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SEPARABLE POLYNOMIALS OVER A COMMUTATIVE RING 
FRANK DEMEYER 

If R is a commutative ring with no idempotents other than 0 and 1 
then G. J. Janusz in [2] called a polynomial p(X) E R [ X ] separable in 
case p(X) is monic and R[X]l(p(X)) is a separable R-algebra. Janusz 
shows that to each separable polynomial p(X) G R [ X ] there is a 
(unique up to isomorphism) extension N of R so that p(X) factors into 
linear factors in N[X], N is generated from R by the roots of p(X), 
the only idempotents in N are 0 and 1, and N is a Galois (in the sense 
of [ 1] ) extension of R with finite Galois group G. 

Such an extension N of R is called a splitting ring for p(X), and the 
full group of automorphisms of N fixing R elementwise is called the 
Galois group of p(X). Our first objective is to elaborate on some of 
Janusz' results. To each commutative ring R with no idempotents 
other than 0 and 1 we associate a locally strongly separable R-algebra 
r with no idempotents other than 0 and 1 (unique up to isomorphism) 
so that any finite subset of Y is contained in an extension R(ai, • • •, otn) 
of R in r with oii the root of a separable polynomial over R(a\, • • -, oti-i) 
and so that any separable polynomial over T factors into linear factors 
in T. The full group of R-algebra automophisms of T is a compact 
Hausdorff topological group G(R). This process describes a con-
travariant functor from the category of commutative rings with no 
idempotents other than 0 and 1 (and ring homomorphisms) to the 
category of compact Hausdorff topological groups (with morphisms 
certain equivalence classes of continuous homomorphisms). The rest 
of this paper studies the situation when no restriction is placed on 
idempotents in R. The fundamental tool in this study is the representa­
tion of R as a global cross section of a sheaf of commutative rings 
with no idempotents other than. 0 and 1 as elaborated by O. Villamayor 
and D. Zelinsky in [5]. In order to carry out results analogous to those 
in [2] it is necessary to consider monic polynomials p(X) G R[X] so 
that R[X]l(p(X)) is a separable R-algebra and the representation of 
p(X) in the stalks of the sheaf described above is "uniform" in the 
sense that the Galois groups of the polynomials at the stalks are 
isomorphic in a neighborhood of each point in the base space. This is 
made precise in §2. A Galois theory is developed for these polynomials 
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which generalizes the situation where R has no idempotents other 
than 0 and 1. We conclude with a number of examples which show 
the importance of some restriction on the idempotents in R, or the 
nature of the polynomial p(X). 

Throughout this paper all rings and algebras will be commutative 
rings and algebras with identity (denoted 1). All ring and algebra 
homomorphisms carry identity to identity, and by the statement "S 
is an extension of R" we mean "S is a faithful R-algebra". 

We assume throughout a familiarity with [2] and all undefined 
terminology is as in [2]. 

1. In this section R will denote a commutative ring whose only 
idempotents are 0 and 1. 

A locally strongly separable R-algebra T with no idempotents other 
than 0 and 1 will be called a polynomial closure of R in case 

1. Any finite subset of T is contained in an extension R(t*i, * * *, o^) 
of R in r with oti a root of a separable polynomial over R(a\, • * -, a»_i). 

2. Any separable polynomial over T factors into linear factors in T. 
If r is a locally strongly separable R-algebra with no proper idem­

potents then Lemma 2.7 of [2] implies that R(a) is strongly separable 
over R if and only if a is the root of a separable polynomial over R. 

THEOREM 1.1. Any commutative ring R with no idempotents other 
than 0 and 1 has a polynomial closure F which is unique up to iso­
morphism. Moreover, F is a normal extension of R and the group of 
R-automorphisms of Y is a compact Hausdorjf topological group. 

