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ON THE HURWITZ ZETA-FUNCTION
BRUCE C. BERNDT

1. Introduction. Briggs and Chowla [2] and Hardy [3] calculated
the coefficients of the Laurent expansion of the Riemann zeta-function
{(s) about s = 1. Kluyver [4] found a certain infinite series repre-
sentation for these coefficients. In another paper [1] Briggs found
estimates for the coefficients. These estimates were improved by
Lammel [6]. Using these estimates, Lammel also gave a simple proof
of the fact that {(s) has no zeroson |s — 1| = 1.

Using the same technique as in [2] and [6], we derive expressions
for the coefficients of the Laurent expansion of the generalized or
Hurwitz zeta-function {(s,a), 0 <a=1, about s=1. A similar
formula for these coefficients has been given by Wilton [11]. We
then obtain estimates for these coefficients. Our technique here is
somewhat simpler than in [6], and as a special case we obtain im-
proved estimates for the Laurent coefficients of {(s). Next, we use
our estimates to show that {(s,a) — @~ has no zeros on |s — 1| = L
We conclude by indicating a new, simple proof of a representation
formula for {(s, a) that was first discovered by Hurwitz.

2. Calculation of the Laurent coefficients. In the sequel we shall
need a slightly different version of the Euler-Maclaurin summation
formula from what is usually given. Let f € C" on [a, m], where m
is an integer. Then,

n

> flk= J;n flx)dx + 21 (— 1)k %f(k‘”(m)

a<k=m

@.1)
+ 3 (1R P Va) + B,
k=1

where

Ro= (=11 [" Py(0)f 0 (x)dx.

a

Here, By, 1= k = n, denotes the kth Bernoulli number, and Pi(x),
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1=k =n, has period 1 and equals k!Bi(x) on [0, 1], where By(x)
denotes the kth Bernoulli polynomial. The proof of (2.1) follows
along the same lines as the proof of a somewhat less general version
in [5, pp. 520-524] .

It is well known that {(s, a) is a meromorphic function on the entire
complex plane and that its only pole is a simple pole at s = 1 with
residue 1. Thus, if we set

(s—Disa)=1+ 3 yala)s — Do,

n=0
our aim is to prove

THEOREM 1. For0<a=1landn=10,1,2, - - -,

(=1 lim ( & logik + a)  logrti(m + a) ) '

(22) ynl@) = yn = = k+ta n+1

n! mow

If a=1, (2.2) gives the coefficients in the Laurent expansion of
L(s) about s = 1.

Proor. Let f(x) = (x + a)=*and n = 1 in (2.1). Then,

m
m+as=im+a-+ias+ " (x + a)vdx
=0 2 2 0

n

- SJ: (x— [«] — %)(x + a)~s~ldx.

Ifo = Re s > 1, we obtain upon letting m tend to
= g5 E —_ * — —s—1
2.3) dsa)=a~+ sL(x [x])(x + a)=~1dx.

The proof now parallels that of Lammel [6] for the case a =1, and
consequently we omit the remainder of the details.

3. An upper bound for the Laurent coefficients. Instead of esti-
mating y,, we, in fact, will estimate

_ (=D)"log"a

en(a) = en =y anl

For the case a = 1 our estimates are better than Lammel’s by a factor
of 1/n. We shall now prove

TaeoREM 2. For0<a=landn= 1,
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lea]l = 4Inam, n even,
= 2/, n odd.
Proor. Let a=1—a and f(x)= {log"x + a)}/(x + a)nl.

Note that f®(1 —a)=0, k=0, -+, n— 1, and lim,,,» f®(m) = 0,
k = 0. We then obtain from (2.1) upon letting m tend to ®,

—lpe, = i log'(k + @) _ log™(m + a) \ _
(3(1) 1) Cn = n! '}:fl(l—agkém k+ a n+1 ) Rm
where

Ro= (=10t [ Pale = a)f (s — a)dx.

We must estimate f™(x — a).
To that end, put Fi(x) = loglx. An elementary calculation shows
thatforl =k <,

k
(3.2) F®)(x) = x—* 2 I---(l+1 _j)aj(k)logl_jx,

j=1

where the constants a;®) satisfy the recursion formulae,

a® = — (k — 1)a,*-D,
(33)  aq®=—(k—Dg*-D+g*7  j=2 - k-1,
(lk(k) = 1.

