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ON THE WEIERSTRASS PREPARATION THEOREM 
MATTHEW O ' M A L L E Y 

Introduction. Suppose that R is a commutative ring with identity, 
X is an indeterminate over ft, and S = ft[ [X]] is the formal power 
series ring. In [1, §3, Proposition 6] , the following result (Weierstrass 
Preparation Theorem) is proved when ft is a local ring, complete in 
its maximal ideal adic topology: Suppose that / = ^i^aiX1 G S, 
where, for some n § 1, a„ is a unit of ft and (a0, fli, * ' ", an-i) Q M, 
the maximal ideal of ft. Then there exists a unique pair u, F G S 
such that u is a unit of S and F is a monic polynomial of degree n 
with the property that the coefficients of X* in F, for i < n, are 
elements of M, and such t h a t / = uF. 

In this paper we extend this result, together with Proposition 5 of 
[1, §3] and its Corollary, to the case when ft is any commutative ring 
with identity and / = ^t=oö»Xi satisfies the property that, for some 
n = 1, an is a unit of ft, while the ideal A = (a0, d\, ' ' ', fln-i) generates 
a complete Hausdorff topology on ft. 

In §1 we give the notation and terminology used throughout the 
paper, and we prove three results needed in §2. §2 contains our main 
results. 

All rings considered in this paper are assumed to be commutative 
and to contain an identity element. The symbols co and o)0 are used 
throughout the paper to denote the sets of positive and nonnegative 
integers, respectively. A collection of ideals {Afc^ewof the ring ft 
will be called a d-sequence provided that for any n, m G o> there 
exists a u G o>, depending on n and m, such that A^ Ç A^ fi A™. 

1. Preliminaries. Let ft be a ring, and let ft be the topology in­
duced on ft by the d-sequence {A*}fcewof ft. We write (ft, ft) to 
denote the topological ring ft under the topology il. It is well known 
that (ft, fl) is Hausdorff if and only if f \ G a A = (0). We say that 
(ft, fi) is complete if each Cauchy sequence of ft converges to a 
point of ft. If there exists an ideal M of ft such that Mk = Ak for each 
k G co, then the topology fl is called the M-adic topology, and we 
write (ft, M) instead of (ft, fi) in this case. 

(1.1) LEMMA. Let ft be a ring and suppose that the topology fl 
induced on ft by the d-sequence {Ak}kGa) of ft is Hausdorff. Then, 
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ifc G f i and if each Cauchy sequence of(R, (c)) converges in (R, O), 
£/ien (R, (c)) is a complete Hausdorff space, ((c) denotes the ideal of 
R generated by c.) Moreover, c belongs to the Jacobson radical of R. 

PROOF. Let c £ R , and suppose that (R,(c)) satisfies the hypothesis 
of the lemma. Then the proof of Theorem (4.2) of [2] shows that 
for any j 8 G S = R[[X]] with constant term c, there exists an R-
endomorphism <f> of S mapping X onto ß. But, since (R, fi) is Haus­
dorff, (R, (c)) is Hausdorff, and, therefore, by [2, Theorem (4.10)], 
(R, (c)) is complete. Moreover, by [2, Lemma (5.1)], c belongs to the 
Jacobson radical of R. 

As a special case of Lemma (1.1), we observe that if fl is the A-adic 
topology for some ideal A of R, then, for any c G A, (R, (c)) is a com­
plete Hausdorff space if R is complete and Hausdorff in the A-adic 
topology. Furthermore, A is contained in the Jacobson radical of R. 

Our next result relates a topological property of R to that of S. 
Namely, if A is an ideal of the ring R, then {Ak[ [X]] } k G ( 0 is a d-
sequence of ideals of S, and hence induces a topology A on S. 
(Afc[[X]] denotes the set of all power series in S all of whose co­
efficients are elements of the ideal Ak of R.) We show that R is 
complete in the A-adic topology if and only if S is complete under the 
topology A. Since f\G *(A)fc = (0) if and only if f\G W(A*[ [X] ] ) = 
(0), it will follow that (R, A) is a complete Hausdorff space if and 
only if (S, A) is a complete Hausdorff space. 

(1.2) LEMMA. Let A be an ideal of the ring R. Then (R, A) is 
complete if and only if (S, A) is complete. 

PROOF. Suppose that (S, A) is complete and let {cn}„ G w b e a Cauchy 
sequence of (R, A). Since Ak Ç. Ak[ [X]] for each k G co, it follows 
that {c„}nGa)is Cauchy in (S,A) and hence, there exists g =^?™=0aiX

i 

G S such that cn—» g in (S,A). But clearly this implies that cn—» öo 
in (R, A). Consequently, (R, A) is complete. 