PROOF. Existence: Let l ì be the separable closure of R. Consider 
the set S of all extensions of R in ft of the form R{pt\, • • -, a„) with 
di the root of a separable polynomial in R(«i, * * *, Ok-i)- The transitiv­
ity properties of separability (Proposition 1.5 of [2] ) and the remark 
preceding Theorem 1.1 imply that R(<*i, * * *, o^) is strongly separable 
over R. If R(ßi, • • -, ßm) is another element in <£, then observe that 
ßi satisfies a separable polynomial in R, and therefore one in 
R(c*i, • • -, On). Thus R(c*i, • • *, On, ßi) is in <£ and by a finite induction 
R(c*i, • • ',otn,ßi, ' ' ',ßm) is an element of <£. 

Thus J> is a directed set and the union of all the elements of S 
provides a locally separable subextension F of ft. Let p(X) be a 
separable polynomial in T[X]. Let t denote the trace of the free 
T-module F[X\l(p(X)), and let y denote the coset of X modulo 
(p(X)). Find an element S G i containing the coefficients of p(X), 
the elements t{yltf) (0 ^ i, j < deg (p(X))), and d e t ( % y ) ) ± 1 . The 
invertibility of det (tiy1^)) is equivalent to the separability of p(X) 
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(Theorem 2.2 of [2] ). Thus p(X) is a separable polynomial over S. 
If 01, • • -, ßm are the roots of p(X) in (Î and S = R(«i, • • -, otn) then 
R(a\, ' • *, otn9ßi, ' • *, j8m) G J> so all the roots of p(X) are in T. 

Uniqueness: We show first that the algebra T constructed above 
is a locally strongly separable normal extension of R in fì. 

Now r is locally strongly separable by property 1 of the definition 
of a polynomial closure. If a is any R-automorphism of O and 
R(a\, ' ' ', otn) is an extension of R in ii with a* the root of a separable 
polynomial in R(«i, • * *, oti-i) then a(R(a\9 * • -, otn)) = 
R(cr(ai), * * *, <r(av»)) and <r(oti) is the root of a separable polynomial 
in cr(R(al7 • • -, c*_i)) = R(a(«i), • • -, a fa -O) . Thus a ( r ) C T 
for all R-automorphisms a of il which is equivalent to the statement 
that r is a normal extension of R. If G is the group of all R-auto­
morphisms of ft and H is the closed subgroup fixing T then by Theorem 
3 of [3] the compact Hausdorff topological group Gl H is the full 
group of R-algebra automorphisms of T. 

Let r ' be another polynomial closure of R. The proof of Proposition 
1.7 of [2] shows that T ' is isomorphic to an R-subalgebra of fl. The 
construction of T insures that the isomorphic copy T" o f f in ft is an 
R-subalgebra of T. Let ß E.T. Then there exist a\, • • -, a^ with 
ß G R(«i, * * *, On) and cç the root of a separable polynomial in 
R(c*i, • • -, oti-i). Thus ß G r " (a i , • • -, otn) and by property 2 of the 
polynomial closure P ' (a i ) = T", by induction j S E T " so r = T". 

Let p(X) be a separable polynomial in R[X] and let «i, • • -, a^ be 
the roots of p(X) in T. Then by Proposition 2.6 of [2], R(«i, * * *, otn) 
is a Galois extension of R with a finite group G(p(X)) of R-auto­
morphisms. G(p(X)) is a group of permutations on the roots ai, • * % otn 
of p(X) and will be called the group of p(X). 

We will call the compact Hausdorff group G(R) of R-automorphisms 
of the polynomial closure T of R the Galois group of R. For each 
commutative ring R with no idempotents other than 0 and 1 we have 
associated a unique compact Hausdorff group G(R). If G and H 
are two compact Hausdorff groups and g, h are continuous homo-
morphisms from G to H say g is equivalent to h if there is a y G H with 
g(x) = yh(x)y~l f° r all * G G. The class of all compact Hausdorff 
groups with morphisms equivalence classes of continuous homo-
morphisms is a category. 

Let K be another commutative ring with no idempotents other than 
0 and 1 and let 4> be a ring homomorphism from R to K Let T be 
the polynomial closure of R and let A be the polynomial closure of 
K. The homomorphism <j> makes K into an R-algebra. Any finite 
subset of K<8>Rr is contained in K®RS where S is a strongly separable 
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R-subalgebra of T. Thus K ® R r is a locally strongly separable 
K-algebra. 

