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SOME COUNTEREXAMPLES INVOLVING 
SELFADJOINT OPERATORS 

JEROME A. GOLDSTEIN l 

1. Introduction. We present several counterexamples related to 
the convergence, (generalized) addition, and (generalized) commuta
tion of (unbounded) skew-adjoint operators. 

2. Convergence of skew-adjoint operators. Let An (n = 0 ,1 , 2, • • •) 
be a skew-adjoint operator on a Hilbert space J/. We say that An 
converges to AQ and we write limn_>oo An = AQ iff 

(1) hm (XI - An)-
lf= (XI - Ac)"1/ 

n-+°° 

for all / G S and all X G R \ { 0 } (R is the real line and I is the 
identity on J/). This is equivalent to 

(2) lim Un(t)f= U0(t)f 
n—>°° 

for all * G R and all / G J / where C7n = { [ / „ W ^ E R } is the 
(Co) unitary group generated by An, n = 0, 1, 2, • • •. The above 
result is an immediate consequence of Stone's theorem and the 
Trotter-Neveu-Kato approximation theorem for (Co) semigroups of 
operators (cf. for instance Goldstein [5], Kato [6], Yosida [9] ). 

A useful sufficient condition for (1) to hold is given by the following 
well-known simple result. 

LEMMA 1. Let An be skew-adjoint operators on Jt, n = 0, 1, 2, 
Then (1) holds for all j*G JÏ and all X G R\{0} if there is a subspace 
üo C Io (Ao) (= the domain of Ao) such that 

(i) Ao is the closure ofAo | £ò? 

(ii) for all fG^b, / G 2^(A„) /or n sufficiently large and 
limn^oo Anf= Aof 

Our first example shows that the sufficient condition given in 
Lemma 1 is far from being necessary. 

EXAMPLE 1. There is a sequence Un (n = 0, 1, 2, • • •) of (C0) 
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unitary groups on a Hilbert space <=H with skew-adjoint generators 
An such that limn_>oo An = AQ but 

%>(Ao) n Ü fc(4.) = {0}. 
n = l 

CONSTRUCTION. Let Jf be the complex Hilbert space L2(R). 
(R is given Lebesgue measure.) Define 

U(a, T; i)f(x) = f(x + at) exp < ir q(x + as) ds i 

for / G Ö V , a, T, £, x G R, where g G LioC(R). Then U(a,r) = 
{U(<J,T; t); f G R } is a (Co) unitary group on J / for each a, r G R. 
Note that t/0 = C/(1,0) is the translation group whose generator Ao 
is given by Aqf=f for fG. ^>(AQ) = {g G J / : g absolutely con
tinuous, g ' G J / } . 

Le t r / 0. F o r / G J/, ft G R\{0}, 

where 

/!(x) = exp { i r fo q(x + as) ds }h~l(f(x + afc) - /(*)), 

J2(x) = h~l ( exp { i r J q(x + as) ds \ - 1 ) f(x). 

If / G ïh(Ao)9 then lim^-^o/i exists (in the norm topology of Ji) 
and equals af = aAq/! If also / is the domain of the generator 
A(a,r) of U(a,r), then also lim^-^o (/i + / 2 ) exists, hence lim^-^o^ 
necessarily exists in J/. But for almost all x E R , lim^-^ Jz(x) = 

q(x)f(x). Hence qf G J/. But 9 can be chosen so that 

(3) {g G <Z(Ao) : 9 g G J/} = {0}, 

w h e n c e / = 0 (cf. Chernoff [1], Goldstein [5]). The construction is 
well known, but we indicate it for completeness. Let {rn }i be a 
dense sequence in R. Let ç(x) = ^^=1 (n!)_1jx — rn|~1/2. Then 
q G Lioc(R) but q is not square integrable over any interval of 
positive length. If g is continuous and nonzero at a point Xo, then 
\g(x) I = e > 0 for some € > 0 and all x in some neighborhood of 
x0. Hence JR \qg\2dx= «> y so that (3) holds for this choice of q. 
It follows that 

(4) 2 i ( A o ) n U { ^ ( A ( a , T ) ) : T G R \ { 0 } , a G R } = {0}. 



COUNTEREXAMPLES INVOLVING SELF AD JOINT OPERATORS 1 4 5 

Finally let {rn}°î, {crn}f be sequences in R satisfying rn ^ 0 
for all n, limn_*oocrn = 1, limn^ooTn = 0. Let Un = U(an,Tn), An = 
A(any T„), n e l . Then since U(a, r; t)f is clearly a jointly con
tinuous ^/-valued function of a, T, £ for each fixed / £ J / ? it follows 
that (2) holds, and hence (1) holds also. This completes the proof in 
view of (4). 

