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UNIFORM FINITE GENERATION OF THE ROTATION GROUP 
FRANKLIN LOWENTHAL 

I. Introduction. Since the rotation group SO(3) has no two dimension­
al connected Lie subgroups, the subgroup generated by two different 
one-parameter rotation groups T<f, and Se is in fact just SO(3). If a Lie 
group H is generated by two one-parameter subgroups, one says H is 
uniformly finitely generated by them if there exists a positive integer 
n such that every element of H can be expressed as a product of ele­
ments chosen alternately from the two one-parameter subgroups whose 
length is at most n. Define the least such n as the order of generation 
ofH. 

The fact that SO(3) is uniformly finitely generated by T+ and S0 is a 
simple consequence of its being compact; an elegant proof of this in­
volving Baire category theory was suggested to the author by R. B. 
Burckel and is included in the Appendix. The goal of this paper is to 
compute the order of generation of SO(3) by T<j> and Sd. This will be 
determined as a function of the angle I/J, 0 < \jj ^ 7r/2, between the 
axes of the rotation groups T^ and Sd without any prior knowledge 
that SO(3) was uniformly finitely generated by them. It turns out that 
if tfj = 7r/2, the order of generation is 3; if 7r/(fc + 1) â \jj < irlk, 
then the order of generation is k + 2 (fc è 2). 

Instead of working with SO(3) itself, it will be more convenient to 
work with the induced subgroup of the Möbius group, called the isom-
etry group of the spherical geometry and denoted by G. This has 
the disadvantage that the role of the angle irlk is obscured. It is, of 
course, possible to translate the entire proof back to the sphere where 
irlk enters in a natural manner; this will be described briefly at the 
end of the paper. However, the author believes the ideas involved 
in the proof are easier to visualize in the extended complex plane. 
Further, it will be interesting that the Tchebyshev polynomials turn 
out to play a central role in the proof presented here. 

II. Preliminaries. Let the sphere have center at (0, 0, \ ) and radius 
j ; let the axes of the rotation groups be the z axis and the line: y = 0, 
z = f — (cot \fß )x. These determine as fixed points of the rotations 
the respective pair of points (0, 0, 1), (0, 0, 0) and (— (sin t/>)/2, 0, 
(1 + cos t/>)/2), ((sin ifß)l2, 0, (1 - cos i/*)/2) on the sphere. Under 
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Stereographic projection, 7^ and Sd correspond respectively to the one-
parameter subgroups of the Möbius group 

(1) 
(2) 

where 

W = Tt (z) = eilz, 0^t^2rr, 

W = S, '(«) = K-l(eisK(z)), 0 S s g 2n, 

vi \ z— r ty 
K(z) = TTl/? r ~ t a n T 

These are just all elliptic transformations with fixed points 0, «> and 
r, — 1/r respectively; Tt and S;' generate G. The Möbius transforma­
tion W = L(z) = rz leaves 0 and oo fixed and takes 1 into r, — 1/r2 

into — 1/r; let x = 1/r2. The inner automorphism induced by L(z) 
leaves Tt invariant and transforms Ss ' into S/, the group of all elliptic 
transformations with fixed points 1 and — x; x= cot2(t/f/2). Tt and 
Ss

x generate the group Gx = L~lGL (Gi = G). The order of generation 
of G by Tt and S/ is the same as the order of generation of Gx by Tt 

and S/. 
The infinitesimal generators of Tt and Ss

x are e = iw, i)x = 
i(it> — l)(w + x) respectively, i.e., Tt(z) and S/(z) are respectively the 
solutions of the differential systems [1] 

(3) dwldt = iw, tt>(0, z) = z, 

(4) dwlds = i(u; — 1)(IÜ H- x), u?(0, z) = z. 

