=\int_{H} R_{n-1}\left(J^{\alpha} f, y, t\right) d \mu(y)
$$

Write

$$
R_{n-1}\left(J^{\alpha} f, y, t\right)=\Gamma(n)^{-1} \int_{0}^{t}(t-u)^{n-1} T_{u B y} A_{y}^{n} J^{\alpha}(f) d u
$$

Then $R_{n-1}\left(J^{\alpha} f, y, t\right)=R_{n-1}\left(J^{\alpha} f, t y, 1\right)$ and since $t^{-n} A_{t y}^{n}=A_{y}{ }^{n}$, we have that

$$
\begin{aligned}
& G^{\alpha} J^{\alpha}(f)=\int_{H} \int_{0^{+}}^{\infty} t^{-n} R_{n-1}\left(J^{\alpha} f, t y, 1\right) t^{-i c-1} d t d \mu(y) \\
& =\int_{0}^{1} \frac{(1-v)^{n-1} v^{i c}}{\Gamma(n)} \int_{H}\left[\lim _{\epsilon \rightarrow 0^{+}} \int_{\epsilon v}^{\infty} T_{u B y} A_{y}{ }^{n} J^{\alpha} f u^{-i c-1} d u\right. \\
& \left.\quad-\frac{(\epsilon v)^{-i c}}{i c} A_{y}^{n} J^{\alpha} f\right] d \mu(y) d v \\
& =\frac{(-1)^{n} \Gamma(-i c) \Gamma(1+i c)}{\Gamma(\alpha+1)} \int_{H}\left(-A_{y}\right)^{\alpha} J^{\alpha} f d \mu(y) \\
& =\frac{-\pi}{\Gamma(\alpha+1) \sin (\pi \alpha)} \int_{H}\left(-A_{y}\right)^{\alpha} J^{\alpha}(f) d \mu(y)
\end{aligned}
$$

by Theorem III.3.4. The estimate for the norm of $G^{\alpha} J^{\alpha}$ follows from Minkowski's integral inequality and Theorem IV.3.4.

Proof of Theorem 3. First consider the constant

$$
\begin{aligned}
& -\pi \Gamma(\alpha+1)^{-1}(\sin (\pi \alpha))^{-1} \\
& \quad=\Gamma(\alpha+1)^{-1}\left[\frac{\pi(n-\alpha)}{\sin (\pi n)-\sin (\pi \alpha)}\right](n-\alpha)^{-1}
\end{aligned}
$$

as α tends to $n, \pi(n-\alpha)(\sin (\pi n)-\sin (\pi \alpha))^{-1}$ converges to $(\cos (\pi n))^{-1}$ $=(-1)^{n}$. Since $\int_{H}\left(-A_{y}\right)^{n} J^{n}(f) d \mu(y)=0$,

$$
G^{\alpha} J^{\alpha}(f)=\frac{(-1)^{n+1}}{\Gamma(\alpha+1)} M^{\prime}(\alpha) \int_{H} \frac{\left[\left(-A_{y}\right)^{\alpha} J^{\alpha} f-\left(-A_{y}\right)^{n} J^{n} f\right]}{(\alpha-n)} d \mu(y)
$$

for α near n where $M^{\prime}(\alpha)$ tends to 1 as α tends to n. Let $\alpha=t$ be real so that

$$
\left(-A_{y}\right)^{t} J^{t}(f)-\left(-A_{y}\right)^{n} J^{n}(f)=\int_{n}^{t}(\partial / \partial u)\left[\left(-A_{y}\right)^{u} J^{u}(f)\right] d u
$$

By Corollary IV.3.6,

$$
\left\|\frac{\partial}{\partial u}\left[\left(-A_{y}\right)^{u} J^{u}(f)\right]\right\|_{p} \leqq t^{-1} A_{1}(p, t)(1+|\log \|y\||)\|y\| t\|f\|_{p}
$$

$A_{1}(p, t)$ is bounded on finite t-intervals. Thus

$$
\left\|\left(-A_{y}\right)^{t} J^{t} f-\left(-A_{y}\right)^{n} J^{n} f\right\| \leqq \int_{n}^{t}(1+|\log \|y\||)\|y\|^{u} \frac{d u}{u} A(p)\|f\|_{p}
$$

Since $(1+\|\log \| y \| \mid)\|y\|^{u} \leqq A(\boldsymbol{\epsilon})\left(\|y\|^{n+\epsilon}+\|y\|^{n-\epsilon}\right)$ for small $\boldsymbol{\epsilon}>0$ and because the last function is $|\mu|$-integrable,

$$
\lim _{\alpha \rightarrow n} G^{\alpha} J^{\alpha}(f)=\left.\frac{(-1)^{n+1}}{\Gamma(n+1)} \int_{H} \frac{\partial}{\partial t}\left(-A_{y}\right)^{t} J^{t}(f)\right|_{t=n} d \mu(y)=K^{n}(f)
$$

is a bounded operator on $L_{p}(H)$ with

$$
\left\|K^{n}\right\|_{p} \leqq A(n, p) \int_{H}(1+|\log \|y\||)\|y\|^{n} d|\mu|(y)
$$

By Corollary IV.3.6,

$$
\begin{aligned}
\frac{\partial}{\partial t} & {\left[\left(A_{y}\right)^{t+i c} J^{t+i c}(f)\right]=-i \frac{\partial}{\partial c}\left[\left(-A_{y}\right)^{t+i c} J^{t+i c}(f)\right] } \\
& =-i\left[V_{y}\left(-A_{y}\right)^{t+i c} J^{t+i c}(f)+\left(-A_{y}\right)^{t+i c} \frac{\partial}{\partial c} J^{t+i c}(f)\right]
\end{aligned}
$$

Since J^{α} is an analytic semigroup, $-i(\partial / \partial c) J^{t+i c}(f)=$ $(\partial / \partial \alpha) J^{\alpha}(f)$ is a bounded operator on $L_{p}(H)$ for $\operatorname{Re}(\alpha)>0$ and $\left.\int_{H}\left(-A_{y}\right)^{n}(\partial / \partial \alpha) J^{\alpha}(f)\right|_{\alpha=n} d \mu(y)=0$. Thus

$$
K^{n}(f)=\frac{(-1)^{n+1}(-i)}{\Gamma(n+1)} \int_{H} V_{y}\left(-A_{y}\right)^{n} J^{n}(f) d \mu(y)
$$

when V_{y} is the infinitesimal generator of the semigroup $\left(-A_{y}\right)^{i c}$, $c>0$. By Theorem III.3.5,

$$
V_{y}(g)=-i\left[\int_{0^{+}}^{1}\left(T_{t B y} g-g\right) d t / t+\int_{1}^{\infty} T_{t B y} g d t / t+C g\right]
$$

when $g \in R\left(A_{y}\right) \cap D\left(A_{y}\right)$ and C is Euler's constant. Set $g_{y}=$ $\left(-A_{y}\right)^{n} J^{n}(f)$ so that $g_{y} \in R\left(A_{y}\right)$ and assume that f is in $L_{p}{ }^{1}(H)$, $f \in D\left(A_{y}\right)$, so that $g_{y} \in D\left(A_{y}\right)$. Then

$$
\begin{aligned}
K^{n}(f)= & \frac{(-1)^{n}}{n!} \int_{H}\left[\int_{0^{+}}^{1}\left(T_{t B y} g_{y}-g_{y}\right) d t / t\right. \\
& \left.\quad+\int_{1}^{\infty} T_{t B y} g_{y} d t / t+C g_{y}\right] d \mu(y) \\
= & \frac{(-1)^{n}}{n!} \int_{H} \int_{0^{+}}^{\infty} T_{t B y}\left(-A_{y}\right)^{n} J^{n}(f) \frac{d t}{t} d \mu(y)
\end{aligned}
$$

since $\quad \int_{H}\left(-A_{y}\right)^{n} J^{n}(f) d \mu(y)=0$. Thus $K^{n}=G^{n} J^{n}$. This completes the proof of Theorem 3.