The converse follows from the proof of Lemma (4.6) of [2]. 
We note that for any ideal A of the ring R, AnS = (AS)n for each 

n G co, and, if A is finitely generated, then AnS = An[ [X] ] . Hence, 
if A is finitely generated, then A is the AS-adic topology on S, and 
Lemma (1.2) shows that R is complete in the A-adic topology if and 
only if S is complete in the AS-adic topology. 

We conclude this section with a result needed in the proof of 
Theorem (2.6). The proof is straightforward and we omit it. 

(1.3) LEMMA. Let ß = ^ ü o ^ X * G S and let A denote the ideal 
C\ke<o(ao)k of R. Then OkeMkQ A[ [X] ] , where (ß) denotes the 
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ideal of S generated by ß. Therefore, if (R, (a0)) is Hausdorjf, then 
(S, (ß)) is Hausdorjf. 

2. The Weierstrass Preparation Theorem. In this section we give 
our main results. The proof of our first theorem follows closely the 
proof of Proposition 5 of [1, p. 38], and we only sketch the proof here. 

(2.1) THEOREM. Let Rbe a ring with identity and let f— ^ l o ^ X * 
G S. Suppose that, for some n ^ 1, an is a unit of R, and that the 
ideal A = (a0, aÌ7 • • -,an-i) of R generates a complete Hausdorff 
topology on R. If M is the R-submodule of S generated by 
{1, X, • • -, X n _ 1 } , then S is the direct sum of M andfS. 

PROOF, (i) We first observe that/S (1M= (0). For if 

( 2 biX
i)-f= r0+ r,X + - - - + r^X^K 

x i=o ' 

where b{, u Œ R for each i, then the proof of Proposition 5 given in 
[1, p. 38] shows that fo* G f\e<o(^)fc f° r each i G CÜ0. Hence, since 
(R, A) is Hausdorff, b{ (and, therefore, r^) is zero for each i. Thus, 
/ S H M = (0). It should be noted that the proof of (i) depends only 
on the conditions that (ft, A) is Hausdorff and that an is a unit of R. 

(ii) We show that S = fS + M. If g = Yj=n^l~n, then g is a 
unit of S, and / - Xng =^Z0

laiX
i. Moreover, if -h = - ^lohX1 

= (f— Xng)g_1, then hi EL A for each i G co0. 
Let a G S. By recursion on j , we define a set of elements qij) of 

S in the following way: 
Let q{0) be the unique element of S satisfying 

(2.2) a= Xy°>(modM). 

For j G a>o, let qV) = 2i=o9i ( i )#, where, for j ^ 1, 

(2.3) q^= l^hkq^-n
llk. 

k=o 

It follows that, for j =̂  1, 

(2.4) Xnq^ = hqü-v (mod M). 

Since hi G A for each i, it follows from (2.3), by induction on n, that 
qiij) G Aj for all i G o>0 and each j G <o. It follows, therefore, that 
{lLj=oq(j)}tGû>()is a Cauchy sequence of S in the topology A induced 
on S by the sequence of ideals {Ak[ [X] ] }kŒ w. Thus, since (R, A) 
is a complete Hausdorff space, it follows from Lemma (1.2) that 
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(S, A) is a complete Hausdorff space. Therefore, there exists a unique 
element q G S such that q is the limit of the sequence {^J=oqu)}te<o0 

in (S, A). From (2.2) and (2.4) we have that 

« + h ( Ë qU) ) = Xn ( 2 </0) ) ( m o d M)> 

for each t G co, and hence 

a + /i ( J) qW ) - X» ( 2 9ü) ) = m, E M, 

for each £ G CÜ. Thus, since the limit on the left exists in (S, A), the 
limit on the right exists, and we have that 

a+ hq — Xnq = lim mt. 

Therefore, 

a = (Xn — h)q + lim mt 
t 

= fg~1(l + I™™** 

where fg~lq G / S . Thus, it suffices to show that M is closed in 
(S, A). But this is straightforward and we omit it. 

Note that the proof of the equality o f / S D M = (0) shows that 
/ is regular (not a zero divisor) in S. From this fact, it follows that 
if a = hf +^iIoriXi = h\f + ^IZQUÌX1 are two representations for a 
as an element of fS + M, then h= hl and r* = u{ for 0 ^ i = n — 1. 

If g = 5)i°Lo ciX* ^ S, where ß is complete and Hausdorff in the 
(co)-adic topology, then [2, Theorems (4.2) and (4.3)] shows that 
there exists a unique R-endomorphism </>g of S that maps X onto g. 
We denote the range of <f>g by R[ [g] ]. 