We will show by induction on k that
(3.4) lay®| = > iy ke, 1SSk

1=4; <ip <-- '<ik—j§k—l
where the sum is over all possible choices of the integers i, - * *, ix_;
satisfying the given conditions. Ifj = k, the sum is to be interpreted as
equaling 1. For k=1, (3.4) is trivial. Now, from (3.3) for j =2,

k=1,
5] = (k= Dlay* =] + lay_ =)
=(k-1) E R NS
1=i) <o <ip g Sk—2
+ 2 it ik—j

I= < <ip_;sk-2

= Z il e ik—j-

=iy <o <iy k-1
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For j=1 and j = k, (3.4) is trivially established, and thus the proof
of (3.4) is complete.
It follows from (3.4) thatfor 1 = j = k — 1,

83 = (pT) k- DEk=2)

Since f(x — a) = Fo\1(0)l(n + 1), we find from (3.2) and (3.5) that
forx =1,

[f™(x = a)l
1 n+1 (n+ 1) n !
6) = x~nl logn+1-i
(36)—(n+1)1 j=1n+1_])<n+1_].>(]_1) og X
n+1l 2
= —-n-—1 n l n+1—ij
S <n+l—j> 0g"" .
Now, forn= 1,
P (x)| = 4/(2m)n, n even,
= 2/(2m)n, n odd.

The estimate 4/(27)", n=1, is given in [5, p. 525]. Ostrowski
[8] has observed that for n odd, the 4 can be replaced by 2. That
this cannot be done for n even can be seen from a theorem of Lehmer
[7, p. 534]. Hence, from (3.6) and (3.7) for n even,

2 () e

P
J?( > n]J'+1

4nj=io<?>=—n?r—"'

For n odd, the 4 may be replaced by 2. Thus, the proof is complete
by (3.1).

4. Zeros in a neighborhood of s = 1. We shall prove

|Ra| =

(=]

(217'

A

THEOREM 3. {(s,a) — a—* has no zeros on |s — 1| = 1, where now
we can take 0 = a = 1.
Note thatifa = 0,{(s, a) — a=5 = {(s).
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Proor. From the definition of ¢,, we have for |s — 1| = 1,

6= D a) = a9l = [1+ 3 efs — 1
n=0

(4.1) -
Z1- Y el

Thus, we shall be done if we can show that the right-hand side of
(4.1) is positive. We shall need to obtain precise estimates for cy,
¢y and cs.

To estimate ¢y we put f(x)=1/(x+ a), a=1—a and n= 3 in
(2.1). Upon letting m tend to %, we obtain

o= lim<§ 1 —Iog(m+a)>

m—> o k=1 k+ a

=Pl(l_a)+P2(1_0)+2P3(1_0)+Rg

Now, on [0,1], |Py(x)] = |x — 4| = % and |Py(x)| = [}a2 — $x + 1/12]
= 1/12. Thus, using (3.7) we obtain

(4.2) leol = 4 + 112 + 4/(2m)% + 4/(2r)° = 617.

To estimate ¢; we put f(x)= {log(x+ a)}(x+ a), a=1—a
and n = 3in (2.1). Upon letting m tend to ®, we obtain

¢ = Py(1 —a)+ 3P3(1 — a) — J': P3(x — a)x~ %11 — 6 log x)dx.
Thus, from (3.7) and the above estimate of P,
(4.3) ler] = 112 + 6/(27)3 + 2/(27)3 - 13/3 = .144.

To estimate ¢; we put f(x) = {logXx + a)}/2(x + a), a=1—a
and n = 3in (2.1). Upon letting m tend to ®, we obtain

¢y = P3(1 — a) + jlw P3(x — a)x=4(—6 + 11logx — 3log2x)dx.

From (3.7),
(4.4) leo| = 2/(2m)® + 2/(2m)3 - 31/9 = .036.

Now, by Theorem 2,

(4.5) S el =4 S Unan = 4f37%x — 1) = .064.
n=3 n=3
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From (4.2)-(4.5),

1= > lea]=1— 617 — 144 — 036 — .064 = 1 — .861 > 0,
n=0

and the proof of Theorem 3 is complete.

5. A formula of Hurwitz. The following representation was proved
by Hurwitz.

TaeoreM 4. For0 < a=lando <0,

_aA(1—5) 1. > cos (2rna)
i(s,a)= ——(277)1—3 {sm (% s >n§=:l s

(5.1)

1 > sin (27na)
+ cos (27'3)"2:1 s }
The proofs of (5.1) given in [9, p. 37] and [10, p. 268-269] depend
upon the evaluation of a loop integral. The following simple proof
does not appear to have been previously noticed.
Proor. Again, from (2.1) fora > 1,

1

{(s,a) —a—s = 1+(1—a—[1—a]—%)

(5.2)

[x]_x+7
ts .[la (x + a)s+! dx.

By analytic continuation (5.2) is valid for ¢ > —1. Now, if 0 <0,

l-a [x]—x+% 1 _s 1
Sj_a de—§+a —a—l_s.
Thus, for —1 < o <0,
o x] —x+3
(5.3) i(s,a) = s I_a %de'

The proof now proceeds as in [9, p. 15]. We merely use (5.3) instead
of (2.1.6) in [9].
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