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PRINCIPAL SUBMATRICES. VIII. PRINCIPAL 
SECTIONS OF A PAIR OF FORMS1 

R. C. THOMPSON 

ABSTRACT. Let A, C be n-square Hermitian matrices, with 
C positive definite. Let A{, Q denote the principal submatrices 
obtained by deleting row and column i. In this paper new links 
are obtained between the roots of the determinantal equations 
det U C - A) = 0, det ( A Q - A*) = 0, i = 1, • • -, n. 

Let A be an n-square Hermitian matrix. Let A(i | i) denote the 
principal submatrix of A obtained by deleting from A both row i 
and column i. In certain earlier papers in this series, links between 
the roots of 

(1) d e t ( X / n - A) = 0 

(the eigenvalues of A) and the roots of 

(2) det (A/»-! - A(i | i)) = 0, t = 1, 2, • • -, n, 

(the eigenvalues of A(f | i)) have been studied. It is of course true 
that, for each fixed i, the roots of (2) interlace the roots of (1). This 
well-known fact goes back to Cauchy, and for this reason these inter
lacing inequalities are often called the Cauchy inequalities. 

Let C be an n-square positive definite Hermitian matrix. In this 
paper we study the roots of the equation 

(3) det (AC - A) = 0 

and their links to the roots of all of the equations 

(4) det (\C(i | i) - A(i \ i)) = 0, i = 1, 2, • • -, n. 

The equation (3) arises when one attempts a simultaneous diagonaliza
tion of a pair of quadratic forms having coefficient matrices C and A. 
(The possibility of this simultaneous diagonalization is important 
in applied mathematics, especially in mechanics — see [11].) Sup
pressing the same variable in each of these forms, the correspond-
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ing problem in the reduced forms leads to one of the equations (4). 
Thus, when studying the roots of the equations (3) and (4), we are 
studying simultaneously the principal (n — l)-sections of a pair of 
n-variable forms. 

The roots of (3) are real (they are the eigenvalues of C~mAC~1/2). 
It is a fact, not quite as well known as the Cauchy inequalities, that 
the roots of any one of the equations (4) interlace the roots of (3) 
(see [11]). In this paper we shall show that some of the new results 
obtained in [3], [5] concerning the Cauchy inequalities may be 
extended to the roots of (3) and (4). 

NOTATION. Throughout this paper we shall let Xi = • • • = X„ be 
the roots of (3) and letrju ^ • • • ̂  T?i,n-i be the roots of 

det (\C(i | i) - A(i 11)) = 0. 

The numbers Xi, • • -, Xn need not be distinct, so let fa with multiplicity 
ei, for i = 1, 2, • • -, s be the distinct numbers among Xi, • • *, Xn. 
We arrange the numbering such that fa < i*% < * ' ' < Ms- Le* 
y\= ' ' ' = yn be the eigenvalues of C. Of course yY > 0. Let 
C = XX*. Let/(X) = det (XC - A) and/(0(X) = det (\C(i \ i) - A(i \ <)). 

We now develop the formulas upon which our results will be based. 
These formulas are generalizations of formulas presented in [3]. 
Let Vbe a unitary matrix such that V*X~1AX*-1V= diag (Xb * * *,Xn). 
Then kC- A= XV diag (X - X1? • • -, X - Xn)V*X*. Set T = XV. 
Then 

(5) XC - A = T diag (X - Xi, • • -, X - Xn)T* 

Hence (regarding X as a polynomial indeterminate) we obtain 

(6) ( X C - A ) - i = r - i d i a g a x - X O " 1 , • • • , ( X - X n ) - 1 ) T - i . 

Now 

(7) f{k)= det C(X - X0 • • • (X - Xn). 