Any polynomial p(X) Gf i [X] which is separable over R must be 
separable over K By Proposition 1.7 of [2] there is a K-homo-
morphism from K ®RT into fi (the separable closure of K). The 
restriction of this homomorphism is a ring homomorphism </> from T 
to ft extending <\>. Let F be a finite subset of image (</>) and let F ' be 
a set of representatives for the preimage of F in T. There is an exten­
sion R(cti, - * *, an) of R in r containing F' with a» the root of a 
separable polynomial in R(c*i, • • *, a&_i). By construction, F Ç 
K(<K«i), ' ' "> <^>(an))? a n d it is easy to check that 0(a*) is the root of 
the separable polynomial over K(<t>(ai), ' ' *, 0(o*_i)) obtained via 
$ from the corresponding polynomial over R(ai, * * *, o&_i). Thus, 
image <£ Ç A. If r G G(K) then T(f> is another extension of <f>. For 
each Galois extension N of R in T, T<£|# is an isomorphism from IV 
into A. By Lemma 1.3 of [2] we conclude that there is an auto­
morphism a of N so that T<£|# = <^O-|N- Define a on all of T by 
using the fact that T is the union of its R-subalgebras which are Galois 
extensions of R. Then one can check that a Œ G(R). Thus using the 
extension 0 of <\> we are able to associate to each element T £ G(K) 
a unique element ar G G(R). The different extensions of <f> to T 
yield different (but equivalent) homomorphisms from G(K) to G(R). 
Thus we have associated to the ring homomorphism <f> from fi to K 
a morphism G(<f>) from G(K) to G(R). It is now routine to verify 
the following theorem. 

THEOREM 1.2. The association R—» G(R) defines a contravariant 
functor from the category of commutative rings with no idempotents 
other than 0 and 1 to the category of compact Hausdorjf topological 
groups with morphisms equivalence classes of homomorphisms. 

2. Throughout this section we will be employing freely the ideas 
and results of [5]. We begin by introducing the terminology we will 
need. 

Let R be any commutative ring, and let B(R) be the collection of 
idempotents in R. Then B(R) is a Boolean algebra with operations 
e * / = ef and e 0 / = e + j f - ef for all e,fG B(R). Let spec B(R) 
be the set of maximal ideals in B(R). As a base for a topology on 
spec B(R) call a subset Ue of spec B(R) a basic open set in case Ue = 
{x G spec B(R) \ e G x, e fixed in B(R)}. This base defines a compact, 
totally disconnected, Hausdorff topology on spec B(R). If Uei, • • -, Uen 

are basic open sets which cover spec B(R) then observe that there 
are idempotents fu • • -,fn contained in (1 - ex), • • • , ( ! - en) so that 
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R = Rfi © Rf2 © • • * © Rfn. We will use this fact several times 
in what follows. For each x G spec R(R) let Rx = RIRx. Then Rx 

is a commutative ring whose only idempotents are 0 and 1. 
This process defines a sheaf whose base space is spec B(R), and 

whose stalks are the rings Rx. In this case R is represented in a natural 
way as a global cross section of this sheaf. The basic sheaf property 
that if two cross sections agree at a point then they agree in a 
neighborhood of the point can be used to lift information true at 
Rx for all x to information about R If M is an Rmodule let Mx 

= Rx ®R M. If M and N are Rmodules and g G Homfl (M N), let gx 

be the corresponding homomorphism induced in HomR (Mx, Nx). 
We call a polynomial p(X) Œ R[X\ separable in case it is monic 

and R[X]l(p(X)) is separable over R If y G spec B(R) then the 
natural homomorphism from R onto Ry induces a homomorphism from 
R[X] to Ry[X\. If p(X) G R[X] we denote the corresponding poly­
nomial in Ry [X] by py(X). 

A separable polynomial p(X) Œ R[X] is called uniform in case for 
each x G spec B(R) there exists a neighborhood U of x in spec B(R) 
such that for all ! / £ [ / , G(py(X)) =* G(px(X)). 

