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1. Introduction. In the experimental sciences, the problem of esti­
mating a function from an approximate knowledge of a finite number 
of observations occurs very frequently. If the observational values 
were known exactly the techniques of Optimal Approximation [1] 
could be employed directly, but usually the given information is 
subject to experimental error, which may often be regarded as 
probabilistic in nature. One is thus led to consider a space of all the 
functions which might conceivably have given rise to the observations, 
and the possibility of constructing a probability measure on this space. 

In choosing a curve of unknown algebraic form to fit experimental 
data there is a widespread predilection favoring "smoother" curves 
over those which are "not so smooth", presumably expressing the in­
tuitive feeling that, if any given set of data could have arisen from 
either a smooth curve or a rough curve, then the former is "more 
likely" than the latter. Also in choosing such curves, one would feel 
that curves of equal norm should be equally likely. The first of these 
two considerations suggests a probability measure that favors smooth 
functions over unsmooth ones by assigning high probability to curves 
with small norms and low probability to curves with large norms. It 
would seem, then, that the choice of a Gaussian measure in which the 
functional exp {"~||^||2} plays the role of the relative likelihood of a 
member h of some Hilbert space is likely to be useful in numerical 
practice. 

The second consideration carries us even further toward a Gaussian 
measure. To ask that our measure make curves of equal norm 
equally likely is to ask that it be invariant under unitary transforma­
tions. 

It has been shown in [13] that in the setting we are about to con­
sider a unitarily invariant, /LL, must be of the form //,(•) = 
JoVx( * )<x(d\) where {/^} is a family of canonical Gaussian measures 
and a is a probability measure on [0, «> ). 
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Practical applications of the above ideas are explored in another 
paper [11]. The purpose of this present paper is to review and 
interpret enough of the theory of Gaussian measure on function spaces 
to provide a working basis for practical applications in Approximation 
Theory and Numerical Analysis like those in [11]. 

2. The measure. We will always assume that H is a real separable 
Hilbert space. For a given linearly independent set t/i, t/2> ' ' *>?/n 
in H* and Borei set E C R(n) we define 

v{hGH: ((t/l5 h)9 (t/2, h)9 • • -, (t/n, h)) <E E} 

JE (VÌSr)" F l 2 J 

where x = (x1? x2, * * *, xn) G R(n) and 2 = [(?/i, *//)] is an n X n 
matrix of inner products. Any such subset of H of this form is called 
a tame set or a cylinder set. A change of variables shows that v is 
well-defined and finitely additive on the algebra of tame subsets of 
H. The extension of v to the Borei subsets of H would appear to be 
the measure called for in §1. 

3. It is not countably additive. The set function, v, has one serious 
defect. It is not countably additive. To see this, let y 1,1/2, ' ' *, j/fe, * * ' 
be an orthonormal basis for H and let Aj = {h £E H : — 7 = (t/i, h) ^ j 
for all i = pj} wherepj is chosen so that 

All the Aj as well as H are tame sets and H = U/=2 A'> K # ) = !• 
However, 27-2 * ( ^ ) ^ . 

4. Enlarging the space. As a result of §3 one is forced to choose 
between the following two alternatives. The requirements of §1 
can be dropped in favor of some nonnegative set function which is 
countably additive on the algebra of tame sets of H and hence can be 
extended to a measure on H. Or, we can introduce a well developed 
integration theory that will allow us to have the conditions of §1 
satisfied. It is this second choice that we will discuss in the following 
paragraphs. We attempt at this point a heuristic discussion. A semi-
norm, || • || !, on H is sought with the property that if B is the com­
pletion of H under || • ||x then v can be defined on the cylinder sets 
of B and v is countably additive on this algebra. Such seminorms do 
exist and are called measurable seminorms. They will always be 
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weaker than the original Hilbert space norm (see [7, Corollary 5.4] ). 
Given such a || • ||l5 fF(h)v{dh} can then be defined for certain 
classes of functions on H in terms of an extension of F to B and an 
integral over B. We now give a formal definition of a measurable 
seminorm due to Gross [7]. 