Multiplying each side of (6) by fik), we obtain 

(8) adj (XC - A) = 2*- i diag ( ^ - , . • ; ^ )T~K 

Here adj denotes adjugate. The (i, Ï) diagonal element of the left 
side of (8) is /(i)(X). Let T*_ 1 = (ty). Comparing the main diagonal 
positions in (8), we get 

(9) /(i)W= 2 Wav-%-
j = i A A J 
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The formula (9) is the basic formula from which all of our results will 
follow. Since 

(10) i ( A ) = d e t c r ï ( A - ^ 

it follows from (9) that 

(ii) E U A - M , ^ - 1 

is a divisor of fi)(k). Hence the numbers ft, with multiplicity ej — 1, 
l ë j = s , are always roots off(i)(\). We call these roots the trivial 
roots of /(t)(X). The remaining roots, denoted by £n ̂  • • • ̂  f»,s-i, 
are called the nontrivial roots. Cancelling the common factor (11) 
from each side of (9), we obtain 

(12) /„(A) = S «#/(X)/(X - ft), 

where 

/(X) = d e t C n ( X - M , ) , 
7 = 1 

(13) /«(*)= d e t c ( £ N 2 ) n ( X - U 
X 7 - 1 / 7 = 1 

»«= S IM2-
r ; X r = Mj 

The sum in the last formula of (13) extends over all the ej values of 
r for which Xr = ft. 

We are now ready to establish the first interlacing principle. 
Another proof of this interlacing property, based on extremal argu
ments, may be found in the book of Gantmaher and Krein [11, 
Theorem 19, p. 86]. 

THEOREM 1. Let C be positive definite, and let Xi ^ X2 ^ * * * = Xn 

be the roots of (3). For fixed i, let y)n = • • • ̂  v)i,n-i be the roots 
of (A). Thenrfn, • • *,t?tjn-i interlace Xi, • * -, An; that is, 

(14) Xi g Tin g X2 ̂  Vi2 ^ ' * • ̂  An-l ^Vi,n-l ^ A«. 

PROOF. TO prove (14), it suffices to prove that £u, • • -, &jlS_i 
interlace fiu • • -, ft. If none of 0^, • • -, 6is is zero, we argue as 
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follows. Setting X in (12) equal in turn to Ms? Ms-i> Ms-2> * ' ', Mi> we 
see that/(i)(X) is alternately positive and negative. Thus/(i)(X) has at 
least one root in each of the intervals (MI, fx2), (fa, fa), ' ' *> (MS-I> fa)-
Since f(i)(k) has degree s — 1, we have accounted for all roots of 
f(i)(k), and hence fi)(k) has exactly one root in each of these intervals. 
Thus the interlacing property is established if none of 0u, • • •, 0« 
is zero. By continuity, the interlacing property remains valid when 
some öf On, • • *, dis are zero. (If one wishes, the continuity argument 
may be avoided by using a more detailed discussion in which one 
writes out what happens when some of $u, • • -, 6^ are zero.) 

Assume now that C and Ài, • • *, Xn are fixed, but that A becomes 
variable, and in fact assume that A varies over all Hermitian matrices 
subject to the constraint that the roots of.(3) are to be Xi, * * *, kn. 

THEOREM 2. Let positive definite C and real numbers Xi = • • • = Xn 

be given. Suppose also that Xi, • • -, Xn are not all equal. Let k be a 
fixed integer with l S f c = n . Then the following properties I and 
II are equivalent. 

I. For each choice ofk(n — 1) numbers 

(15) riii^ •••^T?i,n-i> l ^ i ^ k , 

possessing the interlacing property (14), there exists a Hermitian 
matrix A such that the roots of (3) are Xi, * • *, Xn and the roots 
det (kC(i | i) — A(i \i)) = 0 are 7}a, • • -, ifo,n_i, for all i = 1, 2, • • -, k. 

II. Each distinct number among Xi, * • *, Xn has multiplicity at least 
k, and the k X k submatrix standing in the upper left corner of C~l 

is diagonal. 

PROOF. We first write down a formula needed in this and subse
quent proofs. In (12), set X = Mr We obtain 

Snx r=^|* i r |
2
 = / Mj - 6i \ . / Mj - &J-1 \ / 4 - Mj \ 

Er-iM 2 \ ^ - MI / ^ M;- - Mj-i / W i - ft/ 
(16) 

/ ks-\ - Mj \ 
\ fa- ft ' 

Now suppose that I is valid. Let p be fixed, with 1 = p = s. By I. 
we may find A such that 

(17) fu = Mb * ' "> £ , P - I
 =

 MP-I> ftp = Mp+b ' ' *> £,s-i = Ms, 

for t = 1, 2, * * -, k. Using (17) and takings = 1 , • • -, p — 1, p + 1, 
• • -, s, in (16), we see that Ur = 0 if Xr ^ fa. This means that the 
first k rows of T* ~x have all nonzero entries confined to the ev columns 
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whose index r satisfies Xr = /x,p. These first k rows of T*"1 act there
fore as row tfp-tuples, and hence will be dependent if k > ev. Since 
T*"1 is nonsingular, this is a contradiction. Hence ev^k for each 
p = 1, 2, * • -, s. This proves the first part of II. 