When $0<\alpha<2, G^{\alpha}$ is the hypersingular integral operator studied by Wheeden in [23]. If $\operatorname{Re}(\alpha)=0, \operatorname{Im}(\alpha) \neq 0, G^{\alpha}$ is the singular integral operator studied by Muckenhoupt in [18]. When $\alpha=0$ and $\int_{H} d \mu(y)=0, G^{\alpha}$ is a Calderon-Zygmund operator; the present treatment says nothing about the boundedness of Calderon-Zygmund operators. See [1] and [5].
VI. Littlewood-Paley theory. In this section we shall use imaginary powers of the directional derivatives and imaginary powers of T to estimate the p-norm of the Littlewood-Paley g-function and the p norms of the maximal functions associated with the Poisson integral. The Littlewood-Paley g-function is

$$
g_{\alpha}^{r}(f)=\left(\int_{0}^{\infty}\left|y^{\alpha} T^{\alpha} P_{y}(f)\right|^{r} d y / y\right)^{1 / r}
$$

$1 \leqq r<\infty, 1 \leqq \operatorname{Re}(\alpha)<\infty$ and the most interesting maximal functions are

$$
M_{\alpha}(f)=\sup _{y>0}\left|y^{\alpha} T^{\alpha} P_{y}(f)\right|
$$

$0 \leqq \operatorname{Re}(\alpha)<\infty$. Neither of these functions is linear, but, by Minkowski's inequality, each of them is sublinear. M_{α} is just $g_{\alpha}{ }^{\infty}$ for $\operatorname{Re}(\alpha) \geqq 1$. We shall use certain linear operators to approximate M_{α} and $g_{\alpha}{ }^{r}$ and to aid in the estimation of $\left\|g_{\alpha}{ }^{r}(f)\right\|_{p}$ and $\left\|M_{\alpha}(f)\right\|_{p}$. As before, p is fixed in $1<p<\infty$.

1. Certain linear operators. Let k be a positive integer, let P_{y} denote the Poisson integral, set $(-d / d x)^{k} P_{y}=P_{y}{ }^{(k)}=T^{k} P_{y}$, and if $\operatorname{Re}(\alpha) \geqq 0$, set $P_{y}{ }^{(\alpha)}=T^{\alpha} P_{y}$. The following lemma will be used repeatedly.

Lemma 1.1. There is a polynomial $P_{k}(u)$ of degree k such that $y^{k}(d / d y)^{k}\left(y \exp \left[-t^{-1} y^{2}\right]\right)=y P_{k}\left(t^{-1} y^{2}\right) \exp \left[-t^{-1} y^{2}\right]$.

Proof. Since $(d / d y)\left(y \exp \left[-t^{-1} y^{2}\right]\right)=\left(1-2 t^{-1} y^{2}\right) \exp \left[-t^{-1} y^{2}\right]$, the statement is true for $k=1$. Assume that it is true for $k-1$ and write $y^{k-1}(d / d y)^{k-1}\left(y \exp \left[-t^{-1} y^{2}\right]\right)=y P_{k-1}\left(t^{-1} y^{2}\right) \exp \left[-t^{-1} y^{2}\right]$. Then

$$
\begin{aligned}
& y^{k}(d / d y)^{k}\left(y \exp \left[-t^{-1} y^{2}\right]\right) \\
& \quad=y^{k}(d / d y)\left(y^{2-k} P_{k-1}\left(t^{-1} y^{2}\right) \exp \left[-t^{-1} y^{2}\right]\right)
\end{aligned}
$$

and direct computation shows that this expression has the desired form.
Let φ be a function from $(0, \infty)=R^{+}$to measurable functions on H such that $\varphi \in L_{1}\left(R^{+}, d y / y\right) \cap L_{2}\left(R^{+}, d y / y\right)$. Let $G: H^{*} \rightarrow$ measurable functions on (\tilde{H}, N) be a representative of the normal distribution on H and set

$$
\|\varphi\|_{r \infty}=\underset{x \in \tilde{H}}{\operatorname{ess} \sup }\left(\int_{0}^{\infty}|\varphi(y)|^{r} d y / y\right)^{1 / r}
$$

for $1 \leqq r<\infty$. Set

$$
T_{\varphi}{ }^{\alpha}(f)=T_{\varphi}(f)=\int_{0^{+}}^{\infty} y^{\alpha} P_{y}^{(\alpha)}(f) \varphi(y) d y / y
$$

when $\operatorname{Re}(\boldsymbol{\alpha}) \geqq 1$. The linear operators $T_{\varphi}{ }^{\alpha}$ are closely related to the g-function and to the maximal functions.

Lemma 1.2. Let $\|\varphi\|_{r \infty}<\infty$ for $r=1$, 2. If k is a positive integer, $T_{\varphi}{ }^{k}(f)$

$$
=K \int_{H} \int_{-\infty}^{\infty} \Gamma(k-i v) D_{y}{ }^{i v}(f) \Gamma\left(\frac{1-i v}{2}\right) \hat{\Phi}(v) d v d n_{1} \circ B^{-1}(y)
$$

when $\left(-D_{y}\right)$ is the infinitesimal generator of the translation semigroup $T_{t y}, t>0$, and $\dot{\Phi}$ is the Mellin transform of φ.

Proof. Assume that $\varphi \in L_{1}\left(R^{+}, d y / y\right) \cap L_{2}\left(R^{+}, d y / y\right)$. Then

$$
\begin{aligned}
T_{\varphi}{ }^{k}(f)=T_{\varphi}(f) & =\int_{0^{+}}^{\infty} y^{k} P_{y}^{(k)}(f) \varphi(y) d y / y \\
& =K \int_{0^{+}}^{\infty} H_{t} 2(f) \psi(t) d t / t
\end{aligned}
$$

where

$$
\psi(t)=\int_{0^{+}}^{\infty} N_{k}(y / t) \varphi(y) d y / y \quad \text { when } N_{k}(y / t)=y^{k}(-\partial / \partial y)^{k} N_{t} 2(y)
$$

By Lemma 1.1, $N_{k}(y / t)=(y / t) P_{k}\left(y^{2} t^{-2}\right) \exp \left(-y^{2} t^{-2}\right)$ when P_{k} is a polynomial of degree k. Set $t=e^{u}$ and $y=e^{Y}$, then $\psi\left(e^{u}\right)=\nu(u)$ is the convolution of two functions each of which is in $L_{2}(-\infty, \infty)$; thus $\nu(u)$ is the Fourier transform of a function $L(v)$ in $L_{1}(-\infty, \infty)$. Replace $t=e^{u}$ to write $\psi(t)=\int_{-\infty}^{\infty} t^{i v} L(v) d v$. Set $M_{k}(X)=N_{k}\left(e^{X}\right)$ and $\Phi(X)=\varphi\left(e^{X}\right)$. Then $L(v)=K \hat{M}_{k}(v) \dot{\Phi}(-v)$ where ^ denotes the Fourier transform; $\dot{\Phi}(u)$ is also the Mellin transform of φ at u.
We shall calculate $\hat{M}_{k}(v)$ explicitly, show that $u^{-1} \hat{M}_{k}(u)$ is a rapidly decreasing smooth function in the sense of Laurent Schwartz, and show that

$$
\lim _{t \rightarrow 0^{+}} \int_{-\infty}^{\infty} t^{i v} v^{-1} L(v) d v=0
$$

with the limit existing boundedly in $x \in \tilde{H}$. Set $\hat{M}_{k}(Y)=$ $\int_{-\infty}^{\infty} e^{i Y X} M_{k}(X) d X$ and replace $x=e^{X}$ so that $\hat{M}_{k}(Y)=$ $\int_{0}^{\infty} x^{i \gamma} N_{k}(x) d x / x$. Since $N_{k}(x)=K x^{k}(d / d x)^{k}\left(x \exp \left(-x^{2}\right)\right), k$ integrations by parts show that

$$
\hat{M}_{k}(Y)=K \prod_{n=0}^{k-1}(n+i Y) \int_{0}^{\infty} x^{i Y} \exp \left(-x^{2}\right) d x .
$$