DEFINITION. A seminorm, || • ||i, on H is called a measurable semi-
norm if for every e > 0 there exists a finite-dimensional projection, 
F0? such that for every finite-dimensional, F, orthogonal to F0 we have 
v{h G H : \\Ph\\i > e} < €. If F is a positive definite finite trace 
class operator on H then \\x\\i = (Tx, x)112 is always a measurable 
norm on H. In the case when H is a. reproducing kernel Hilbert space 
of more interest is the question of when the sup norm is a measurable 
norm. This is a question that will be discussed in §7. 

5. Gross' Theorem. We first introduce a cylinder set measure, p, 
on B. B* is dense in H* and || • \\i is weaker than the Hilbert space 
norm so that, for each j / E B * , y IH G. H*. Thus we can define /x by 

V,{b<=B:(yi(b),--;yn(b))(EE} 

= v{hGH: ((yiIH)(h), • • ; (yJH)(h)) G E}. 

We can now state the 

THEOREM. If H is a real separable Hilbert space and B is the com­
pletion of H under || • \\x where || • || x ** # measurable norm on H, then 
fi is countably additive on the cylinder sets ofB. 

This result together with its proof appears as Theorem 1 in [8]. 

6. Integration. We now turn to the problem of integrating func­
tions on H with respect to the cylinder set measure v. Our discussion 
follows the theory developed by L. Gross in [7], [8], but differs in the 
sense that we have tried to be more explicit in the construction of the 
weak canonical normal distribution on H. We hasten to add that 
we knowingly have sacrificed some generality and perhaps a certain 
neatness in this attempt, but hopefully this will be offset by ease in 
application to the problems in §1. 

DEFINITION. A function/on H is said to be a tame function based on 
F if there exists a finite-dimensional projection F such that f(Ph) = 

f(h) for all Ä G H , and / is measurable with respect to the algebra of 
tame sets. 

It follows that if / is a tame function based on F and Q is a finite-
dimensional projection such that QH D PH then / is also based on 
Q. Furthermore, one can show that if / is a tame function based on 
Fand 
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(6.1) $p(tii, • • -9Un) = f(ulel + • • • + unen) 

where eÌ9 • • -, en is an orthonormal basis for P(ff), then 4>P is Borei 
measurable on R(n) and 

(6.2) (2ar)-«2 | ( I I>*P(«0 e x p { - ||w||2/2} du 

is independent of the base P of/. The main ideas used to prove these 
facts are similar to those employed in proving that v is well-defined 
on the tame sets. 

In view of the previous remarks we now are able to define the 
integral of a tame function. 

DEFINITION. If / is a tame function based on P, then f is integrable 
if 

(6.3) \R{n) P>p(u)|exp{- \\u\\2l2] du < oo . 

We then define the integral îHf(h) v(dh) as (6.2). 
Another way to view the integral of a tame function f on H is by 

extending / to B, the completion of H in a measurable norm || • \\y. 
To do this we first define the extension to B of the functional 
x -*• (x, h) where h G H is fixed and x G H. Since || • || i is weaker 
than the Hilbert space norm || • || and H is dense in B we have B* 
dense in H* which we identify with H. Thus there exists a complete 
orthonormal sequence {otk} C B* Ç H* and we define 

(6.4) (x, h) ~ = lim 2 (*, ofc)(Ä, e*) (x G B). 

Now {(x? otk)} is a sequence of independent Gaussian functions with 
mean zero and variance one with respect to the measure / i o n ß and 
SJT=I (kok)2= \\h\\2; thus it follows that limn ^fc=i (*, otk)(h, ak) 
exists for almost all x G B and that (x, h) ~ is Gaussian with mean zero 
and variance ||^||2. It also is easy to show that (x, h)~ is independent 
of the defining sequence {ofc}Ç B* and that, for hu • • -, hk G H, 
(x,h\)~, • • m,(x,hk)~ have a joint Gaussian distribution with mean 
zero and covariance matrix S = [ (hi, hj)]. Furthermore, if h G B* it 
can be shown that (x, h) = (x, h) ~ with /Lt-measure one on B. 