Continuing to suppose the validity of I, let a and ß be fixed integers 
with l § a < ß = f c By I, A exists such that 

, , fai = Ml> é*2 = M2> ' ' *> W - l = Ms-1> 
( 1 8 ) A - * * 

£/31 — M2> b/82 ~ M3> ' ' *> b/3,*-l ~ Ms-
Using (16) exactly as before, we find that the nonzero entries in row 
a of T*"1 are confined to the last es positions, and that the nonzero 
entries in row ß are confined to the first ex positions. Because s > 1, 
we see that the rows a and ß of T*_ 1 are orthogonal n-tuples. Hence 
the entry in position (a, ß) of T*~lT~l is zero. But T*-^T'1 

= X*-1VV"1X-1 = (XX*)"1 = C-K Hence, for each pair a,ß with 
1 ^ a < ß = it, the (a,/3) entry of C _ 1 is zero. This means: the upper 
left fc-square block in C" 1 is diagonal. 

This completes the proof that I implies II. 
Now assume that II is satisfied. Let arbitrary numbers tjn, • • •, £ijS-i 

interlacing /jtls • • -, /xs be given, for i = 1, 2, • • -, k. We wish to con
struct A such that the roots of /(i>(X) are in, • • -, fi,s_i, for t = 1, 
2, • • -, k. For this construction, let X» = (xu, • • -, xin) be row i of 
X*-1, and let 

(19) g,(\) = det C • (X - 6 0 • • • (X - £,,-i). 

We shall use the following fact, proved in [ 10] : 

(20, ±f*L- , 
Define numbers 0#, for 1 ^ i ^ fc, 1 g j g 5, by 

y Mj - Mi Mi - Mi-i Mi+i - Mi M* - Mi 

= II^H2gi(Mi)//'(Mi). 

Owing to (20), 

(22) 2 ö,= ||X,p. 
i = i 

By interlacing, 0# è 0. For each fixed j , we may (because e, ̂  fc) 
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find k pairwise orthogonal row e,-tuples r^, 
2 = 

Tfcj such that 
Oij, 1 = i = k; l^j^s. We now7 write down the first k 

rows of an n X n matrix: 

(23) 

T i l T\2 

1*21 ^22 

Tfcl Tk2 

Tis 

T2s 

Tks 

Because of the construction of the Ty-, these k rows are pairwise orthog
onal, and because of (22), row i has the same norm as row i of X* - 1 , 
fori = 1,2, • • *,fc. 

Next, notice that because the upper left fc-square block in C~l 

= X* _ 1X _ 1 is diagonal, the first k rows X1? • • -, Xk of X* - 1 are pair-
wise orthogonal. 

Since any set of k pairwise orthogonal row vectors may be mapped 
to any other set of k pairwise orthogonal row vectors by a unitary V, 
provided the norms of paired vectors are equal, we see from the 
results of the last two paragraphs that a unitary V exists such that the 
first k rows of X*_1V are the rows of (23). Use this V to define an 
n X n matrix T by setting T = XV. Hence we have found a unitary 
V such that X*" 1 V= T*"1, and such that the first k rows of T*"1 

are the rows of (23). Using this V, define A by 

A = XVdiag(Xi, • • -,An)V*X*. 

It is now easy to see that V*X~1AX*-1V = diag (\u • • -, \ n ) . By 
the calculations of the first parts of this paper, f(i)(k) is given by (12) 
and the last equation of (13). (Owing to our choice of T and V, the 
quantity % defined by the last formula of (13) equals ||T,J-||2, and hence 
coincides with the 0y defined in (21).) All that remains to be done is 
to prove that 

(24) /«(A) = | W & ( A ) . 