SO(3) is transitive; in fact, if P1? Ci and P2, Ç2 are two pairs of 
points such that the distance on the sphere between Fx and Ci equals 
the distance between P2 and Q2, then there is a rotation taking ?! into 
P2 and Qi into Q2 and there is a rotation taking Fx into Ç)2 and QY into 
F2. Applying this result to the fixed points of the rotations T<f> and Se 

that lie in the northern and southern hemisphere respectively, i.e. 
(0, 0, 1) and ( - ( s i n ^ ) / 2 , 0, (1 + cos ^)/2) and (0, 0, 0) and 
((sin i/f)/2, 0» (1 "" c o s ^)/2), it is seen that there are Möbius transfor­
mations Vx(z) and Wx(z) in Gx such that 

(5) V,(oo) = 0, V x ( - x ) = l , 

(6) W x (oo)=l , W x ( - x ) = 0. 

Since Gx is transitive, it is meaningful to define for any pair of 
points a and ß in the extended complex plane the order of a with 
respect toß, written ordß(a), as the smallest positive integer n such that 
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there exists a product of Tt and S / of length n taking a into ß. 
The set of all rotations of the sphere taking a prescribed point P 

into a prescribed point Q transform a point P ' different from P (and 
from the antipodal point of P) into a circle on the sphere; thus under 
the set of all Möbius transformations of Gx taking a into ß the possible 
images of a point a ' ^ a, a ' j^ — 1/r2ä constitute either a circle or a 
line in the extended complex plane. In particular if ß = 0, this set is 
a circle centered at the origin. If R(z) is a transformation in Gx such 
that R(a) = 0 then every Möbius transformation in Gx taking a into 
0 has a representation of the form 

(7) Tt R(z) for some t, 0 g t ^ 2TT. 

Hence, if m(x) = ord0(a), then every Möbius transformation in Gx 

taking a into 0 can be represented as a product of Tt and Ss of length 
g m(x) + 1. 

III. Since * = cot2(t/>/2), the result about SO(3) mentioned in the 
Introduction is an immediate consequence of the theorem below: 

THEOREM. The order of generation of G by Tt and Ss
l is three. For 

x satisfying 

(8) cot2-^- < x g cot2 " > 
v ; 2k 2(fc + 1) 

tfie order of generation ofGx by Tt and Ss
x isk •+• 2/or fc = 2, 3, 4, 

PROOF. Define the orbit of z0 under c to be {Tt(z0) lO'è ttâ 2TT}; 

for ZQ J^ 0, oo ? these orbits are the circles |^| = fc. For z0 ^ 1, — x, 
the orbit of z under r)x is the circle of Apollonius with respect to 1 
and — x that passes through z0-

Case x = 1. The orbit of 0 under T^ is the imaginary axis. Clearly 
ordo(a) = 2 if a is not on the imaginary axis and ord0(a) = 1 if a = ai, 
a real, a ^ 0. Hence by the remark at the end of §11, order of genera­
tion of G is at most 3. But the transformation Wx that takes o° _> 1? 

— 1 —> 0 cannot be expressed as a product of length 2 since in fact the 
first element of the product must leave either - 1 or <» fixed and 
ord_i(0) = ord . ( l ) = 2. 

For x > 1, the orbit of 0 under r)x is the circle \(z — l)l(z + x)| 
= 1/oc; this circle (denoted by K*) intersects the real axis at the points 
0 and 2x1 (x — 1). The line R(z) = (1 — x)/2 is the orbit of oo under 
r)x; the circles of Apollonius \(z — l)l(z + x)\= k with 0 < k < 1 
lie in the half-plane R(z) > (1 — x)/2; those with fc > 1 lie in the half-
plane R(z) < (1 ~ x)l2. 
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FIGURE 1. Orbits under r\x 

For llx < k< 1, the circle of Apollonius \(z — l)l(z + x)| = k, 
denoted by Cux, intersects the negative real axis at a point greater than 
(1 — x)/2; this point minimizes the distance between points on C^x 

and the origin. Observe that this minimum distance increases from 0 
to (x — l)/2 as k increases from 1/x to 1 or if one expresses this mini­
mum distance from Ckx to 0 as a function of the point where Ckx inter­
sects the positive real axis, then as the latter increases from 2x1 (x — 1) 
to oo, the distance increases from 0 to (x — l)/2. Note that the circle 
of Apollonius through the point u on the positive real axis, 
u = 2xl(x — 1), lies, except for the point of tangency, in the interior of 
the circle \z\ = u. Further the distance of the circle of Apollonius 
through z = ueie from the origin, considered as a function of 0, is a 
minimum when 6 = 0, i.e., for the point z = u. 