We now extend the function x —» (x, /i) defined on H to /LI-almost 
all of B by the formula x —» (x, ft) ~ and call it a stochastic inner 
product. 

Iff is a tame function based on P as in (6.1) we then ex tend / to B 
by the equation 
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(6.5) 
= 4>P[(X, ex)~, • • -,(x,en)~]. 

Since Op is a Borei function, it follows that / is measurable on B 
and we have 

(6.6) j B f(x)ß{dx}= j ^ jR{n)<PP(u)exp{-\\u\\m}du 

so IBJ(X) p(dx) = SH/W v(dh) provided any of the integrals 
exist. Again, s ince/may be based on various projections F and hence 
determines various Borei functions <I>p, we mention that the extension 
of / to B via any 4>p yields the same measurable function (with /x, 
probability one). Further, the right-hand side of (6.6) is independent 
of the 4>P used to represent / , so Sß/dß is well-defined provided 
the right-hand side of (6.6) exists. 

In summary then, we can integrate a tame function fon H by form­
ing its extension to B which we will denote by f, and then integrat­
ing f with respect to the measure fx on B induced by v. Further, 
the map T(/) = / is a linear multiplicative map on the tame 
functions to measurable functionals (random variables) on the 
probability space (B, ft). To integrate other functions on H we 
attempt to extend T. 

Iff is a function on H we define 

r ( / )= /= lim(pPn) 
n 

provided the limit exists in 11-measure for every sequence of finite 
dimensional projections increasing strongly to the identity and the 
limit function is independent of the sequence {F„}. Here, of course, 
the limit exists on a Banach space B obtained from a measurable norm 
|| • Ox on H, and fx is the measure induced on B by v. 

DEFINITION. A function fon H is integrable iff exists on a Banach 
space B and fis /Lt-integrable on B. We then define fnfdv a s IBJdfx. 

Further, we remark that (f° Pn) converges in probability on B 
iff /° Pn converges in probability on B0 where Bo is the completion 
of H under another measurable norm || • ||0 and that Ißfäfi^ 
IB0 f d/ut. Hence the integral off is well-defined. 

The next result indicates how to integrate certain smooth functions 
on H. 

PROPOSITION 1. || • ||i is a measurable norm on H, 
B is the completion of H under || • ||1? 

v( • ) is the canonical normal distribution on H, 
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/x( • ) is the countably additive extension ofv( • ) to the Borei subsets 
ofB. 

Suppose: 1 — f(x) is defined on H, 
2—f( • ) has a unique continuous extension to B which we again 

denote byf3 

3 - \f(x)\ ^ Aexp{C||x||2-s} for A, C, 8 > OforxG H. 
Then, f is integrable on H. Further, let \\x\\i = (Tx, x)m where 

T is a compact symmetric positive operator on H with eigenvectors 
{<Pi> <P2> ' ' *} tfnd eigenvalues {A*} such that ^ A * < °° • Let PN(X) = 

*Zk=i(*,<Pk)<Pk- Then 

(6.7) /(*) = / (x ) = lim (pPN)(x) = l i m / o PN(x) 
N N 

for almost all xinB and 

f f(x) n{dx) = lim f (pPN)(x) ti(dx) 
(6.8) JB N JB 

= lim f / o PN{h)v(dh). 
N J H 

PROOF. Since / h a s a unique continuous extension to B and for any 
increasing sequence of projections converging to the identity 
lim \\PN(x) — s||i = 0 with /x-measure one [10] it follows that /(x) = 
limN(/<>rjv)(x) = limN/° PN(X) = f{x) with jn-measure one. Now 
| / ( x ) | ^ Aexp{C||x||f-0} for A, C, ô > 0 and xGH implies 
the same inequality holds for x G B since H is dense in B and / is 
continuous on B. Using the recent results of Shepp and Landau 
[14] and Fernique [3] we know the exponential function bounding 

f—f is integrable on B and hence Sßfdfi= Iß/dti exists. 
Thus /integrable on H. 