This is so since (24) shows that £1, • • -, &,s_i are the roots of 
/(i)(\). To prove (24), observe that (using (12) and (21)), 

/«(M») = eitf(k)i(x - M.) U t 

= Ouf'(to) = ll^pg^M,), 

for t = 1, 2, • - -, s. Thusf{i)(X) and ||Xi||2gi(X) are two polynomials of 
degree s — 1 which are equal for s distinct values of A. Hence 
/(i)(X) = ||Xi||2gi(X). This completes the proof that II implies I. 
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There is an easily derived inequality which shows how a nonzero 
offdiagonal element caß in C~l restricts the behavior of the £aj and 

COROLLARY 1. Let C _ 1 = (q,). Then 

\Cgß\ ^ / (&1 ~ /*l)(frl - Ml) \ 1/2 

(25) -f y 1 /(Mi - 4 J - I ) ( M J - £ßj-i)(£d - n)(Hßj - M/h 1 / 2 

i=2 V (MJ - M * - I ) ( M * + I - M?) / 

+ 
\ Ms - M*-i 

\ u-z 

PROOF. By interlacing, each of the fractions 

(26) (ft - fipj/(^ - M p), p = 1, • • -, j - 2, 

and 

(27) (€ip - /I*)/(M*+I - M/X p = j + 1, • • -, « - 1, 

lies between 0 and 1. Also ]£ r = 1 |^r|
2 = Cu> Hence we see from (16) 

that 

(27') S M » S c * - * " 6 j - 1 i ^ - ^ -
r;xr= Mj Mi "" M j - i Mi+i ~~ Mj 

(The first fraction on the right is absent if j = 1 and the last fraction 
is absent if j = s.) But 

\Caß\= I È M« | = E I S U r I 
1 J = l ' i = l 'r;Xr = **j ' 

A / ^ \ 1/2 / ^ \1/2 

^ 2 ( 2 IU2 ) ( E IU2 ) 
Combining this inequality with (27 '), we get (25). 

If we set £al = /xl9 £,31 = M2, • • *, ^ , s _ i = fis, then (25) clearly 
shows that caß = 0. 

Although it is basically trivial, for completeness we include the 
discussion of the case \x = • • • = A.n. 

THEOREM 3. The roots of (3) satisfy Xi = • • • = kn = a if and only 
if A = aC. When this is so, f(i)(k) = cü det C(X - a)""1 , l ^ i ^ n , 
where Cu is the ith diagonal element ofC~l. 
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PROOF. It is easy to see that V*X~1AX*-1V= al if and only if 
A = aXX* = aC. When this is so, the equation (9) and 5)j=i \ty\2 = Cu 
yield the formula for^^X). 

We next turn our attention to new generalizations of the inter
lacing principle (to be called the second interlacing principle) that 
was derived in [4] and [7]. Let j be fixed, with 1 ^j < s. Define 
polynomials Gj(k) and H,-(X) by 

Gj(k) = i (y„-!+ • • • + y^-e,) -fi^— 
t = l A Me 

+ 2 (yTl + ••• + y7,l)J^L-
t=j + l A - Me 

Hj(k)= i (7r
l+ --^ye-1)-1^-

t=i A. — Me 

-i , / W 
+ S (y»'+ • • • + y „"A-,,) . _ 

t=j+i A Me 

It is easy to see that Gj(k) (respectively Hj(k)) is alternately positive 
and negative when evaluated at M*> ' ' "> Mi- Hence G/X) (resp. H,(X)) 
has exactly one root in each interval (MI, M2), (M2, M3)> * ' % (M*-I> MS)-

Let a be the unique root of GJ-(X) in [MJ, Mj+i] and let/3 be the unique 
root of Hj(k) in [>j, Mj+i] • 

LEMMA. a = ß. 

PROOF. Notice that if X G [MJ, MJ+I], then (-l)*-->/(X)/(X - Me)=0 
if t ^ ; , and ( - 1 ) S " ^ A ) / ( X - Me) = 0 if f > > Since 

( - i M f l i W - Q M ) 
has the form 5)*-i dt(-l)s-tf(k)l(k - Me), with 4 ^ 0 if 
t^j and ^ ^ 0 if * > 7 , it follows that (-l)*-->'Hj(X) è ( - l ^ G / X ) 
for all X G [MJ, Mj+i]- Furthermore, ( - 1 ) * - ^ ^ ) and ( - I ^ ^ ' G / M J ) 
are both positive, whereas (— 1)*"J'HJ(MJ+I) and (— l ^ G / M j + i ) are 
both negative. Thus the graphs of ( - l ^ H / X ) and ( - l j ^ ' G / X ) 
both descend from positive to negative values as X increases from Mj 
to Mj+i> with the graph of ( — l)s~jHj(k) everywhere above the graph 
of ( - l)s^'Gj(X). This plainly implies that a ^ ß. 