In particular, i f / = ^"LoOiX* G S, and if / satisfies the hypothesis 
of Theorem (2.1), then it follows from Lemma (1.1) that R is complete 
and Hausdorff in the (czo)-adic topology. Thus, there exists a unique 
R-endomorphism c/y of S such that <j>f(X)'= f. We next show that, 
for any / G S satisfying the hypothesis of Theorem (2.1), c/y is one-to-
one. We make use of [3] to prove a more general result than this. 

(2.5) LEMMA. Let g G S and suppose that there exists an R-
endomorphism \p of S mapping X onto g. If T denotes the range of 
i//, and if g satisfies the following conditions: 

(i) g is regular in T, and 
(ii) gT H R = (0), 
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then ifß is one-to-one. In particular, if f satisfies the hypothesis of 
Theorem (2.1), then <l>f is one-to-one. 

PROOF. Let h —^j°=ohjXj G S and suppose that ifß(h) = 0. By 
[3, Result (2.1)], \fß(h) is a limit point in (T, (gT)) of the sequence 

Fix fcGco. We show that fy = 0 for O^j^k. Note that T 
contains R[g], the subring of S consisting of all elements of the form 
^J^ofig*, r; G R. Now, since I/J(/I) = 0, we have that ^,]=ohjgj-*0 
in (T,(gT)), and therefore, for (gk+1T), a neighborhood of 0, there 
exists N G w, N > fc, such thatf^ofyg* £ (gfc+1^) f°r " = N. Let 
L n - o k i = g H 1 ^ « e r . Then, 

^o= - g ( S hjg-i-gka) , 

and, hence, by (ii), h0 = 0. 
Suppose we have shown that hj = 0 for 0 ^ j < r ^ fc. We show 

that /ir = 0. By the induction hypothesis, we have ^]=rhjgj = gk + la, 
and thus, g r(^j=rfyg i - r - gfc+1_r«) = gru = 0. Since u £ T , it fol­
lows from (i) that u = ^j=rhfë~r - gk + l~ra= 0. Thus 

hr=-g( S h,g/-<r + l) _ g*-ra ) , 

and therefore, hr = 0. It follows, by induction, that hj = 0 for 
0 ^ j ^ fc, and thus, since k was arbitrary, we have that h = 0. This 
completes the proof. 

Our next result corresponds to the Corollary to Proposition 5 of [1, 
p. 40]. 

(2.6) THEOREM. Let f EL S and suppose that f satisfies the hypothesis 
of Theorem (2.1). Then {1, X, • • *,Xn_1} is a free-module basis for 
S over R[[f\]. Furthermore, the unique R-endomorphism c/y of 
S mapping X onto fis one-to-one. 

PROOF. We have already observed the last statement of the theorem 
(Lemma (2.5)). We prove the first part of the theorem in a series of 
steps. 

For each k G co, let Tk denote fk~lR + fk-2R + • • • + fR + R, 
the R-submodule of R[f] consisting of all terms of the form: 
^Konf, fi G R. (Note that Ti = R.) We first observe that, for any 
fcGco, 

(2.7) S = fkS + Tk • 1 + Tk • X + • • • + Tk • X"-1. 
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The case for fc = 1 is proved in Theorem (2.1), and, for fc > 1, the 
proof follows easily by induction on fc. 

We next observe that, for any fc G co, 

(2.8) fkS fi [Tk • 1 + Tk • X + • • • + Tk • X"-1] = (0). 

Again the case for fc = 1 is proved in Theorem (2.1). We suppose 
that (2.8) is valid for fc = u, and we let 

ëfu+1= " S ( Ì «Uf W 
j=0 x i=0 ' 

where g G S , r^ G R for all i,j. It follows that 

gf"+1 = ( S' ruWX V + "S ( "S r^f )X, 
N j=0 ' j=0 X i=0 

and hence, 

\gf- "S '«°* 1/"= "S ("S r^f)xi 
L j = 0 J j =0 x i = 0 ' 

Therefore, by the induction hypothesis and since / is regular in S, 
we have that 

i=o 
and 

n—1 / u —1 \ 

2 ( S nü!P )#=o. 

In particular, since gf= ^jZoru
U)Xj, it follows from the case for 

fc = 1 that g = 0, and we have proved (2.8). We note that it follows 
from the proof of (2.8) that if 2 j f -o(É*-o f i^ )X> = 0 for any 
fc G too, then rfi) = 0 for all i, j . From this observation and from 
(2.8), it follows that if a G S and if 

<* = /%+ 1 (l nuf )X', 
j=0 X i=0 7 

and 

n - 1 / r + (fc-l) v 

<* = /* + '*+,+ E ( S ^'f )X' 
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are two representations for a as an element of 

j*S + Tk • 1 + Tk • X + • • • + Tk • X"-\ 

and 

f+'S +Tk+r-l+Tk+r-X+ ••• + Tk+r • X"-\ 

respectively, then r^ = t^ for each j and for 0 = i ^ k — 1. 
Hence, in our representation for a, as k—> °°, the r^j) for i<k 
remain fixed, and, in this sense, are independent of k. 