To determine m(x) = ord0(a), it suffices to find the smallest positive 
integer such that there is a product of Tt and Ss

x of that length taking 
a into some point on K* and then to add one to that integer. Observe 
that a transformation on Gx of minimum length taking a to 0 must end 
with an S/. Thus ord0(— x) must always be even, as a transformation 
of minimum length taking — x into 0 must begin with a Tt; similarly 
ord0(o° ) is odd. 

LEMMA 1. If ord0(— x) = 2q, q a positive integer, then 

a product of length 2q, takes — x into 0 for appropriate choices of t 
ands. 
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PROOF. If 9 = 1 there is nothing to prove; assume q > 1. It suffices 
to prove that |S/Tir * ' ' V ^ - *) | ̂  2x/(x - 1), where the product 
Sv

xTn is repeated q — 1 times. As the ord0(— x) = 29, there is a 
product 

S * T, • • r f Ss
xTt 

which takes — x into a point whose absolute value is at most 
2x1 (x ~ 1). Note that Sv

x takes the real axis into itself so that Sv
x(u), 

u > 2x1 (x — 1), is the point on the orbit of u under r)x closest to the 
origin. Since q > 1, Tw( — x) > 2xl(x — 1). Clearly 

(9) - S / T „ ( - x ) g | S s , ' T , , ( - x ) | . 

If 9 = 2, the lemma is proved; if q > 2 then if p =S/T i r(— x), 
- p > 2xl(x - 1). If |z0 | = - p, then 

(10) -S.T.{p)^ \S/Tt(zo)\ 

for all possible s, t. Hence by induction 

- vr, • • • S/T;(- x)SI v,. ,TVI • • • s^r,/- x)|. 
v ; ( 2 9 - 2 factors) 

LEMMA 2. If ord0 ( » ) = 2qf + 1, then for some choice of s, t, there 
exists a product: S8

xTtS„xTv • • • S / T A * of length 2q + 1 tafcing oo 
into 0. 

PROOF. Same as Lemma 1. Observe that S/(oo ) = (1 — x)/2. 

LEMMA 3. ord0 (— x) ̂  ord0 ((1— x)l2). 

PROOF. This is clear as x è (x — l)/2 and as the first element in a 
product of minimum length taking — x into 0 must be a Tt. 

LEMMA 4. ord0 (°° ) = ord0 ( ( 1 - x)l2) + 1. 

PROOF. Since S„*(oo) = (l - x)/2. ord0(oo ) ^ ord0((l - x)/2) + 1. 
Further there must be at least one point on R(z) — (1 — x)/2 whose 
order with respect to zero is one less than the order of oo with respect 
to zero. But clearly ord0((l — x)l2) ^ ordo(z) for all z satisfying 
Biz) = (1 - x)l2. 

LEMMA 5. ord0 (°° ) = ord0 (— x) ± 1. 

From the previous two lemmas ord0(— x) = ord0(°° ) — 1. If 
x g 2xl(x - 1), then o r d 0 ( - x) = ord0 ((1 - *)/2) = 2. If 
x > 2xl(x - 1), then (1 - x)/2 < Sw*rw(- x) < 0 and hence: 
o r d 0 ( - x) g ord0((l - x)/2) + 2 = ord0(<x> ) + 1. Since o r d 0 ( - x) 
is even, and ord0(°° ) is odd, the lemma is proved. 
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LEMMA 6. Let a be any point of the extended complex plane. Then 
ordo(a) S ord0(— x) + 1 and ord0(a) = ord0(°° ) + 1. 