THEOREM 4 (SECOND INTERLACING PRINCIPLE). Letj be fixed, l^j< s. 
With a andß as above, we have: 

(i) either f y = tj2j
 = * * * = fnj = a or for at least one i, we have 

&j > ot; 
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(ii) either (jy = £y = • • • = Çnj = ß , or for at least one i, we have^ 

t,<ß- * 
PROOF. Let us deny (i). Suppose £# ^ a for all i, with strict in

equality at least once. Since 

.4 (a ) = cu det C ( n (a - &) ) (a - $,) ( l ì (« " &) ) . 

we see that sign/ ( i )(a) is ( — 1)Ä~1-^ with foia) nonzero for at least 
one i. Then 

o<(- i ) -HÌ /w(«) = ( - i ) , - H i (( E K)/(«)/(«- MP)) 
1 = 1 1 = 1 x x p= l ' ' 

= È ( ( i K )(-l)-i-ij(a)l(a- /*,)) . 

But 

S *<p = ± £ \tir\* = S 21^2 
1 = 1 t = l r ; X r = J*/' r;Ar = P)> i = l 

is the sum of ep diagonal elements of V*X-1X*-1V = V*(X*X)-lV. 
Now X*X has the same eigenvalues as XX* = C. Hence the eigen
values of V*X~1X*-1V are y ! - 1 , • • -, y„_ 1 . Since (by a result of 
Ky Fan [2] ) the sum of ep diagonal elements of a Hermitian matrix 
lies between the sum of the ep smallest and the sum of the ep largest 
eigenvalues, it follows that 

y«"1* • • * + y.n+i-e,^ i eip^yi-
l+ ••• + r"1. 

1 = 1 

Since (—l)s~l~jf{a)l(a— /LLP) is negative if p=7> and positive if 
p > j , we see that 

2 ( i ftpV-lJ'-'-tfaWa-Mp) 
p=l x i= l ' 

= i (y»' + • • • + y ö+
1i-^«)/(a- MPX-I)"1-' 

+ 2 (vrl + • •• + ?;;)/(«)/(«- MPK-D-1-^ 

= Q ( a ) ( - l ) - W . 
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Thus 0 ^ Gj(a). But by definition, Gj(a) = 0. This is the contra
diction that proves (i). The proof of (ii) is similar. 

It is likely that the first possibility in either case (i) or case (ii) can 
occur only in rather restrictive circumstances. This question will be 
examined in a subsequent paper. 

When C = Zn, it is easy to see that a = ß, and that Theorem 4 
reduces to the interlacing principle mentioned in [4, Theorem 1] and 
[6, Theorem 1], and heavily used in [4] and [5]. 

Our next task is to obtain the generalizations of the upper and lower 
quadratic inequalities and the linear inequalities that were discussed 
in [4] and [5]. 

(28) 

and 

(29) 

THEOREM 5. Let s > 1. For l^j^s,we have 

^ LI - a iL , - IL - yi V ^ yn+l~r ) ' 

REMARK. Formula (28) is called the upper quadratic inequality 
and (29) is called the lower quadratic inequality. When j = 1, the 
factors involving Llj — èij-i are understood to be absent in these 
formulas, and when j = s, the factors involving £y- — LLJ are similarly 
understood to be absent. 

PROOF. Delete the factors (26) and (27) from the right-hand side 
of (16) (each of which lies between 0 and 1). These deletions increase 
the right-hand side of (16). The denominator ^ / L i \t{r\

2 in the left-
hand side of (16) is the (i, Ï) element of C~l. Hence the left-hand 
side of (16) is decreased if we replace this denominator with y\~l. 
Summing the resulting inequality over i, we see (as in the proof of 
Theorem 4) that the numerator on the left is bounded below by 
y n - 1 + • • • +yn+i-er This proves (28). 

To prove (29), we rewrite (16) as 

I > * , ^ j | t i r | 2
= / f f ft - 6p \ I Llj- 6 j - l \ 

S r " 1 M * ^ p i H - Mp+1 M Llj- LI, J 
(30) 

. / 4 - H \ / TT 6p - ^i \ 
\ LLS - Llj J \ptj+l Up -Llj I ' 
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By interlacing, each of the fractions in the first and last factors on the 
right-hand side is at least one. Deleting these products therefore 
decreases the right-hand side. The denominator of the left-hand 
side is bounded below by yn~

l- Making these replacements in (30), 
then summing on i, the numerator of the left-hand side is bounded 
above by y i - 1 + • • • + y~l. This proves (29). 