3. Addition of skew-adjoint operators. Let A, B, C be skew-adjoint 
operators on a Hilbert space Ji. We say that C is the generalized sum 
or the Lie sum of A and B, and we write C = A + L B, iff 

lim (U(tln)V(tln))nf= W(t)f 

for all i £ R , / Ë c V where [7, V, W denote the (Co) unitary groups 
generated by A, B, C respectively. This is the right definition from the 
point of view of infinite-dimensional Lie theory (cf. Goldstein [4] ). 
A+LB (if it exists) is an extension of the closure (A + B)~ of A 4- B 
(defined on £>(A) fi 2>(B)), and A + L B equals (A + B)~ if A + B 
is essentially skew-adjoint. The basic properties of the Lie sum have 
been developed by Chernoff [1], [2]. 

EXAMPLE 2. There exist skew-adjoint operators An, Bn (n = 0, 1, 
2, • • •) on a Hilbert space J / such that l i m ^ » An = Ao, limn^oo Bn = 
B0, An + L Bn exists for all n â l , but Ao + L ^O does not exist and 
An +L Bn does not converge to a skew-adjoint operator. 

The construction of Example 2 will be given in the next section. 
The Trotter-Neveu-Kato approximation, which holds for nets as 

well as sequences (Seidman [8] ), enables one to define a topology 
in a natural way on the set of all skew-adjoint operators on J/. Example 
2 shows that generalized addition is not continuous with respect to 
this topology. 

4. Commutation of skew-adjoint operators. Let A, B, C be skew-
adjoint operators on a Hilbert space Jf. We say that C is the gen
eralized commutator or Lie commutator of A and B, and we write 
C = [ A , B ] L , i f T 

lim {U(tln) V(tln) U(-tln) V(-tln)}n2f= W(t2)f 
n->°° 

for all f E R , / £ ^ where U, V, W denote the (C0) unitary groups 
generated by A, B, C respectively. If the closure C of the restriction 
of AB - BA to <&(AB) H 2>(BA) fi £>(B2) D £>(A2) is skew-
adjoint, then [ A , B ] L exists and equals C. This result was proved 
by Nelson [7, p. I l l ] ; a similar result was proved independently by 
Goldstein [4]. 
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EXAMPLE 3. There exist skew-adjoint operators A, B with B a 
bounded operator such that the restriction of AB — BA to 2b(AB) D 
2b(BA) Pi 2b(B2) H 2b(A2) has no skew-adjoint extension. 

EXAMPLE 4. There exist skew-adjoint operators A, B with B a 
bounded operator such that 2b(AB - BA) ( = 2b(AB) D 2b(BA)) = 
{0}, but nevertheless [A, B]L exists (as a skew-adjoint operator). 

EXAMPLE 5. There exist skew-adjoint operators An, Bn (n = 
0, 1, 2, • • •) such that limn^oc An = AQ, limn_>oo Bn = B0, [An3 Bn]L 

exists for n= 1, but [AQ, B0]L does not exist and [An3 Bn] L does not 
converge to a skew-adjoint operator. 

CONSTRUCTION OF EXAMPLE 3. Let J / = L2(0, <*> ). Let Aof(x) = 
ifn(x)-ix2f(x) for fG <b(Ao) = Cc°°(0, » ). Then the closure A of 
AQ is skew-adjoint, has pure point spectrum, and its eigenvectors are 
the Hermite functions (see e.g. Dunford-Schwartz [3, Chapter XIII] ). 

Let Bf(x) = i(x + 2)e~xf(x) for / G J/. Then ß is a bounded 
skew-adjoint operator on J / which leaves Cc °°(0, °o ) invariant. Hence 
Cc°°(0, oo ) C 2b(AB) PI 2b(BA) PI 2b(B2) fi 2b(A2), and for all 
fÇ£Cc °°(0, °o ) an elementary calculation shows that 

(AB - BA)f= Lf 

where Lf(x) = - 2 ( 1 + x)e~xf(x) + xe~xf(x) for / G 2b(L) = 
Cc°°(0, °° ). —iL is symmetric and its adjoint is a restriction of the 
distributional differential operator 2i(l + x)e~xdldx — ixe~xI. To 
compute the deficiency indices of —iL we must solve ( — iL)*f= ±if; 
the distributional solutions are of the form Cif+ + C2/_ where 
C\, C2 are constants and 

f±(x) = M l + x)-1}1/2exp { ± 2 - ! £ e*(l + t)~ldt\. 

Clearly /_ $ J / and/+ G J/; in fact it is easy to see that/+ G 2b(L*) 
so that the deficiency indices of —iL are (1, 0). Hence L is essentially 
maximal skew-symmetric with no skew-adjoint extension. {We remark 
that in fact [A, B]L exists and equals L in the sense of [4, Theorem 
1], even though it does not exist in the sense of this section.} 

CONSTRUCTION OF EXAMPLE 4. Let Ji = L2(R). Let 2b(A) = 
{ f G J / : / absolutely continuous, / ' E J / J and let Af=f for 

/ G 2b(A). Let {rn}i be a dense sequence in R and let 

</(x) = S 2-», 

^ x denoting the sum over all n such that rn < x. Note that 
0 < q(x) < 1 for all x G R, and g is monotone increasing and hence 
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differentiate a.e. Let B be the bounded skew-adjoint operator de
fined by Bf(x) = iq(x)f(x\ / G J/. If U, V denote the (C0) unitary 
groups generated by A, B respectively, then a straightforward cal
culation shows that 

{U(tln)V(tln)U(-tln)V(-tln)}n2 f (x) 

= f(x) exp {it2(q(x) - q(x + tln))l(tln)}. 