PROOF. If a / —x, then there exists an element Ss
x such that 

- x < S/(a) ^ 1. If ß = S/(a), then for 0 ^ ß ê 1, ordo(/3) ^ 2, and 
if — x<ß< 0, clearly ord0( — x) i^ ordo(/3) so the first part of the 
lemma is proved. Similarly there exists an element Tt such that either 
Tt(a) is on the line R(z) = (1 - x)/2 or (1 - x)/2 < Tt(a) g 0. If 
ß = Tt(a), it is clear in either case that ord 0 (°° )= ord0(/3) and the 
second inequality is proved. 

LEMMA 7. ord0(°°) = ordx(— x); ord^oo) = ord0(— x). 

Since there is a rotation that interchanges the axes of T$ and Sö, 
there is a transformation W = R '(z) in G such that 

(12) R'(0) = r, R'(r) = 0, R'(- 1/r) = oo, R'(oo) = - 1/r. 

Let R(z) = L~lR'U then R(z) is in Gx and 

(13) R(0) = 1, R(l) = 0, R ( - x) = oo and R(» ) = - x. 

Hence the inner automorphism induced on Gx by R leaves Gx invariant 
and interchanges the two one parameter subgroups Tt and S/. If 
W(z) = SxTf • • • Sxtt takes - x into 0, then RlWR takes oo 
into 1; but 

RlWR= R~lSxRR~lTtR R~lS*RR-lTt.R 
Sq tq 4, r2 

(14) 
~ TsqStq ^ 1 ^ ^ ' 

this has the same length as W(z). 
Thus ord0( —x) ^ ord^oo ); similarly ord^oo ) ^ ordo( — x). Similarly 

one shows ord0(o° ) = ordi(— x). 
It follows from the above lemmas that the order of generation of 

Gx is just 

(15) n — max{ord0(— x), ord0(o° )} + 1. 

First observe that max{ord0(— x), ord0(00)} is by Lemma 5 either 
equal to ord0(— x) + 1 or it is equal to ord0(°o) + 1. By Lemma 6 
ord0(a) = max{ord0(— x), ordo(o° )} for all a in the extended complex 
plane. In view of the remark made subsequent to (7), it is clear that 
the order of generation of Gx is less than or equal to 

max{ord0(o° ), ord0(— x)} + 1. 
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Consider the transformation Vx of Gx described in (5). If Vx were 
expressible as a product of length equal to ord0(°°), such a product 
would have to start with an Ss

x. Hence — x would remain fixed under 
the first element of the product and thus ord^— x) = ord0(°°) — 1 
in contradiction to Lemma 7. Hence the order of generation of Gx 

is at least ord0(°°) + 1. Similarly, as Wx in (6) is in Gx> the order of 
generation of Gx is at least ord0(— x) + 1 and (15) is thus established. 

It suffices to determine ordo( — x) and ord0(°°) in Gx relative to Tt 

and S/. It is clear that if t\ is the largest real solution of x = 2xl(x — 1), 
then for l i x ^ t\, ord0(— x) — 2 (in fact, tx = 3). By Lemma 1, 
ordo(- x) = 4 if and only if Tv\

x{x) ^ 2x1 (x - 1) and x > 2xl(x - 1); 
further, it follows from the same lemma that for n = 3, ord0(— x) = 2n 
if and only if 

(16) T A T A * TA*(x) ^ 2x/(x - 1) 
(2n — 2 factors) 

and 

(17) TA X TnSAx) > 2xl(x - 1) 
(2n — 4 factors) 

both hold. 
Now a simple calculation shows 

(18) r„v(«)= V Ì ) M ~ 2 * -
2u 4- x — 1 

If one now defines F\(x) = x? Fn(ac) recursively by 

as) w-K^W?'?'' n^ 
2Fn_! (x) + x - 1 

then Fn_i(x) is the expression consisting of 2n — 4 factors in (17) 
(if n = 2, it is just ac) and Fn(x) is the expression in (16). Thus 
ordo(-x) = 2n if and only if F n _! > 2x1 (x - 1) but Fn(x) ^ 2x1 (x - 1), 
n e 2. 