To verify (6.7) we simply argue as above since we know f—f. 
Since (TPNx,PNx) = ^k=i^k[(x,<Pk)~]2 is increasing in IV we 
have | |?NX | | I increasing to \\x\\i with /^-measure one and hence by 
(3) we have \(f*'PN)(x)\^ Aexp{C||x||f-0} for N = 1, 2, • • • and 
/Li-measure one. Thus by (6.7) and the dominated convergence theorem 
(6.8) holds. As already noted, measurable norms are always weaker 
than the Hilbert space norm. Therefore functions on H with a 
unique continuous extension to B must be "very smooth" on H. 
In particular we get from Corollary 4 of [8] that positive functions 
with this continuity property cannot have a 0 integral (see the 
example of §9). Another class of functions on H that can be integrated 

3For example, suppose / is uniformly continuous in || *||i on bounded subsets 
ofH. 
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with the help of the computational formula of Proposition 1 is the 
class of tame functions. In fact, iff is a tame function we know how 
to define f= r(f) but it is not at all clear that for every in­
creasing sequence of finite-dimensional projections converging to the 
identity 

iim(pPn) = f 
n 

where the limit is taken in /n-measure and / = r ( / ) is defined 
as in (6.5). That this is the case follows from a result of Friedrichs and 
Shapiro [4], and if fis assumed to be integrable then they prove 
lim„ /B \{f ° Pn) — f\dti= 0. In particular, (6.8) holds when 
/ is an integrable tame function and {PN} is any sequence of finite-
dimensional projections increasing to the identity. 

REMARK. It is also easy to see that iff is as in Proposition 1 and 
\f(x)\^A for some A > 0 and all x G H then (6.8) holds for / 
with respect to any sequence of finite-dimensional projections {PN} 
increasing to the identity. 

7. The role of the reproducing kernel. Let H be a reproducing 
kernel Hilbert space of real valued functions on some separable 
metric space, D. We assume that the reproducing kernel, fi, is con­
tinuous on D X D so that H is a separable Hilbert space of continuous 
functions on D. If \\h\\i = supx e D | / i (x) | is a measurable norm on H 
and this sup norm is used to construct B, then the point evaluation 
linear functionals on B will be continuous and hence will be elements 
of B*. If Xt G B* is a continuous point evaluation at t functional on 
B then {Xt(b), t E. D} is a Gaussian stochastic process on B with 
E(Xt) = fBXt(b) n{db} and E(XtXs) = IBXt(b)Xs(b)ix{db} = 
(XJH, XJH) = R(t, s). Hence we have 

PROPOSITION 2. Let H, R, || • Hi, and Xt be as in the above then 
{Xt(b), t G D} is a Gaussian stochastic process on (B,!B, /x) with 0 
mean and covariance function R(s, t). Here B is the completion of 
H with respect to the sup norm, !B is the a-algebra of Borei subsets 
of B, and JJL is the extended measure of §5. The near converse to 
Proposition 2 is due to Kallianpur [9]. 

KALLIANPUR'S THEOREM. Let D be compact and C = C(D) be the 
linear space of continuous functions on D. If [Lis a countably additive 
Gaussian measure on cA(C) with 0 mean and continuous covariance 
function, R(s, i), and if H(R) is the reproducing kernel Hilbert space 
with kernel fi, then \\h\\i = supdGDl\h(d)\ is a measurable norm on 
H(R). Here c$(C) is the a-algebra generated by the Borei cylinder 
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sets on C and the cylinder set measure on H(R) is the canonical 
normal measure of §2. 