Set $t=x^{2}$ to conclude that

$$
\hat{M}_{k}(Y)=K \Gamma((i Y+1) / 2) \prod_{n=0}^{k-1}(n+i Y) .
$$

Since

$$
\int_{0}^{\infty} x^{i Y} \exp \left(-x^{2}\right) d x=\int_{-\infty}^{\infty} e^{i Y X} \exp (X) \exp \left(-e^{2 X}\right) d X,
$$

$Y^{-1} \hat{M}_{k}(Y)$ is a rapidly decreasing smooth function since $\hat{M}_{k}(Y)$ contains a factor of Y and since $\exp (X) \exp \left(-e^{2 X}\right)$ is a rapidly decreasing smooth function. Thus $Y^{-1} \hat{M}_{k}(y)$ is in $L_{p}(R, d Y)$ for all $1 \leqq p \leqq \infty$. By Hölder's inequality and the Hausdorff-Young theorem, $\int_{-\infty}^{\infty}\left|v^{-1} L(v)\right| d v$ is in $L^{\infty}(H)$ since $\|\varphi\|_{r \infty} \leqq M$ for some r in $1 \leqq r \leqq 2$. Set $t=e^{-\rho}$, so that $\int_{-\infty}^{\infty} t^{i v} v^{-1} L(v) d v$ is the Fourier transform of an L_{1}-function evaluated at ($-\rho$). By the Riemann-Lebesgue lemma, the integral converges to zero as ρ tends to $+\infty$. This shows that $\lim _{t \rightarrow 0^{+}} \int_{-\infty}^{\infty} t^{i v} v^{-1} L(v) d v=0$ and the limit exists boundedly in $x \in \tilde{H}$.

Now let $y \in H$ and set

$$
\begin{aligned}
U_{y}(f) & =\int_{0^{+}}^{\infty} T_{t y} f \psi(t) d t / t \\
& =\int_{-\infty}^{\infty} \int_{0^{+}}^{\infty} T_{t y} f t^{i v} \frac{d t}{t} L(v) d v \\
& =\int_{-\infty}^{\infty} \lim _{\epsilon \rightarrow 0^{+}}\left[\int_{\epsilon}^{\infty} T_{t y} f t^{i v-1} d t+\frac{\epsilon^{i v}}{i v} f-\frac{\epsilon^{i v}}{i v} f\right] L(v) d v .
\end{aligned}
$$

By an argument similar to that used in the proof of Theorem III.2.2, one shows that the inner integral defines a bounded operator on $L_{p}(H)$ with norm at most $A p q\left[(|v|+1)^{2}|v|^{-1}+|v|^{-1}\right]$ and that $U_{\epsilon} f=$ $\int_{\epsilon}^{\infty} T_{t y} f t^{i i-1} d t+\left(\epsilon^{i v} / i v\right) f$ converges almost everywhere and in $L_{p}(H)$ to $\Gamma(i v) D_{y}{ }^{-i v} f$ as a sequence $\epsilon_{n}>0$. Thus for almost every $x \in \tilde{H}, U_{f} f(x)$ is a bounded function of ϵ_{n}. Since $L(v)(x)$ is in $L_{1}(R, d v)$ for almost every $x \in \tilde{H}$, the dominated convergence theorem implies that

$$
\begin{aligned}
U_{y}(f)= & \int_{-\infty}^{\infty} \lim _{\epsilon \rightarrow 0^{+}}\left[\int_{\epsilon}^{\infty} T_{t y} f t^{i v-1} d t+\frac{\epsilon^{i v}}{i v} f\right] L(v) d v \\
& -\lim _{\epsilon \rightarrow 0^{+}} \int_{-\infty}^{\infty} \frac{\boldsymbol{\epsilon}^{i v}}{i v} L(v) d v f \\
= & \int_{-\infty}^{\infty} \Gamma(i v) D_{y}{ }^{-i v}(f) L(v) d v \\
= & K \int_{-\infty}^{\infty} \Gamma(-i v) D_{y}{ }^{i v}(f) \hat{M}_{k}(-v) \dot{\Phi}(v) d v \\
= & K \int_{-\infty}^{\infty} \Gamma(k-i v) D_{y}{ }^{i v}(f) \Gamma\left(\frac{1-i v}{2}\right) \hat{\Phi}(v) d v .
\end{aligned}
$$

Since $\quad T_{\varphi}{ }^{k}(f)=\int_{H} U_{y}(f) d n_{1} \circ B^{-1}(y)$, we have the desired identity.
We need one last basic lemma to estimate the $T_{\varphi}{ }^{\alpha}$.
Lemma 1.3. Let h be a nonzero element of H and let $\omega>\pi / 2$. Then

$$
\mu(f, r, h)(x)=\left(\int_{-\infty}^{\infty}\left|\exp (-\omega|c|) D_{h}^{i c} f(x)\right|^{r} d c\right)^{1 / r}
$$

satisfies $\|\mu(f, r, h)\|_{p} \leqq A(p, r, \omega)\|f\|_{p}$ for $r<p<\infty$.
Proof. Since $\left\|D_{h}{ }^{i c} f\right\|_{p} \leqq A(p) \exp (\eta|c|)\|f\|_{p}$ for $\eta>\pi / 2$ and
$\eta-\pi / 2$ arbitrarily small, Minkowski's integral inequality implies that the desired estimate for μ holds.

Theorem 1.4. If $\operatorname{Re}(\alpha) \geqq 1$, if $1 \leqq r \leqq 2$, and if $p \geqq r$, then $\left\|T_{\varphi}{ }^{\alpha} f\right\|_{p} \leqq A(p, r, \alpha)\|f\|_{p}\|\varphi\|_{r \infty}$.
Proof. Since $|\Gamma(i c)|=\pi^{1 / 2}(|c| \sinh \pi|c|)^{-1 / 2}, \quad$ for $\delta>0$ and small, $|\Gamma(k+i c)| \leqq A(\delta) \exp (-(\pi / 2-\delta)|c|) ;$ since

$$
\pi^{1 / 2} \Gamma(2 z)=2^{2 z-1} \Gamma(z) \Gamma(z+1 / 2), \quad|\Gamma((1+i c) / 2)| \leqq A \exp (-\pi|c| / 4) .
$$

Thus if

$$
U_{y}(f)=\int_{-\infty}^{\infty} \Gamma(k-i v) D_{y}{ }^{i v}(f) \Gamma\left(\frac{1-i v}{2}\right) \hat{\Phi}(v) d v,
$$

then $\left|U_{y}(f)\right| \leqq \mu(f, r, y)\|\Phi\|_{r^{\prime}} \leqq \mu(f, r, y)\|\varphi\|_{r \infty}$ when $r^{-1}+r^{\prime-1}=1$ by Hölder's inequality and the Hausdorff-Young Theorem. Since $T_{\varphi}{ }^{k}(f)=K \int_{H} U_{y}(f) d n_{1} \circ B^{-1}(y), \quad\left\|T_{\varphi}{ }^{k}(f)\right\|_{\rho} \leqq A(p, \quad r, \quad k)\|f\|_{p}\|\varphi\|_{r \infty}$ by Minkowski's integral inequality and Lemma 1.3.