THEOREM 2.1. Le£ p(X) foe a uniform separable polynomial in 
R [ X]. 77ien £/iere existe a finite projective separable extension N 
of Rand elements ct\, * • ̂ c^inN so that 

1- p(X) = Yl?=i(X-ai)inN[X], 
2. N = R(al5 • - M * ) , 
3. B(N) = B(R). 

PROOF. Let S = R[X]lp(X), then S is a strongly separable extension 
of R containing a root e*i of p(X). In S[X], p(X) = (X - «i)pi(X) 
where pi(X) is a monic polynomial in S[X]. Now S[X]/(pi(X)) is a 
homomorphic image of S <8> R[X]/(p(X)) so pi(X) is a separable 
polynomial in S. The property of being strongly separable is transitive 
so by a finite induction we come to a strongly separable extension 
T of R in which p(X) factors completely. 

Let x G spec B(R), and write Tx as a finite direct sum of strongly 
separable Rx-algebras. In each of those algebras px(X) factors com­
pletely so Tx contains an algebra Rx(a\x, • • -, a„x) which is a splitting 
ring for px(X) over Rx. Lift the elements aix, • • •, a„x to elements 
ax, • • -, ctn in T and let N = R(ot\, ' ' m, o^). Find a neighborhood 
(7 of x so that for all y G C7 

1. Ny is separable over Ry, 
2- py(X) = n."=i(X - («,)„) inNy[X\, 
3. G(Pi/(X)) - G(p,(X)). 
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Such a neighborhood can be found using the hypothesis and (2.9) 
of [5]. This neighborhood U defines an idempotent e of R so that 
Ne is a separable Re-algebra so by Proposition 1.5 of [2], Ne is pro­
jective over Re. We can therefore further restrict U so that 
RankR{/(Ny) = RankRx(Nx) for all y G U. Since RankR(/(Ny) = 
[G(py(X)) : 1] it follows that the only idempotents in Ny are 0y and 
ly. If / is an idempotent in Ne then either fy = 0y or fy = ly for all 
y G U. Thus (Re + Rf)y = (Re)y for all y G U which implies that 
fÇzRe by (2.11) of [4]. Thus Ne satisfies the conclusion of the 
theorem for p(X)e over Re. Now employ the compactness of spec B(R) 
to find a finite collection e1? * * % em of orthogonal idempotents in 
R summing to 1 so that an extension Ni of Rei satisfies the theorem 
for p(X)e{. Then let N = Nx © • • • ©Nm . 

Let p(X) be a uniform separable polynomial in R[X]. An extension 
N of R satisfying the conditions of Theorem 2.1 will be called a 
splitting ring for p(X). 

Let N be a splitting ring for p(X) and let x G spec B(R). By 2.14 
of [5] one can extend the Rx-automorphisms in G(px(X)) to a set G 
of R-automorphisms of N where the identity is extended to the identity 
on N. By Theorem 1.3 of [1] there are elements a\x, • * •, anx, 
bix, ' ' ',bnxinNxsoÙi2Lt 

n 

S aixVx(bix) = lx, <JX = 1 in Gx, 

= 0, <ix ^ 1 in Gx. 

Let ax, • • -, an, bi, • • -, fon be elements of N with (a*)* = aix, (foi)̂  = btX 

for i = 1, • • -, n. By 2.9 of [5] there is a basic open set V in 
spec B(R) defining an idempotent e G R so that 

n 

5] {aie)cr(ijie) = e, a = 1 in G, 

= 0, a ^ 1 in G. 

By Theorem 1.3 of [1], Ne is a Galois extension of (Ne)G with group 
G and Rank(Nlf)C(Ne) = [ G : l ] = RankRe(Ne). This implies that 
(Ne)G = Re and applying compactness of spec B(R) we have that 
N is a weakly Galois extension of R [5]. We can now prove 

THEOREM 2.2. Any two splitting rings for a uniform separable 
polynomial are isomorphic. 

PROOF. Let S and T be splitting rings for the separable polynomial 
p(X) in R[X]. By decomposing R by a finite number of idempotents 
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we can assume by Theorem 3.15 of [5] that S and T are Galois exten­
sions of R with Galois group G. For each x G spec B(R) there is a 
Gx-isomorphism gx from Sx to Tx over Rx. Lift gx to an R-module 
isomorphism g from S to T using (2.7) of [4]. 