We increase the left-hand side of (28) if we delete either of the 
factors inside the first summation. If we delete (fy — /xJ)/(/^+1 — /Xj), 
we obtain (after some elementary algebra) the inequality (31) below. 
If we delete instead (/LL,- — €ij-i)l(^ — Mj-iX we obtain (32). These 
inequalities (31) and (32) bound the arithmetic mean of the £y. 

THEOREM 6. Let s > 1. Then: 

(31) - J £,;_! § ^ - i + (1 - « W j = 2, 3, • • -, s, 
n i=l 

(32) — Ì ^ f t f t + i + ( l - f i K j = 1,2, • • • , ^ - L 

Here - l (* - Ì 
n X r = l ' 

andO < <pj < 1. 
REMARK. In (31) we have a convex combination of ti,_i and fij 

which serves as an upper bound for the arithmetic mean of the &,j-i 
(by interlacing, we only know that this arithmetic mean lies in 
[fij-i, /Xj] ). In (32) we have a similar convex combination of /x, and 
fij+i which bounds from below the arithmetic mean of the £#. 

COROLLARY 2. 

(33) •J-Ì%^^+(l-^+1, 

(34) — i>«^?A, + i + ( 1 - ^ , 
n i = l 

where <p = (1/n) (yilyn)-

PROOF. If A, = kj+i then ??# = X, and (34) is a triviality. If Xj < kj+i 
let kj = Ma? Aj+i = Ma+i- T r i e n %• = 6a and using (32) we have 

1 n 

V S ^y ̂  <PaAi + l + (1 - <Pa)V 
71 i = l 
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However, <pahj+i + (1 — <Pa)^j= <phj+i + (1 — <p)^p since this is 
equivalent to (<pa — <p)(\j+i — X,) = 0. This proves (34), and (33) is 
proved similarly. 

As our final result, we show how the inequalities proved in Theorem 
10 of [3] and discussed further in [8] may be generalized to the 
situation under discussion in this paper. 

Let Qnk denote the set of all sequences co = {ib • • -, i&} of strictly 
increasing positive integers not exceeding n. The number of sequences 
in Qnk is (I). Let A[co|co] denote the principal submatrix of A 
lying at the intersecion of rows and columns i1? • • -, ik. Let 
£«i = f«2 = ' * * = Lk denote the roots of 

(35) det(AC[co | co] - A[co | co] ) = 0. 

It follows from Theorem 1 that if T G Qn,k+i a n d T D co, then the 
roots of 

(36) det (\C[T I T] - A [ T | T] ) = 0 

are interlaced by the roots of (35). It therefore follows that 

Xj = bw; = A/+n-fc> J = 1> A ' ' '? *, 

for any co €E Qnk. We now generalize Theorem 10 of [3] by finding 
convex combinations of X,, A.J+1, * * *, A/+n-fc, which serve as upper and 
lower bounds for the arithmetic mean 

X / C / a>GQnk 

of the jth root (fixed j) of all the different equations (35). Let 
Er(di, - • -, a,k) denote the elementary symmetric function of degree 
ronfc variables. 

THEOREM 7. For fixed j and k, 1 ^ k ^ n — 1, 1 = j = k, we have 

(37) "ttrK-k+j-^ilY1 E «w^ S M ^ 
r=0 X / C / (oGQnk r=0 

where 

.,. __ (yfa)n~k~rEr(n - yfa, n - 1 - yfa, - • -, fc + 1 - yi/yn) 

0 ^ r ^ n - fc, 
n-k 

S *r = I-
r=0 

(38) 

(39) 
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PROOF. The proof parallels, in part, the proof of Theorem 10 in 
[3]. The proof is a descending induction on fc. By Corollary 2, the 
result is valid when fc = n — 1. Suppose the result established for 
k + 1. Then we have 

-(fc+D / n \ - i 

ZJ 0rK-(k + l)+j-r= ( , ) z l fc 

\ fc+l / „em..,..,, 

n-_(fc_+l) 

0An-( fc + l ) + j - r = ( , ) 2 £r/ 
r=0 K - t - 1 TEÇ>„,fe+l 

(40) 
n-(fc + l) 

with 

s _ . .„_, £ ^ t + 2 _ rt 

(41) 
O g f g n - fc- 1. 