If $\alpha=k+i u$ when k is a positive integer and u is a real number, then if $\quad \varphi_{1}(y)=y^{i u} \varphi(y), \quad T_{\varphi}{ }^{\alpha}(f)=T_{\varphi_{1}}^{k}\left(T^{i u} f\right) \quad$ and $\quad\left\|T_{\varphi}{ }^{\alpha}(f)\right\|_{p}$ $\leqq A(p, r, k) \exp (\pi|u|)\|f\|_{p}\|\varphi\|_{r \infty}$. Since $\quad T^{\alpha} P_{y}(f)$ is analytic in $k<\operatorname{Re}(\alpha)<k+1$ and continuous in $k \leqq \operatorname{Re}(\alpha) \leqq k+1$ for a dense set of f in $L_{p}(H)$ by Theorem 8.2 of [17-I], Stein's interpolation theorem applies to the $T_{\varphi^{\alpha}}$ and $\left\|T_{\varphi}{ }^{t} f\right\|_{p} \leqq A(p, t)\|f\|_{p}\|\varphi\|_{r \infty}$ for $k \leqq t \leqq k+1$. Since if $\alpha=t+i u, \quad T_{\varphi}{ }^{\alpha}(f)=T_{\varphi_{1}}^{t}\left(T^{i u} f\right)$, we have that the desired inequality holds for all $\operatorname{Re}(\alpha) \geqq 1$.
2. The maximal theorems. In this section we shall use the operators $T_{\varphi}{ }^{\alpha}$ to estimate the p-norm of the maximal function $M_{\alpha}(f), \operatorname{Re}(\alpha) \geqq 1$, and we shall investigate some of the implications of the inequalities for $M_{\alpha}(f)$. If $\operatorname{Re}(\alpha) \geqq 0$, set

$$
M_{\alpha}(f)=\sup _{y>0}\left|y^{\alpha} T^{\alpha} P_{y}(f)\right|
$$

and if $\operatorname{Re}(\boldsymbol{\alpha})<0$, set

$$
M_{\alpha}(f)=\sup _{y>0}\left|y^{\alpha} \Gamma(-\alpha)^{-1} \int_{0}^{y}(y-x)^{-\alpha-1} P_{y}(f) d y\right| .
$$

In general, denote $M_{\alpha} f=\sup _{y>0}\left|y^{\alpha}(-d / d y)^{\alpha} P_{y}(f)\right|$.
Theorem 2.1. If $\operatorname{Re}(\alpha) \geqq 1$ and if $1<p<\infty,\left\|M_{\alpha}(f)\right\|_{p} \leqq$ $A(p, \alpha)\|f\|_{p}$.

Proof. For $\operatorname{Re}(\alpha) \geqq 1, \quad\left\|M_{\alpha} f\right\|_{p}=\sup \left\{\left\|T_{\varphi}{ }^{\alpha} f\right\|_{p}:\|\varphi\|_{1 \infty} \leqq 1\right\}$. By Theorem 1.4, $\left\|T_{\varphi}{ }^{\alpha}\right\|_{p} \leqq A(p, \alpha)\|\varphi\|_{1^{\infty},}$ so that $\left\|M_{\alpha}(f)\right\|_{p} \leqq$ $A(p, \alpha)\|f\|_{p}$.

We shall now extend the result of Theorem 2.1 to $-\infty<\operatorname{Re}(\alpha)<1$; the following propositions contribute to the general result.

Proposition 2.2. Let $y \rightarrow T_{y}$ be the regular representation of the additive group of H acting on $L_{p}(H)$ and let $h \in H$. Then

$$
(N f)(x)=\sup _{t>0} t^{-1}\left|\int_{0}^{t}\left(T_{s h} f\right)(x) d s\right|
$$

satisfies $\|f\|_{p} \leqq\|N f\|_{p} \leqq A(p)\|f\|_{p}$ where $A(p)$ does not depend on H.
Proof.

$$
t^{-1} \int_{0}^{t} T_{s h} f d s=(t\|h\|)^{-1} \int_{0}^{t| | h \|} T_{s \omega} f d s \quad \text { where } \omega=\|h\|^{-1} h
$$

so that $N f$ is independent of $\|h\|$ if $h \neq 0$. If $h=0, N f=f$. Suppose first that f is a bounded tame function based on K_{1} and let K denote the span of K_{1} and h. Then $N f$ is tame and based on K, and

$$
\begin{aligned}
&\|N f\|_{p}^{n}=\int_{K} \mid \sup _{t>0} t^{-1} \int_{0}^{t} f(x-t \omega) \\
&\left.\cdot \exp \left[\frac{(t \omega, x)}{p}-\frac{t^{2}}{2 p}\right] d t\right|^{p} d n(x) .
\end{aligned}
$$

Let $F(x)=f(x) \exp \left[-\|x\|^{2} / 2 p\right]$, so that

$$
\begin{aligned}
\|N f\|_{p}^{p} & =(2 \pi)^{-k / 2} \int_{K}\left|\sup _{t>0} t^{-1} \int_{0}^{t} F(x-t \omega) d t\right|^{p} d x \\
& =(2 \pi)^{-k / 2} \int_{K}\left|F^{*}(x)\right|^{n} d x
\end{aligned}
$$

where $\quad k=\operatorname{dim}(K) \quad$ and $\quad F^{*}(x)=\sup _{t>0} t^{-1}\left|\int_{0}^{t} F(x-t \omega) d t\right|$. By the Dunford-Schwartz Ergodic Theorem [4], $\left\|F^{*}\right\|_{p} \leqq A(p)\|F\|_{p}=$ $A(p)\|f\|_{p} ; \quad$ so that $\quad\|N f\|_{p} \leqq A(p)\|f\|_{p} ; \quad A(p)=2 q^{1 / p}$ does not depend on ω. Let $f \geqq 0$ be in $L_{p}(H)$ and let $f_{n} \geqq 0$ be a sequence of bounded tame functions which converge to f in $L_{p}(H)$. Since $\left|N f_{n}-N f_{m}\right| \leqq N\left(\left|f_{n}-f_{m}\right|\right)$, the sequence $N f_{n}$ is Cauchy in $L_{p}(H)$; let $G(x)$ be the limit of the $N f_{n}$ in $L_{p}(H)$. By taking a subsequence if necessary, we may suppose that the $N f_{n}(x)$ converge almost everywhere to $G(x)$ and that the f_{n} converge almost every-
where to $f(x)$. Then $t^{-1} \int_{0}^{t}\left(T_{s \omega} f_{n}\right)(x) d s \leqq N f_{n}(x)$ almost everywhere for all n, and $t^{-1} \int_{0}^{t}\left(T_{s \omega} f\right)(x) d s \leqq G(x)$ almost everywhere. Thus $\quad(N f)(x) \leqq G(x)$ and $\quad\|N f\|_{p} \leqq\|G\|_{p} \leqq A(p)\|f\|_{p}$. Since $t^{-1}\left|\int_{0}^{t}\left(T_{s \omega} f\right)(x) d s\right| \leqq t^{-1} \int_{0}^{t} T_{s \omega}|f|(x) d s$, the right-hand side of the desired inequality is verified. For bounded tame functions, $\lim _{t \rightarrow 0^{+}} t^{-1} \int_{0}^{t}\left(T_{s w} f\right)(x) d s=f(x)$ almost everywhere, so that the left-hand inequality holds also; in fact, $|f(x)| \leqq(N f)(x)$ almost everywhere.
Corollary 2.3. Let $P_{z}(f)$ be the Poisson integral of f and set

$$
\left(N_{1} f\right)(x)=\sup _{t>0} t^{-1}\left|\int_{0}^{t} P_{z}(f)(x) d z\right| .
$$

Then $\|f\|_{p} \leqq\left\|N_{1} f\right\|_{p} \leqq \mathrm{~A}(p)\|f\|_{p}$.
Proof. Write $P_{z}(f)=\int_{H}\left(T_{y} f\right) d p_{z}(y)=\int_{H} T_{z y} f d p_{1}(y)$. Then $\left(N_{1} f\right)(x) \leqq \int_{H}(N f)(x) d p_{1}(y)$. By Minkowski's integral inequality and by Proposition 2.2, $\left\|N_{1} f\right\|_{p} \leqq A(p)\|f\|_{p}$. Since $\lim _{t \rightarrow 0} t^{-1}$ - $\int_{0}^{t} P_{z}(f) d z=f_{\text {t }} L_{p}$, there is a sequence t_{n} tending to zero such that $t_{n}{ }^{-1} \int_{0}^{t_{n}} P_{z} f d z$ converges to f almost everywhere and the left-hand inequality holds.