Given a continuous positive definite function, R, on D X D, it is, 
unfortunately, not always possible to construct a mean 0 Gaussian 
measure, /ut, with covariance function R with the property that the 
support of /A is a subset of C(D) (see [5] ). Equivalently, there exist 
reproducing kernel Hilbert spaces with continuous kernels having the 
property that the sup norm is not a measurable norm. Here, again, 
the cylinder set measure is that of §2. Proposition 3, to follow, and 
Proposition 1 make it clear that one would like conditions on the 
reproducing kernel, R, which would insure that the sup norm be 
measurable. Sufficient conditions on R for the sample path continuity 
of the associated Gaussian process, with the help of Kallianpur's 
Theorem, become sufficient conditions on R for the sup norm to be 
a measurable norm on H(R). Hence if D is a compact subset of 
R(1) and if R is continuous, then the sup norm on H(R) is a measurable 
norm if any one of the following are satisfied: 

(7.1) There exist constants c > 0 and a > 1 such that for all suf­
ficiently small h, \\R(t + h, • ) - R(t, • ) | |H (R) = R(t + h,t + h) -
2R(t, t+h)+ R(t, t) ^ cl\ln\h\ |« [2] ; 

(7.2) JD(ln(l/ti))1/2dP(w)< oo where 

P(u)= max {\\R(s, • ) - R(t, • )||„(H)} 
\s-t\^u 

= max {[ R(«, s) - 2R(s, t) + R(t, t)] "*} 
\s-t\£u 

[6] ; or 
(7.3) R(s, t) = R(t — s) is a function only of the difference, \t — s\, 

and there exists e > 0 and an increasing function, \jj, satisfying 

f. »(x)cfa 

Jo xQnQJ*))112 

such that for 0 ^ | x | ^ € we have ||R(x, • ) - R(0, • ) \ \ H ( R ) = 

( 2 [ R ( 0 ) - R(x)])i /*â*(*),[12]. 
Dudley's condition, (7.1), is probably the easiest to verify in specific 

cases. (7.2) is equivalent to a condition of Fernique. (7.3) is due to 
Fernique. Proofs for (7.2) and (7.3) can be found in the indicated 
references. 

8. A Fubini-type theorem. 

PROPOSITION 3. Let H be a Hilbert space of functions (not neces­
sarily an RKHS) defined on D C R(1). For each h EL H let f( •, h) 
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be a measurable function on D. Let || • || i be a measurable norm on 
H and B be the completion of H under j| • \\i. Assume that for each 
x G. D, f(x, • ) has with respect to || • || i a unique continuous exten­
sion to B which we again denote by f(x, • ); assume that the extended 
function, fi • , • ) is measurable and integrable in the usual sense on 
D X B; finally assume that g(h) = fof(x> h) dx has, with respect 
to || • ||i, 0 unique continuous extension to B given by fDf(x,b) dx. 
Then g(h) is integrable in the sense of §6 and / # g(h) v {dh} = 
SB fof(x, b) dx fi{db} = ID fBf(x, b) fi{db} dx. 

PROOF. The integrability of g and its evaluation follow from Proposi­
tion 1. The interchange of integrals is nothing more than an applica­
tion of the classical Fubini Theorem. 

It should be noted that if D is a bounded subset of R(1) and if / 
is uniformly continuous on (D, | • |) X (H, || • ||i) then all of the above 
extension and measurability conditions are satisfied. 

9. Example. Let F(h) = exp{ — (/i, h)}. Let {Pn} be an increasing 
sequence of projections converging to I with the dimension of the 
range of Pn equal to n. Then fH F(Pnh) v{dh} = 3"n / 2 . This 
approaches 0 as n approaches infinity. However F is not the 0 func­
tion. Therefore there exists no measurable norm on H with the 
property that F possesses a unique continuous extension to B where 
B is the completion of H under that norm. 
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