Let öi, • • -, an; b\, • • *, bn be in S with 

n 

^ at<r(bi) = 1, o- = identity in G, 
i = l 

= 0, a / identity in G. 

In a basic neighborhood U of x the following are satisfied for each 
y<EU. 

1- [g(*fa))]y = [*(gfa))] y, i = 1, • • -, n? 

Thus g is a G-homomorphism from Se to Te where e is the idem-
potent defining U. Since Se and Te are Galois extensions of Re 
Theorem 3.4 [1] implies that g is an isomorphism. Applying the 
usual compactness argument completes the proof. 

Call a ring R uniform if for each x EL spec B(R) there is a collection 
of isomorphisms <f>y : Ry —» Rx (y G spec B(R)) such that if F is a finite 
subset of R there is a neighborhood V of x with 0y(fly) = ax for all 
fl£F,y£V. 

Call a ring R weakly uniform if it is a finite direct sum of uniform 
rings. For example, if R is any ring whose only idempotents are 
0 and 1 then the subring of the direct product of any number of copies 
of R generated by the direct sum together with the K-multiples of the 
identity is a uniform ring. 

If R is a commutative ring and ^ is a topological space we let 
Û(9(,R) be the ring of continuous functions from ^ to fi where R 
is given the topology where point sets are open. 

THEOREM 2.3. The following conditions on a commutative ring 
R are equivalent. 

1. Risa weakly uniform ring. 
2. There is a finite collection RÌ9 • • -, Rn of commutative rings with 

no idempotents other than 0 and 1 and orthogonal idempotents 
0i> ' ' ', en in R which sum to 1 so that Rei— £(spec B(Rei), Ri), 
i = 1, • • -, n. 

3. There is a finite collection of totally disconnected compact 
Hausdorff spaces {^Yi}/Li and commutative rings {Ri}lL\ with no 
idempotents other than 0 and 1 so that R — © ^"=1 £(^(i, Ri)-

PROOF. (1 implies 2). 
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We can assume without loss of generality that R is uniform. Let 
x G spec B(R) and define a homomorphism 0 : R-» £(spec B(R), Rx) 
by letting the image of 0(a) at y be <f>y(ay) where aE:R and the <f>y are 
given in the definition of uniformity. Notice that the last condition in 
the definition of uniformity implies that 0(a) is continuous so 0 is 
well defined. A consequence of (2.9) of [5] is that 0 is one-to-one. 
Let V G £(spec B(R), Rx) and let a G R with ax = ¥(x). Since ^ is 
continuous there is a neighborhood U of x with ^(y) = ax for all 
t/ G U. Thus 0(a) agrees with ^ on (/. Let e be the idempotent 
defined by U, then <f>(ae) = ty on U. 

By compactness one can find X\, - - -, xn in spec B(R) and ortho­
gonal idempotents e1? • • -, en which sum to 1 and elements af in 
Rei so that y¥(aei) = 07i

1(ax) where <j)Xi : R*,—» Rx is an isomorphism 
given in the definition of uniformity. Observe that if a = ae\ + • • • 
+ aen, then 0(a) = ty. 

Once one identifies spec B(d(9<i, Ri)) with (Xi the rest of the theorem 
is easy to check. 

COROLLARY 2.4. If R is a weakly uniform ring then any separable 
polynomial over R is uniform. 

PROOF. Let p(X) be a separable polynomial in R[X\ and let 
x G spec B(R). Let U be a neighborhood of x satisfying the condition 
given in the definition of uniform ring where F consists of the co­
efficients of p(X). It is clear that for each y G l7thatG(ptf(X)) — G(px(X)) 
so p(X) is uniform. 

PROPOSITION 2.5. Let Rbe a weakly uniform ring and N the splitting 
ring of a separable polynomial p(X) over R. Then N is weakly uniform. 