Corollary 2.4. Set

$$
\left(N_{2} f\right)(x)=\sup _{t>0} t^{-1}\left|\int_{0}^{t} H_{s} 2(f)(x) d s\right| .
$$

Then $\|f\|_{p} \leqq\left\|N_{2} f\right\|_{p} \leqq A(p)\|f\|_{p}$.
Proof. Write $H_{s} 2(f)=\int_{H} T_{s y} f d n_{1} \circ B^{-1}(y)$, so that $N_{2} f(x) \leqq \int_{H} N f(x) d n_{1} \circ B^{-1}(y)$, and the desired right-hand inequality holds. The left-hand inequality holds as in the proof of Corollary 2.3.

Proposition 2.5. Let $\quad\left(M_{0} f\right)(x)=\sup _{y>0}\left|P_{y} f(x)\right|$, then $\|f\|_{p}$ $\leqq\left\|M_{0} f\right\|_{r} \leqq A(p)\|f\|_{r}$.

Proof. Since $P_{z} f$ tends to f in L_{p} as $z \rightarrow 0$, any sequence z_{n} which tends to zero has a subsequence, also called z_{n}, such that $P_{z_{n}} f$ converges almost everywhere to f. Thus $|f(x)| \leqq M_{0} f(x)$, and the left-hand side of the inequality holds.

To prove the right-hand inequality, write

$$
P_{z}(f)=\int_{0}^{\infty} H_{t} f N_{t}(z) d t / t=2 \int_{0}^{\infty} H_{t} 2(f) N_{t} 2(z) d t / t .
$$

Set $\quad N_{t} 2(z)=(\pi)^{-1 / 2}(z / t) \exp \left[-(z / t)^{2}\right]=N(z / t)$, and integrate by parts to get

$$
P_{z} f=-2 \int_{0}^{\infty}\left[t^{-1} \int_{0}^{t} H_{s} 2(f) d s\right]\left[t \frac{d}{d t} t^{-1} N(z / t)\right] d t .
$$

Thus

$$
\left|P_{z} f(x)\right| \leqq 2 N_{2} f(x) \int_{0}^{\infty} t\left|\frac{d}{d t}\left(t^{-1} N(z / t)\right)\right| d t .
$$

The integral on the right of this inequality is finite and independent of z, so $\left|P_{z} f(x)\right| \leqq A N_{2} f(x)$ and $\left\|M_{0} f\right\|_{p} \leqq A(p)\|f\|_{p}$.

Corollary 2.6. If $\operatorname{Re}(\alpha)<0$, set

$$
y^{\alpha}\left(-\frac{d}{d y}\right)^{\alpha} P_{y}(f)=\Gamma(-\alpha)^{-1} y^{\alpha} \int_{0}^{y}(y-t)^{-\alpha-1} P_{t}(f) d t
$$

Then $\quad\left(M_{\alpha} f\right)(x)=\sup _{x>0}\left|y^{\alpha}(-d / d y)^{\alpha} P_{y}(f)(x)\right| \quad$ satisfies $\quad\|f\|_{p} \leqq$ $K_{\alpha}\left\|M_{\alpha} f\right\|_{p} \leqq A(\alpha, p)\|f\|_{p}$.

Proof. A subsequence argument shows that $|f(x)| \leqq K(\alpha) M_{\alpha} f(x)$, so that the left-hand side of the inequality holds. On the right side

$$
\begin{aligned}
\left|y^{\alpha}\left(-\frac{d}{d y}\right)^{\alpha} P_{y} f(x)\right| & \leqq A(\alpha) \int_{0}^{1}(1-u)^{-1-\text { Re }(\alpha)} P_{u y}(|f|) d u \\
& \leqq A_{1}(\alpha) M_{0} f(x) ;
\end{aligned}
$$

and $\left\|M_{\alpha} f\right\|_{p} \leqq A(\alpha, p)\|f\|_{p}$.
Corollary 2.7. If $\operatorname{Re}(\alpha)=0, \alpha=i \gamma$, and if

$$
\left(M_{i \gamma} f\right)(x)=\sup _{y>0}\left|y^{i \gamma}\left(-\frac{d}{d y}\right)^{i \gamma} P_{y} f(x)\right|,
$$

then $\|f\|_{p} \leqq A_{1}(\gamma, p)\left\|M_{i \gamma} f\right\|_{p} \leqq A_{2}(\gamma, p)\|f\|_{p}$.
Proof. For γ real, $(-d / d y)^{{ }^{i}} P_{y}(f)=P_{y}\left(T^{i \gamma} f\right)$. Thus $M_{i r} f(x)$ $=M_{0}\left(T^{i \gamma} f\right)(x)$, and since $T^{i \gamma}$ is a bounded and invertible operator, the desired inequality follows from Proposition 2.5.

Theorem 2.8. If $-\infty<\operatorname{Re}(\alpha) \leqq 1,\left\|M_{\alpha} f\right\|_{p} \leqq A(p, \alpha)\|f\|_{p}$.
Proof. It only remains to prove the theorem for $0<\operatorname{Re}(\alpha)<1$. Set $\quad T_{\psi}{ }^{\alpha}(f)=\int_{0^{+}}^{\infty} y^{\alpha} P_{y}^{(\alpha)}(f) \varphi(y) d y / y \quad$ for $\quad 0 \leqq \operatorname{Re}(\alpha) \leqq 1 \quad$ when $\|\varphi\|_{1_{\infty}}<\infty$. Then $\quad\left\|M_{\alpha} f\right\|_{p}=\sup \left\{\left\|T_{\varphi}{ }^{\alpha} f\right\|_{p}:\|\varphi\|_{1 \infty} \leqq 1\right\}$. By Theorem 2.1, $\left\|T_{\varphi}{ }^{1+i u}(f)\right\|_{p} \cong A(p, u)\left\|_{f}\right\|_{p}\|\varphi\|_{1 \infty}$ and by Corol-
lary $\quad 2.7, \quad\left\|T_{\varphi}{ }^{i u} f\right\|_{p} \leqq A(p, u)\|f\|_{p}\|\varphi\|_{1 \infty}$. Since $\quad T^{\alpha} P_{y}(f) \quad$ is analytic in $0<\operatorname{Re}(\alpha)<1$ and continuous in $0 \leqq \operatorname{Re}(\alpha) \leqq 1$ for a dense set of f in $L_{p}(H)$ by Theorem 8.2 of [17-I], Stein's interpolation theorem applies and $\left\|T_{\varphi}{ }^{t}\right\|_{p} \leqq A(t, p)\|\varphi\|_{1_{\infty}}$ for $0 \leqq t \leqq 1$. If $\varphi_{1}=y^{i u} \varphi(y), \quad T_{\varphi}{ }^{\alpha}(f)=T_{\varphi_{1}}^{t}\left(T^{i u} f\right)$ for $\alpha=t+i u, \quad$ and $\quad\left\|M_{\alpha} f\right\|_{p} \leqq$ $A(p, \alpha)\|f\|_{p}$ for $0 \leqq \operatorname{Re}(\alpha) \leqq 1$.

Because of Theorem IV.4.1, we can define a maximal function for the directional derivatives. If $h \in H$ and $\operatorname{Re}(\alpha) \geqq 0$, set

$$
M_{\alpha}{ }^{h}(f)=\sup _{y>0}\left|y^{\alpha}\left(-A_{h}\right)^{\alpha} P_{y}(f)\right| .
$$

But $\quad M_{\alpha}{ }^{h}(f)=M_{\alpha}\left(\left(-A_{h}\right)^{\alpha} T^{-\alpha} f\right) \quad$ and $\quad\left(-A_{h}\right)^{\alpha} T^{-\alpha} \quad$ is a bounded operator on $L_{p}(H)$ for $\operatorname{Re}(\alpha) \geqq 0$. $\left(-A_{h}\right)^{\alpha} T^{-\alpha}$ is invertible if $\operatorname{Re}(\alpha)=0$. Thus we have proved

Corollary 2.9. If $\operatorname{Re}(\boldsymbol{\alpha}) \geqq 0, \quad\left\|M_{\alpha}{ }^{h}(f)\right\|_{p} \leqq A(p, \boldsymbol{\alpha})\|h\|^{\operatorname{Re}(\alpha)}\|f\|_{p}$ and if $\operatorname{Re}(\alpha)=0,\|f\|_{p} \leqq A_{0}(p, \alpha)\left\|M_{\alpha}{ }^{h}(f)\right\|_{p}$.
3. Applications of the maximal theorems. In this section we shall investigate a few of the implications of the general maximal inequality. More applications of the maximal theorems will be given below in $\$ 5$.