Fn(jc) is a rational function and the asymptotic expression 

Fn(x) _ 1 (20) lim 
2n- 1 

is easily established by induction. 
Define ^ 0 = 1 ; then tx is the only solution of Fx(x) = 2x/(x — 1) 

that is greater than t0; further clearly Fi is finite and Fi > 0 for 
x = £o- In fact it is possible to construct a strictly increasing sequence 
of real numbers (tn) such that 
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Fn(x) is finite for x = tn-\ and Fn'(x) > 0 for x ̂  £„_!; 
and £n is the only solution of: 

(21) Fn(x) = 2xl(x - 1) that is > tn-i. 

To prove this note that it is true for n = 1; if Fn_x (£„_i) = 2x1 (x — 1), 
then Fn(tn-i) — 0 by (19); a simple computation shows 

( 2 2 ) F " W " [2F..1(x) + ( x - l ) ] » 

Since F^_j(x) > Ofor x ^ £n_2 and Fn_1(^n_1) > 0 it is clear that 
Fn_x(x) > 0 for all x = £n_1? so that Fn(x) is defined for x i^ £n_i and 
clearly by (22) F n ' > 0 for x ^ tn-X. Now Fn(tn_i) = 0, Fn' > 0 for 
x = fn_x together with (20) imply that 

, , Fn(x) = 2x/(x — 1) must have one and 
only one root greater than tn-i; 

denote it by tn. This completes the inductive argument; note in fact 
that (21) holds for x ^ £n_2, n ^ 2, since Fn_i(£n_2) = 0, n=^ 3 (Fi(t0) 

= 1). 
Thus for tn-i<x=tn, ordo(-x) = 2n. Further limn_>oo£n = oo ; 

this follows from the fact that if limn-Wn = T is finite, then for 
all x i^ T, Fn(x) > 2x/(x — 1) for all n, and hence ord0(— x) would 
not be finite for such x. 

The above properties of (tn) will be, in fact, trivial once they are 
explicitly determined. To do this, write 

(24) Fn(x) = Pn(x)/Çn(x), 

where Pn(x) and Qn(x) are relatively prime polynomials with real 
coefficients, Pn monic. Note that Pn and Qn are thus relatively prime 
over the complex numbers. From (20) it follows that degree Fn 

= degree Qn + 1, for all n, and the leading coefficient of Qn is 
2n — 1. Now 

( x - l)Fn(x) - 2x Qn(x) Pn+l 

(25) F n + l W = 2Pn(x)+(x-l)Çn(x) = (W 

LEMMA 8. Pn*+1 = (x - l)Fn - 2xÇn and Çn*+1 = 2Pn + (x - l )Çn 

are relatively prime. 

PROOF. First it is easily shown by induction that Fn(— 1) = — 1, 
for all n, and hence P n ( - 1) = - Qn(- 1) j* 0. Hence P„*+i(- 1) 
= - 2 P n ( - 1) + 2 Ç n ( - 1) = 4- 4 Ç n ( - 1) ̂  0. Further at a zero 
of Qn, Q*+i 7̂  0, since otherwise Pn would be zero. Hence if Pn*+1 

and Ç)n*+1 have a common zero, then 
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( x - l P „ = 2 x Ç B 
(26) 

2 P B = - ( x - l ) Ç n 

2(x - l)Pn = 4xQn 

2 ( x - l ) P n = -(x-i)2Qn 

and hence 4x = - (x - l)2 , i.e., x = - 1; but Pn*+1(- 1) ^ 0. 
Since Pn*+1 is monic, the recurrence formula 

(27) P n + 1 = (x - 1) Pn - 2xÇn; Ç>n+i = 2Pn + (x - l)Qn, 

are established; Pi = x, Qy = 1; degree Pn = n. 
To find the root of (22) that is greater than £n_1? it suffices to find 

the root of the polynomial equation of degree n + 1: 

(28) ( x - l ) P n - 2 x Ç n = 0 

that is greater than tn-\. But (28) is just 

(29) P n + 1 = 0 (nth equation). 