Let a G S and suppose that 

{/*»*+ "s (S) ^f )P\ 
*• j=0 x i=0 ' Jk£u> 

is the collection of representations of a as an element of the sets 
{fkS + Tk • 1 + Tk • X + • • • + Tk • Xn-l}kG(0. Weshowthat 

(2.9) a - £ r ^ f + ( ]T r ^ f ) X + • • • + ( £ ' ^ " " T ) X»"1. 
i=0 ^ i=0 ' ^ i=0 ' 

This will show that 

S = R [ [ / ] ] -l+R[[f\] -X+ ••• + R[[f\] -X»- ' . 

To prove (2.9), we show that the sequence of points 

of S converges in the (f)-adic topology on S to the right-hand side of 
(2.9). Hence, since {a}k e ta—> a, and since S is Hausdorff in the 
(f)-adic topology (Lemma (1.3)), it will follow that (2.9) is true. 
Let (f)m be a neighborhood of 0 in (S, (/)) and choose k^ m. 
Then 

"S ( £ n°y ) x>- ( y*5fc + "s ( 5? n<^ ) x> ) 
j=0 X i=0 ' X j=0 N i=0 ' ' 

= "2 ( S n°f W-/** 

= />( [ " s ( i r 'V )#]-**)G(/)*Ç(/)». 
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Finally, we observe that arguments similar to those already used 
in the proof show that {1, X, • • •, Xn _ 1} is a free basis, and we omit 
the proof. 

REMARK. It should be observed here that Theorem (2.6) has an 
important application in the generalization of a result of Samuel [4]. 
In particular, let R be a Noetherian integral domain with identity 
whose integral closure is a finite R-module, let S = R [ [ X] ] , and let 
G = {<£i}r=i be a finite group of R-automorphisms of S. If / = 
Y\?=i 0i(X) = ^ilo^iX*, then it can be shown that the coefficients of 
/satisfy the hypothesis of Theorem (2.1), and hence, {1, X, • * -, Xn _ 1} 
is a free-module basis for S over R [ [f] ]. This result is of prime 
importance in the proof that the ring SG = {h GE S | <f>i(h) = h for 
each i = 1, • • -, n} of invariants of G is R[ [f]]. The details will 
appear elsewhere. 

Next, we give our extension of Proposition 6 of [1, p. 41]. 

(2.10) THEOREM. Let R be a ring with identity and let f= 
^iLo^X* G S. Suppose that for some n = 1, an is a unit of R, and 
suppose that the ideal A = (a0, #i, ' * *, 0n-i) of R generates a com­
plete Hausdorff topology on R. Then there exists a unique pair u, 
F G S such that u is a unit of S, F = r0 + rxX + • • • + rn_iXn _ 1 + 
Xn, where r{ G A for each i, and f = uF. 

PROOF. By Theorem (2.1), Xn has a unique representation as an 
element of fS + M, where M is the R-submodule of S generated by 
{1,X, • • -,Xn~1}. Let 

(2.11) X- = gf + (r0 + rxX + • • • + rn-xX»-!) . 

T h e n g / = X- - (r0 + rxX + • • • + r„-iX»-i). Thus, if g = ^Q&X** 
then the coefficient of Xn in gf is ^i+j=n^gj, and, by definition of 
equality in S, we have that ^i+j=naigj = 1. Therefore, ang0 = 1 — 
(an-igi + • • • + aogn), and, since (R, A) is a complete Hausdorff 
space, it follows from the remark following Lemma (1.1) that 
fln-igi + " * • + a0gn is in the Jacobson radical of R. By [5, Lemma 
2, p. 206], it follows that ang0 is a unit of R, and therefore g0 is 
a unit of R. Thus, g is a unit of S [6, p. 131], and / = 
g-\Xn- r^X«'1 r0). Since rk = %+j^aigj for 0 g fc g n 
— 1, each ffc G A. Therefore w = g~l and F = — r0 — rYX — • • • — 
rV^X" - 1 + Xn satisfy the conclusion of the theorem, a n d / = uF. 

The uniqueness of u and F follows easily from the uniqueness of the 
representation (2.11), and we omit the details. This completes the 
proof. 
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