Theorem 3.1. $P_{y}(f)$ converges to f almost everywhere as y tends to zero through positive values.

Proof. $P_{z}(f)$ is analytic in $|\arg (z)|<\pi / 4$ and the power series representation for $P_{z}(f)$ about z_{0} can be thought of as converging almost everywhere since it converges in $L_{p}(H)$ and a subsequence of the sequence of partial sums converges almost everywhere. Regard the series as converging everywhere. Therefore if $z_{0}>0, \lim _{z \rightarrow z_{0}} P_{z}(f)$ $=P_{z_{0}}(f)$ almost everywhere. Then

$$
\begin{aligned}
& \limsup _{y \rightarrow 0^{+}}\left|P_{y}(f)(x)-f(x)\right| \\
& \\
& \begin{array}{l}
\leqq \\
\\
\\
\quad \limsup _{y \rightarrow 0^{+}}\left|P_{y}\left(f-P_{t}(f)\right)(x)\right| \\
\\
\quad+\limsup _{y \rightarrow 0^{+}}\left|P_{y} P_{t}(f)(x)-P_{t}(f)(x)\right|+\left|P_{t}(f)(x)-f(x)\right| \\
\leqq \\
\sup _{y>0}\left|P_{y}\left(f-P_{t}(f)\right)(x)\right|+\left|P_{t}(f)(x)-f(x)\right| \\
=
\end{array} M_{0}\left(f-P_{t} f\right)+\left|P_{t} f-f\right|
\end{aligned}
$$

Therefore, by Theorem 2.8, $\left\|\lim _{\sup _{y \rightarrow 0^{+}}}\left|P_{y} f-f\right|\right\|_{p} \leqq$ $\left\|M_{0}\left(f-P_{t} f\right)\right\|_{p}+\left\|P_{t} f-f\right\|_{p} \leqq A(p)\left\|f-P_{t} f\right\|_{p}$ for all $t>0$. By letting $t \rightarrow 0^{+}$, we get the desired result.

If k is a positive integer, and we write

$$
y^{k}\left(\frac{d}{d y}\right)^{k} P_{y}(f)=\int_{0}^{\infty}\left[H_{t}(f)-f\right] y^{k}\left(\frac{d}{d y}\right)^{k} N_{t}(y) d t / t=\int_{0}^{\epsilon}+\int_{\epsilon}^{\infty}
$$

it follows from the strong continuity of H_{t}, that $\left\|\int_{0}^{\epsilon}\right\|_{p} \leqq A(k) \epsilon$ and it follows from the properties of $y^{k}(d / d y)^{k} N_{t}(y)=P_{k}\left(t^{-1} y^{2}\right) N_{t}(y)$ that $\lim _{y \rightarrow 0^{+}}\left\|\int_{\epsilon}^{\infty}\right\|_{p}=0$, so that $\quad \lim _{y \rightarrow 0^{+}}\left\|y^{k}(d / d y)^{k} P_{y}(f)\right\|_{p}=0 . \quad$ In addition, there is

Theorem 3.2. Let $\operatorname{Re}(\alpha)>0$. As y tends to zero through positive values, $y^{\alpha} P_{y}{ }^{(\alpha)}(f)$ converges to zero almost everywhere.

Proof. Let k be a positive integer and assume first that $\operatorname{Re}(\boldsymbol{\alpha})<k$ and that $f \in D\left(T^{k}\right)$. Then $y^{\alpha} P_{y}^{(\alpha)}(f)=y^{\alpha} P_{y}\left(T^{\alpha} f\right)$, and by Theorem 3.1, $\lim _{y \rightarrow 0^{+}} P_{y}\left(T^{\alpha} f\right)=T^{\alpha} f$ almost everywhere. Thus $\lim _{y \rightarrow 0^{+}} y^{\alpha} P_{y}\left(T^{\alpha} f\right)=0$ almost everywhere. For any f in $L_{p}(H)$, use the density of $D\left(T^{k}\right)$ in $L_{p}(H)$ to choose a sequence $\left\{f_{n}\right\}$ in $D\left(T^{k}\right)$ which converges in $L_{p}(H)$ to f. Then

$$
\begin{aligned}
F & =\limsup _{y \rightarrow 0^{+}}\left|y^{\alpha} P_{y}^{(\alpha)}(f)\right| \\
& \leqq \limsup _{y \rightarrow 0^{+}}\left|y^{\alpha} P_{y}{ }^{(\alpha)}\left(f-f_{n}\right)\right|+\limsup _{y \rightarrow 0^{+}}\left|y^{\alpha} P_{y}{ }^{(\alpha)}\left(f_{n}\right)\right| \\
& \leqq \sup _{y>0}\left|y^{\alpha} P_{y}{ }^{(\alpha)}\left(f-f_{n}\right)\right|=M_{\alpha}\left(f-f_{n}\right) .
\end{aligned}
$$

By Theorems 2.1 and $2.8,\|F\|_{p} \leqq\left\|M_{\alpha}\left(f-f_{n}\right)\right\|_{p} \leqq A(p, \alpha)\left\|f-f_{n}\right\|_{p}$. By letting $n \rightarrow \infty$, we get the desired result.

A similar result holds for the directional derivatives $\left(-A_{h}\right)^{\alpha}$ since $\left(-A_{h}\right)^{\alpha} P_{y}(f)=P_{y}^{(\alpha)}\left(\left(-A_{h}\right)^{\alpha} T^{-\alpha} f\right)$ and $\left(-A_{h}\right)^{\alpha} T^{-\alpha}$ is a bounded operator on $L_{p}(H)$ by Theorem IV.4.1.

Corollary 3.3. If $\operatorname{Re}(\alpha)>0, \lim _{y \rightarrow 0^{+}} y^{\alpha}\left(-A_{h}\right)^{\alpha} P_{y}(f)=0$ almost everywhere.

Corollary 3.4. If $\operatorname{Re}(\alpha)<0, \quad \lim _{y \rightarrow 0^{+}} y^{\alpha}(-d / d y)^{\alpha} P_{y}(f)=$ $\Gamma(1-\alpha)^{-1} f$ almost everywhere.

Proof.

$$
\begin{aligned}
& y^{\alpha}\left(-\frac{d}{d x}\right)^{\alpha} P_{y}(f)-\frac{f}{\Gamma(1-\alpha)} \\
&=\Gamma(-\alpha)^{-1} \int_{0}^{1}(1-u)^{-\alpha-1}\left(P_{u y} f-f\right) d u
\end{aligned}
$$

By the maximal theorem for P_{y}, the dominated convergence theorem
applies for almost every x and by Theorem $3.1, \lim _{y \rightarrow 0^{+}} y^{\alpha}(-d / d y)^{\alpha} P_{y}(f)$ $=\Gamma(1-\alpha)^{-1} f$ almost everywhere.
Theorem 3.5. If $-\infty<\operatorname{Re}(\alpha)<\infty, y^{\alpha}(-d / d y)^{\alpha} P_{y}(f)$ converges almost everywhere and in $L_{p}(H)$ to 0 as y tends to $+\infty$.