PROOF. Decomposing by a finite number of idempotents in R 
reduces to the situation where R is uniform. In this case by Theorem 
2.3, R = <2(9(,S) where S is a commutative ring whose only idem­
potents are 0 and 1 and 9( is a totally disconnected compact Hausdorft* 
space. Let p(X) = a0 + axX + • • • + Xn and for XEL9( let U be 
a basic neighborhood of x with ai(y) = a{(x) for all y G (7, i = 0, 
1, • • *, n — 1. Let e be the idempotent in R defined by 

e(y) = 0, y $ U, 

= 1, y G 17. 

Then Re = d(U,S). View p*(X) as a polynomial in S[X] and let 
T be its splitting ring over S. Then one can check that Ne = C(U, T) 
is a splitting ring for p(X)e over Re. The splitting ring for p(X) over 
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R is a finite direct sum of such uniform rings and thus is weakly 
uniform. 

A polynomial closure of a uniform ring R is a locally strongly 
separable extension T of R such that 

1. r is uniform and B(T) = B(R). 
2. Any finite subset of T is contained in an extension R(«i, • • -, o^) 

of R in r with a» the root of a separable polynomial in R(«i, • • -, a*_i). 
3. Any separable polynomial in T factors into linear factors in T. 
Generalizing the results in §1 we have 

THEOREM 2.6. Let R be a uniform ring, then a polynomial closure 
TofR exists and is unique up to isomorphism. 

PROOF. Since R is uniform we can let R = £(spec B(R), S) where 
S is a fixed commutative ring with no idempotents other than 0 and 
1 with the discrete topology. Let T be the polynomial closure of S, 
given by Theorem 1.3. Let T = £(spec B(R), T), then T clearly 
satisfies the first condition for the polynomial closure of R. Using the 
usual compactness argument on spec B(R) and the previous proposi­
tion, it is not hard to check condition 2 of the definition. A separable 
polynomial over F factors into linear factors at each point in 
spec B(T) = spec B(R) so again condition 3 follows from the compact­
ness of spec B(R). Thus the polynomial closure of a uniform ring 
exists. 

To prove uniqueness, let A be another polynomial closure of R. 
Condition 1 implies A = £ (spec B(R), T") for some extension T' of 
S with no idempotents other than 0 and 1. Condition 2 of the definition 
of A implies that T" is a locally separable extension of S such that any 
finite subset of T" is contained in an extension S(cti, • * -, otn) of S in 
T" with oti the root of a separable polynomial over S(aiy • • -, <Xi_i). 
Any separable polynomial in T" can be lifted to a separable poly­
nomial in A so by condition 3 of the definition any separable poly­
nomial in T' must factor into linear factors in T' . Thus T' = T by 
Theorem 1.1 and A = T which completes the proof. 

Let R be a uniform ring and let G(R) be the group of all R-algebra 
automorphisms of the polynomial closure T of R. Then G(R) is 
naturally a subgroup of the direct product of G(S) where S has no 
idempotents other than 0 and 1 and R = £(spec ß(R), S). While the 
direct product of G(S) is a compact group, G(R) is not necessarily a 
closed subgroup in the relative topology so there seems to be no 
convenient way to make G(R) into a compact group. 

There is a broad class of rings for which our results are relevant. 
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A ring R is regular if and only if R* is a field for each x G spec B(R) 
(see [4]). 

THEOREM 2.7. Let Rbe a regular ring and let S be a finite projective 
separable extension of R with B(S) = B(R). Then there is an element 
a G S and a separable polynomial p(X) E. R[X\ so that S = R(a) 
and a is a root ofp(X). Moreover, if S is a weakly Galois extension of 
R then the polynomial p(X) can be chosen to be uniform. 

PROOF. Let x G spec B(R). Then Sx is a separable projective exten­
sion of Rx whose only idempotents are 0 and 1. Since Rx is a field, 
Sx is a field. By the "primitive element theorem" there is an 
element a* G Sx which is the root of the separable polynomial px(X) 
over RX[X\ and so that Sx = R^a*). Lift px(X) and a* to a monic 
polynomial p(X) G R[X] and a G S. If t/i, * * ', yn generate S as an 
R-module then 

yix = S rV*MJ> t = 1, • ' ', n. 