Hence 

lim {U(tln)V(tln)U(-tln)V(-tln)}n2f= W(t2)f 

by the dominated convergence theorem, for all i £ R , / £ <=H, where 

W(s)f(x)=f(x)ex?{-iSq'(x)}, 

so that W is the (Co) unitary group generated by C, where 

Cf(x)= -iq'(x)f(x) 

for fG!b(C)= {gG <H\S-~ \q'(x)g(x)\2dx< oo }. Thus [A, B]L 

exists and equals C. On the other hand, if / G !2>(AB — BA) = 
5b(AB) PI !à(BA), then both / and qf are continuous on R. Hence 
q is continuous at all points Xo such that f(xo) f^ 0. But q is discon
tinuous at each rn, so that f(rn) = 0 for all n. Hence by continuity 
f= 0; i.e., 

!h(AB - BA) = {0}. 

CONSTRUCTION OF EXAMPLE 2. Let J/, A be as in Example 3. Let 

AQ = A. Let M be the operator defined by Mf(jc) = f'(x) for x > 0, 
/ G £>(M) = {/G J / : / absolutely continuous, / ' G J/, /(0) = 0}. 
Then — iM is symmetric with deficiency indices (1,0) [9, p. 353], 
and integration by parts shows that £>(M) D ^(Ao). It follows by 
[6, p. 287] that B0 = — AQ — e M is skew-adjoint for sufficiently small 
e > 0. Choose and fix such an e > 0. Then AQ + ^ Bo does not exist 
since M has no skew-adjoint extension. (These facts were established 
in [1].) Let {An}^0 be a sequence of bounded skew-adjoint 
operators converging to AQ; for instance, if AQ = J^0« t dE(t) (by 
the spectral theorem), take A„ = /_?„ t dE(t). Similarly, let {Bn}5° be 
a sequence of bounded skew-adjoint operators converging to Bo-
Then all the conditions of Example 2 hold. {We note that in fact 
A) + L B O exists in the sense of generalized addition of (C0) semi
group generators (rather than of (Co) unitary group generators), and 
An + LBH converges to Ao + L B0 in the sense of convergence of 
(Co) semigroup generators.} 
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CONSTRUCTION OF EXAMPLE 5. Let A, B, Ji be as in Example 3. 
Set AQ= A, B0= B. Let { A ^ [resp. {B„}î°] be a sequence of 
bounded skew-adjoint operators converging to AQ [ resp. B0]. The 
rest of the proof goes exactly as in the case of Example 2. {We remark 
that [ An, Bn] L does converge to L in the sense of convergence of 
(Co) semigroup generators, and [AQ, B0]L exists and equals L in the 
sense of [4, Theorem 1], where L is as in Example 3.} 

Example 5 shows that generalized commutation is not continuous 
in the topology on the set of all skew-adjoint operators (on a Hilbert 
space) defined above. 

EXAMPLE 6. There exist skew-adjoint operators AQ, B0 such that 
AQ+LBO exists but [AQ, B0]Ldoes not exist; and there exist skew-
adjoint operators AQ, B0 such that [ AQ, B0] L exists but AQ + L B0 

does not exist. 
CONSTRUCTION. The first statement follows immediately from 

Example 3. To prove the latter statement, let Ji, AQ, B0 be as in the 
construction of Example 2. A simple calculation together with the 
result of Nelson [7] cited at the beginning of this section implies 
that [AQ, B0]L exists and equals the skew-adjoint multiplication 
operator C0 defined by C0f(x)= —2eixf(x) for x>0 and 
/ G 2>(Co) = { g £ ^ : Jo>g(*) | 2 dx < oo }. 

5. Universal commutatability. We call a skew-adjoint operator A 
on Ji universally commutatable iff [ A, B] L exists for each skew-
adjoint B on J/. We say that A is universally commutatable in the 
classical sense iff for all skew-adjoint B, AB — BA is essentially skew-
adjoint. 

QUESTION. Which skew-adjoint operators are universally commuta
table? 

Chernoff [1], [2] has answered the corresponding question for 
universal addability. He showed that a skew-adjoint A is universally 
addable iff A is universally addable in the classical sense iff A is 
bounded. Example 3 shows that there are bounded skew-adjoint 
operators which are not universally commutatable (in either sense). 
We do not know if there are any universally commutatable operators 
other than those of the form Ài/, À G R. It is clear however, that 
any unbounded skew-adjoint operator A cannot be universally com
mutatable in the classical sense. To see this, choose x (f 2*(A), 
and let B = iP where P is the orthogonal projection onto the span 
of x. Then B is bounded and skew-adjoint, but 

&(AB - BA) C 2>(AB) = {x}\ 

which is not dense in J/. 
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