Proof. If $\operatorname{Re}(\alpha) \geqq 0, \quad\left\|y^{\alpha} P_{y}{ }^{(\alpha)} f\right\|_{p} \leqq A(p, \alpha)\|f\|_{p}$ and $\left|y^{\alpha} P_{y}{ }^{(\alpha)} f\right|$ $\leqq\left|y^{\alpha} T^{\alpha} P_{y / 2} P_{y / 2}(f)\right| \leqq A(\alpha) P_{y / 2}\left(M_{\alpha}(f)\right) \leqq A_{1}(\alpha) M_{0}\left(M_{\alpha} f\right)$. Thus it is sufficient to prove that $P_{y} f$ converges almost everywhere to zero in order to prove the statements of the theorem. If $\operatorname{Re}(\alpha)<0$,

$$
\left|y^{\alpha}(-d / d y)^{\alpha} P_{y}(f)\right|<|\Gamma(-\alpha)|^{-1} \int_{0}^{1}(1-u)^{-\operatorname{Re}(\alpha)-1}\left|P_{u y}(f)\right| d u
$$

By the maximal theorem, the dominated convergence theorem applies and it is sufficient to prove that $P_{u y}(f)$ converges to zero almost everywhere for each $u>0$ in order to verify the statements of the theorem.
Let $f^{*}=\lim \sup _{y \rightarrow+\infty}\left|P_{y}(f)\right|$ and assume first that $f \in R(T)$ so that $f=-T g$ for some g in $L_{p}(H)$. Then

$$
P_{y}(f)=\frac{\partial}{\partial y} P_{y}(g)=\int_{0}^{\infty} H_{t}(g) \frac{\partial}{\partial y} N_{t}(y) d t / t
$$

and

$$
\left|\frac{\partial}{\partial y} N_{t}(y)\right|=\left|(\pi t)^{-1 / 2}\left(1-2 y^{2} / t\right) \exp \left(-y^{2} / t\right)\right| \leqq A y^{-1} N_{t}(m y)
$$

where A and m are positive constants. Thus $\left|P_{y}(f)\right| \leqq A y^{-1} P_{m y}(|g|)$ $\leqq A y^{-1} M_{0}(|g|)$ converges to zero almost everywhere as $y \rightarrow \infty$. Let $\epsilon>0$, let $f \in L_{p}(H)$, and let $f_{1} \in R(T)$ with $\left\|f-f_{1}\right\|_{p}<\epsilon$. Then $f^{*} \leqq f_{1}^{*}+\left(f-f_{1}\right)^{*} \leqq M_{0}\left(f-f_{1}\right)$. By Theorem 2.8, $\left\|f^{*}\right\|_{p}$ $\leqq A(p)\left\|f-f_{1}\right\|_{p}<\epsilon A(p)$. Thus $\lim _{y \rightarrow \infty} P_{y}(f)=0$ almost everywhere and the theorem holds.
4. Littlewood-Paley inequality. For $f \in L_{p}(H)$, set

$$
g_{\alpha}^{r}(f)=\left(\int_{0}^{\infty}\left|y^{\alpha} T^{\alpha} P_{y}(f)\right|^{r} d y / y\right)^{1 / r}
$$

for $\operatorname{Re}(\alpha) \geqq 1$ and $r<\infty . g_{\alpha}{ }^{r}$ is the Littlewood-Paley g-function. If $2 \leqq r<\infty$ and $r^{-1}+s^{-1}=1,\left\|g_{\alpha}^{r}(f)\right\|_{p}=\sup \left\{\left\|T_{\varphi}{ }^{\alpha}(f)\right\|_{p}:\|\varphi\|_{s \infty} \leqq 1\right\}$.

Proposition 4.1. If $r \geqq 2$ and $t-s>1 / r^{\prime}, 1 / r+1 / r^{\prime}=1, g_{s}{ }^{r}(f)$ $\leqq A(r, s, t) g_{t}{ }^{r}(f)$.

Proof. By Theorem 6.3 of [17-III],

$$
\begin{aligned}
P_{z}^{(s)}(f) & =\Gamma(t-s)^{-1} \int_{0}^{\infty} u^{t-s-1} P_{u+z}^{(t)}(f) d u \\
& =\Gamma(t-s)^{-1} \int_{z}^{\infty}(y-z)^{t-s-1} P_{y}{ }^{(t)}(f) d y
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|P_{z}^{(s)}(f)\right| & =\Gamma(t-s)^{-1}\left|\int_{z}^{\infty}(y-z)^{t-s-1} y^{s} P_{y}^{(t)}(f) d y / y^{s}\right| \\
& \leqq z^{-s+1 / r^{\prime}} \mathrm{A}(r, t, s)\left(\int_{z}^{\infty}\left|(y-z)^{t-s-1} y^{s} P_{y}^{(t)}(f)\right|^{r} d y\right)^{1 / r}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\left|z^{s} P_{z}^{(s)}(f)\right|^{r}}{z} & \leqq A(s, t, r) z^{r-2}\left(\int_{z}^{\infty}\left|(y-z)^{t-s-1} y^{s} P_{y}{ }^{(t)}(f)\right|^{r} d y / y\right) \\
& \leqq A(s, t, r)\left(\int_{z}^{\infty} y^{r-1}\left|(y-z)^{t-s-1} y^{s} P_{y}{ }^{(t)}(f)\right|^{r} d y / y\right)
\end{aligned}
$$

By Fubini's theorem, if $t-s>1 / r^{\prime}$,

$$
\begin{aligned}
& \int_{0}^{\infty}\left|z^{s} p_{z^{(s)}}(f)\right|^{r} d z / z \\
& \leqq A(s, t, r) \int_{0}^{\infty}\left(\int_{0}^{y}(y-z)^{r t-r s-r} d z\right) y^{r+r s-1}\left|P_{y}^{(t)}(f)\right|^{r} d y / y \\
& \leqq A(s, t, r) \int_{0}^{\infty}\left|y^{t} P_{y}^{(t)}(f)\right|^{r} d y / y
\end{aligned}
$$

The next theorem gives the Littlewood-Paley inequality.
Theorem 4.2. If $1<r^{\prime} \leqq p<\infty$ and $2 \leqq r<\infty,\left\|g_{\alpha}^{r}(f)\right\|_{p} \leqq$ $A(p, \alpha)\|f\|_{p}$. If $1 \leqq s \leqq 2 \quad$ and \quad if $\quad 1<p \leqq s$, then $\|f\|_{p} \leqq$ $A_{\mathrm{l}}(p, k)\left\|g_{k}^{s}(f)\right\|_{p}$ when k is a positive integer.

Proof. The first inequality follows from Theorem IV.1.4 and the fact that $\left\|g_{\alpha}^{r}(f)\right\|_{p}=\sup \left\{\left\|T_{\varphi}{ }^{\alpha} f\right\|_{p}:\|\varphi\|_{r^{\prime} \infty} \leqq 1\right\}, \quad 1 / r+1 / r^{\prime}=1$. To prove the second inequality we need a lemma whose proof will be provided after the theorem's proof has been completed.

Lemma 4.3. Let $f_{1} \in L_{p}(H)$ and $f_{2} \in L_{q}(H)$, let $P_{t}\left(f_{1}\right)$ be the Poisson integral of f_{1} in $L_{p}(H)$ and let $Q_{t}\left(f_{2}\right)$ be the Poisson integral of f_{2} in $L_{q}(H)$. Then $\left\langle f_{1}, f_{2}\right\rangle=K(k) \int_{0^{+}}^{\infty} t^{2 k-1}\left\langle P_{t}^{(k)}\left(f_{1}\right), \quad Q_{t}^{(k)}\left(f_{2}\right)\right\rangle d t$ where $\langle f, g\rangle$ denotes the dual pairing between L_{p} and L_{q}.

By Lemma 4.3, $\left|\left\langle f_{1}, f_{2}\right\rangle\right| \leqq|K(k)|\left\|g_{k}{ }^{s}\left(f_{1}\right)\right\|_{p}\left\|g_{g^{s}}{ }^{s^{\prime}}\left(f_{2}\right)\right\|_{q} . \quad$ By the first inequality in Theorem 4.2, $\left\|g_{k} s^{\prime}(f)\right\|_{q} \leqq A\left(q, s^{\prime}\right)\|f\|_{q}$ for $2 \leqq s^{\prime} \leqq \infty$. Thus $\left\|f_{1}\right\|_{p} \leqq A_{1}(p, s)\left\|g_{k}{ }^{s}\left(f_{1}\right)\right\|_{p}$.