These equations will hold in a neighborhood of x by (2.9) of [5]. 
As in Theorem 2.2 (5) of [2], in the R-algebra R[X]l(p(X)) form the 
matrix [t(X{Xj)], 0 ^ i, j < degree (p), where t is the trace map of 
the free R-module R[X]l(p(X)). By Theorem 2.2 (5) of [2] there 
is an element ux G Rx so that 

det [t(XiX)]xux= lx. 

By lifting ux to an element u in R this equation will also hold in a 
neighborhood of x. Therefore, there is an idempotent e G R so that 
Se = Re(a) and a • e satisfies the monic polynomial p(X) • e. Now 
p(X)e is separable at each y G spec B(Re), therefore p(X)e is separable 
over Re. Applying the usual compactness argument and decomposing 
R by a finite number of orthogonal idempotents e as above gives the 
first assertion of the theorem. 

If S is weakly Galois over R then by decomposing R by a finite 
number of idempotents we can assume S is Galois over R with Galois 
group G in the sense of [1] (3.15 of [5]). In this case if 
x G spec B(R), Sx will be a Galois extension of Rx so we can choose 
the polynomial px(X) in the first paragraph of the proof so that Sx 

is a splitting field for px(X). In addition to the equations developed 
there we know px(X) = n ^ i ^ ~ °k) i n Sx[X\. Lift the cax to a» 
in S where a* = aix and aix is lifted to a. Then in a neighborhood U 
of x, py(X) = n*"=i(* "* <*v) for a11 y^U. Intersect U with the 
neighborhood of x constructed in the first paragraph. For all y in this 
neighborhood 
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degree py(X) = R a n k ^ R ^ ) ) = [G : 1]. 

Thus Gy = G(py(X)) = G for all y in a neighborhood of JC which 
proves p(X) is uniform. 

At this point there are several things one would like to do, and we 
present a series of examples which show the difficulties involved. 

Let 9f = {1, 1/2, 1/3, • • -, 1/n, • • -, 0} with the relative topology 
of the real line. Then 9( is a compact totally disconnected Hausdorff 
space and 0 is the only point in 9( which is not both open and closed. 
Let R be the ring of continuous complex functions / on 9( such that 
/(0) is real. Algebraically, R is the subring of the direct product of 
countably many copies of the complex numbers generated by the 
direct sum and real multiples of the identity. Then spec B(R) is 
just 9(, and it is clear that R is not a uniform ring because of the 
situation at 0. The polynomial X2 + 1 is separable over R but not 
uniform, again because of the situation at 0. There is no splitting 
ring N for X2 + 1 over R, the only candidate is the continuous func­
tions from 9( to the complex numbers and this ring is not projective 
over R. 

Let 9( be as before and let S be the ring of real valued continuous 
functions on D(. Let en Œ S be defined by en(llm) = 8m,n. Let 
p n ( X ) £ S [ X ] be defined by pn(X) = X2 + en. Then each pn(X) 
is a uniform separable polynomial over the uniform ring S. The ring 
Tn of continuous functions / from *X to the complex numbers so that 

f(Hm) is real for m> n is a uniform, locally strongly separable 
extension of S which is a splitting ring for JJ"=1pi(X). However, 
(Jn=iTn is the ring R we discussed before. Observe that R is a locally 
separable S-algebra and is a subalgebra of the polynomial closure 
of S. The polynomial X2 + 1 is uniform over S but not R. 

The separable polynomial closure T of S is the ring of continuous 
functions from 9( to the complex numbers. The full group G(S) of 
S-automorphisms of F is contained in the countable direct product 
fJC2 of copies of the cyclic group C2 of order = 2, one copy of C2 

for each element of 9f. However, G(S) ^ 0 ^ 2 since an automorphism 
in G(S) is determined in a neighborhood of 0 G 9( by its action at 
/(0) where / £ T . Moreover, G(S) is not closed in the relative 
topology off[C2 . 

In [2], G. J. Janusz defines a separable closure fì for any commuta­
tive ring R with no idempotents other than 0 and 1 and associates to 
R the group of algebra automorphisms of fi. As Janusz points out 
(p. 471 of [2] ), this group may be different from the group of the 
polynomial closure, even if R is a local ring. The two groups coincide 
if R is a field. 
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