For a given r €: Qn,fc+i> there exist exactly fc+l sequences G> G Qn* 
for which Û) C r. Moreover, if yx ' and y*+1 are the minimum and 
maximum eigenvalues of C [r | r ] , we have 

fc+ 1-yx'lyLx 1 y i ' ^ 1 V r 
* ^ x /C "I" 1 y f c + 1 K - t - 1 O»GÇ)^;Û>CT 

< l y/ r . fc+ l-yi'ln+i 
= fc+l y*'+i ' fe+1 ' i+1 ' 

Since yx ' è y! and yk+i ê yn, we see that yi 7yfc'+i = yi/yn- Thus 
(42) yields the weaker inequality, 

(fc + 1 - y i /yn) 1 j ^ < 1 v 

fc+l ^ fc + 1 v ,J+l = fc 4- 1 ^ t a 

< _ _ i Z i ^ , fc + 1 - yi/yn . 
"" fc + 1 yn

 fe fc+l 4 r J + 1 ' 

As in [3], we sum (43) over all sequences T G Qn,fc+i and then divide 
by (fc+i). Call the resulting inequality *. The central member of * 
now becomes, as in [3], 

X / C / wSQHk 

We now use (40) for j and j + 1 in the left and right sums in our 
inequality *. We then obtain (37) on recognizing that 
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xyn
/ fc+i 

e0 , _ (rifrn)flr+(fc+i-yi/y.)gr-i 
fc + 1 

1 ^ r < n — fc, 

A - fc+l - yi/yn o 

Therefore (37) is established. To show that (39) holds, set X = 1 in 
the polynomial identity 

/ 2 l À + B _ 2 l ) / n x + B _ 1 _ . 2 L ) . . . ( X l x + f c + i - Z ! ) 
\ y „ y „ / \ y » y„ / v ? « Yn' 

= 5(^pEr(„^,.,Hl^). 
r=o v 7n / \ yn y„ / 

The proof is complete. 

REFERENCES 

1. Ky Fan and Gordon Pall, Imbedding theorems for Hermitian and normal 
matrices, Canad. J. Math. 9 (1957), 298-304. MR 19, 6. 

2. Ky Fan, On a theorem ofWeyl concerning eigenvalues of linear transforma
tions. I, Proc. Nat. Acad. Sci. U.S.A. 35(1949), 652-655. MR 11, 600. 

3. R. C. Thompson, Principal submatrices of normal and Hermitian matrices, 
Illinois J. Math. 10 (1966), 296-308. MR 32 #7565. 

4. R. C. Thompson and P. McEnteggert, Principal submatrices. II. The upper 
and lower quadratic inequalities, Linear Algebra and Appi. 1 (1968), 211-243. MR 
38 #5813. 

5. R. C. Thompson, Principal submatrices. III. Linear inequalities, J. Res. 
Nat. Bur. Standards Sect. B 72B (1968), 7-22. MR 38 #5814. 

6. , Principal submatrices. IV. On the independence of the eigenvalues 
of different principal submatrices, Linear Algebra and Appi. 2 (1969), 355-374. 
MR 39 #6907. 

7. , Principal submatrices. V. Some results concerning principal sub-
matrices of arbitrary matrices, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 
115-125. MR 39 #5597. 

8. , Principal submatrices. VI. Cases of equality in certain linear in
equalities, Linear Algebra and Appi. 2 (1969), 375-379. MR 39 #6908. 

9. , Principal submatrices. VII. Further results concerning matrices with 
equal principal minors, J. Res. Nat. Bur. Standards Sect. B 72B (1968), 249-252. 
MR 39 #5598. 

10. Problem E-1623, proposed by R. C. Thompson, Amer. Math. Monthly 71 
(1964), 682-683. 

11. F. R. Gantmaher and M. G. Kreïn, Oscillation matrices and kernels and 
small vibrations of mechanical systems, GITTL, Moscow, 1950; English transi., 
U.S. Atomic Energy Commission AEC Tr 4481, 1961; available from the Clearing
house for Federal Scientific and Technical Information, Springfield, Va., 22151. 
MR 14, 178. 

UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106 