Proof of Lemma 4.3. Q_{t} is the semigroup dual to P_{t} and the infinitesimal generator of Q_{t} is the adjoint of the infinitesimal generator of P_{t}. Therefore

$$
\begin{aligned}
& \int_{\tilde{H}} \int_{\delta}^{\rho} t^{2 k-1}\left(\frac{d}{d t}\right)^{2 k}\left(P_{t}\left(f_{1}\right) Q_{t}\left(f_{2}\right)\right) d t d N \\
&=K(k) \int_{\tilde{H}} \int_{\delta}^{\rho} y^{2 k-1} P_{y}{ }_{y}^{(k)}\left(f_{1}\right) Q_{y}{ }^{(k)}\left(f_{2}\right) d y d N
\end{aligned}
$$

when $0<\delta<\rho<\infty$. Integrate the left-hand side by parts to obtain

$$
\begin{aligned}
\int_{\delta}^{\rho} t^{2 k-1}\left(\frac{d}{d t}\right)^{2 k} & \left(P_{t}\left(f_{1}\right) Q_{t}\left(f_{2}\right)\right) d t \\
& =\sum_{n=0}^{2 k-1} A_{n}\left[t^{n}\left(\frac{d}{d t}\right)^{n}\left(P_{t}\left(f_{1}\right) Q_{t}\left(f_{2}\right)\right)\right]_{\delta}^{\rho}
\end{aligned}
$$

where the A_{n} are certain real constants. Repeated applications of Theorems 3.1, 3.2, and 3.5 show that the sum on the right converges almost everywhere and in $L_{1}(H)$ to $K f_{1} f_{2}$ as $\delta \searrow 0$ and $\rho 八 \infty$. This proves the lemma.

Corollary 4.4. For $h \in H$, set

$$
h_{\alpha}^{r}(f)=\left(\int_{0}^{\infty}\left|y^{\alpha}\left(-A_{h}\right)^{\alpha} P_{y}(f)\right|^{r} d y \mid y\right)^{1 / r}
$$

If $1<r^{1} \leqq p<\infty$ and $2 \leqq r<\infty$, then $\left\|h_{\alpha}^{r}(f)\right\|_{p} \leqq A(p, r, \alpha)\|f\|_{p}$.
Proof. $\left(-A_{h}\right)^{\alpha} P_{y}(f)=\left(-A_{h}\right)^{\alpha} T^{-\alpha} P_{y}{ }^{(\alpha)}(f)$ and by Theorem IV.4.1, $\left\|\left(-A_{h}\right)^{\alpha} T^{-\alpha}\right\|_{p} \leqq A(p, \alpha)\|h\|^{\text {Re(} \alpha)}$. Thus by Theorem 4.2, $\left\|h_{\alpha}{ }^{r}(f)\right\|_{p}$ $\leqq\left\|g_{\alpha}^{r}\left(\left(-A_{h}\right)^{\alpha} T^{-\alpha} f\right)\right\|_{p} \leqq A(p, r, \alpha)\|h\|^{\text {Re(} \alpha)}\|f\|_{p}$ for the same p and r as in Theorem 4.2.

Theorem 4.5. Ifk is a positive integer

$$
g_{k}^{2}(f)=A\left(\int_{-\infty}^{\infty}\left|\Gamma(k-i s) T^{i s}(f)\right|^{2} d s\right)^{1 / 2}
$$

Proof. The Mellin transform is an isometry from $L_{2}\left(R^{+}, d y / y\right)$ to $L_{2}(R, d s)$. The Mellin transform of $y^{k} P_{y}{ }^{(k)}(f)$ is

$$
K \int_{-\infty}^{\infty} y^{k} P_{y}(k)(f) y^{-i s-1} d y
$$

and k integrations by parts and use of Theorem III.3.4 shows that this integral is $K \Gamma(k-i s) T^{i s}(f)$ for all real numbers s. Thus the desired identity holds.

References

1. A. P. Calderón and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85-139. MR 14, 637.
2. A. P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math., vol. 4, Amer. Math. Soc., Providence, R. I., 1961, pp. 33-49. MR 26 \#603.
3. K. L. Chung, A course in probability theory, Harcourt, Brace \& World, New York, 1968. MR 37 \#4842.
4. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York and London, 1958. MR 22 \#8302.
5. M. J. Fisher, Singular integral operators over a Hilbert space, Trans. Amer. Math. Soc. 131 (1968), 437-465. MR 36 \#6987.
6. -_, Harmonic functions and their conjugates on Hilbert space, Trans. Amer. Math. Soc. 137 (1969), 387-405.
7. -_, Fractional powers of operators and Bessel potentials on Hilbert space, Studia Math. 41 (1972), 191-206.
8. ——, Imaginary powers of the indefinite integral, Amer. J. Math. 93 (1971), 317-328.
9. -, Purely imaginary powers of certain differential operators, Amer. J. Math. 93 (1971), 452-478.
10. -, Singular integrals and fractional powers of operators, Trans. Amer. Math. Soc. 161 (1971), 307-326.
11. L. Gross, Integration and nonlinear transformations in Hilbert space, Trans. Amer. Math. Soc. 94 (1960), 404-440. MR 22 \#2883.
12. -, Harmonic analysis on Hilbert space, Mem. Amer. Math. Soc. No. 46 (1963). MR 28 \#4304.
13. ——, Abstract Wiener spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, part I, Univ. of California Press, Berkeley, Calif., 1967, pp. 31-42. MR 35 \#3027.
14. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 28 (1928), 565-606.
15. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R. I., 1957. MR 19, 664.
16. L. Hörmander, Estimates for translation invariant operators on L_{p}-spaces, Acta Math. 104 (1960), 93-140. MR 22 \#12389.
17. H. Komatsu, Fractional powers of operators. I, Pacific J. Math. 19 (1966), 285-346. MR 34 \#1862. II: Interpolation spaces, Pacific J. Math. 21 (1967), 89-111. MR 34 \#6533. III: Negative powers, J. Math. Soc. Japan 21 (1969), 205-220. MR 39 \#3340. IV: Potential operators, J. Math. Soc. Japan 21 (1969), 221-228. MR 39 \#3341.
18. B. Muckenhoupt, On certain singular integrals, Pacific J. Math. 10 (1960), 239-261. MR 22 \#3948.
19. I. E. Segal, Tensor algebras over Hilbert spaces. I, Trans. Amer. Math. Soc. 81 (1956), 106-134. MR 17, 880.
20. E. M. Stein, The characterization of functions arising as potentials. I, II, Bull. Amer. Math. Soc. 67 (1961), 102-104; ibid. 68 (1962), 577-582. MR 23 \#A1051; 26 \#547.
21. -_, Topics in harmonic analysis related to the Littlewood-Paley theory, Ann. of Math. Studies, no. 63, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1970. MR 40 \#6176.
22. M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space. I. Principal properties, J. Math. Mech. 13 (1964), 407-479. MR 29 \#462.
23. R. L. Wheeden, On hypersingular integrals and Lebesgue spaces of differentiable functions. I, II, Trans. Amer. Math. Soc. 134 (1968), 421-435; ibid. 139 (1969), 37-53. MR 38 \#575; MR 39 \#2028.
24. K. Yosida, Functional analysis, Die Grundlehren der math. Wissenschaften, Band 123, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 31 \#5054.
25. A. Zygmund, Trigonometrical series. Vol. II, 2nd rev. ed., Cambridge Univ. Press, New York, 1959. MR 21 \#6498.

University of Montana, Missoula, Montana 59801

[^0]: Received by the editors April 19, 1971.
 AMS 1970 subject classifications. Primary 44A25; Secondary 46E15, 46E35, 47D05, 47D10, 28A40.

 Key words and phrases. Singular integrals, hypersingular integrals, singular integrals of imaginary order, Poisson integral, Littlewood-Paley inequality, maximal theorems, purely imaginary powers of operators, complex powers of operators, analytic semigroup.
 ${ }^{1}$ Research supported in part by the National Science Foundation grant GP-24574.