P n + 2 can be expressed in terms of P„ and Qn; it is more illuminating 
to get a recurrence relation involving only the Pn. 

P n + 2 = ( x - l )P n + 1 - 2xÇn + 1 

= (x - l )P n + 1 - 2x(2Pn + (x - l)Çn) 

(30) = (X _ ! )p n + 1 - 4xPn + (x - l ) (P n + 1 - (x - l)Pn) 

= 2 ( x - l ) P n + 1 - ( x + l ) 2 P n , n ^ l . 

A simple calculation yields P2 = x2 — 3x and P3 = x3 — 10x2 + 5x. 
Obsei*ve that by (30) it follows that x is a factor of all Pn. Define 
Rn = Pn+i/x. Then the nth equation is given by Rn = 0, degree 
Rn = n and the root of i ^ = 0 that is greater than £n_i is the same 
as the root of Pn+i = 0 that is greater than tn_i (t\ = 3 > 0). Thus 
R\ = x — 3, R2 = x2 — lOx + 5 and Z^ satisfy the same recurrence 
relation (30). 

Since x = cot2 (i/f/2) = (1 + cos ifr)/(l — cos ifß), it is expedient 
to introduce a new variable y by the equation 

(31) x - ^ ; y = ^ -
1 - y x + 1 

Let D„(y) = (1 - y)n R„((l + y)/(l - y)); substitution in (30) yields 

Dn+1(y) = 4yD„(y) - 4Dn_1(y); n § 2 , 

Dx(y) = 4y - 2, D2(r/) = 16y* - 8t/ - 4. 

Thus Dn(t/) = 0 is a polynomial equation of degree n and there is 
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precisely one root in the interval (£n_i — l)l(tn-i + 1) < y < 1. 
Now finally define Vn = Dn/2"; then Vl = 2y- 1, V2 = 4y2 - 2y - 1 
and the recurrence relation for Vn is by (32) 

(33) 5n±i = i j L ^ _ i ^ i , n > 2 

£n+i 2 1. 2n 4 2"-1 "" ' 

or 

(34) Vn+1 = 2yVn - Vn_l7 n ^ 2 . 

But (34) is the recurrence relation for the Tchebyshev polynomials; 
in fact, if Un(y) is the Tchebyshev polynomial of type II then 
Un - £/„_! satisfies (34) and VY = Ul - U0, V2 = U2 - Ul so that 

/^x xr / x r, / ^ TT / x sin(n + 1) 6 — sin n# 
(35) Vn(y) = Un(y) - Un^(y) = — * f— , B = cos"»y. 

s i n (7 

Some elementary trigonometry yields 

(36) V n ( y ) = 2 c o s ( ( 2 n ^ l ) / 2 ) . s i n ( . / 2 ) ) % = ^ 

and hence the roots of Vn(y) = 0 are 

/Q7N TT 37T ( 2 n - 1)77 
(37) cos————, cos -——— , * • * , cos ————. v 7 2n + 1 2n + 1 (2n + 1) 

The largest root is cos (7r/(2n + 1 ) ) and one can now directly verify 
that the only root of Vn(y) = 0 that is greater than cos(7r/(2n — 1)) 
is cos(7r/(2n + 1)). Hence tn = cot2(nl2(2n + 1)). 

To determine ord0(°°) one may, in view of Lemma 2, follow the 
above procedure; let G\ = (x — l)/2 and let Gn be defined recursively 
by (19). Again G n ( - 1) = - 1 for all n; (20) is replaced by 

,- G-f-h 
Let s0

 = 1; again it is possible to construct a strictly increasing se­
quence of real numbers (sn) such that the only solution of Gn(x) 
= 2x1 (x — 1) that is greater than sn-i is sn. Then for sn_i < x ̂  sn, 
ord0(°° ) = 2n + 1. Clearly by Lemma 5, tn< sn< tn+i, n ̂  1. One 
obtains, exactly as above except that Rn= Pn+i replaces Rn = Pn+Jx, 
a sequence of polynomials Cn(y) satisfying the recurrence relation of 
the Tchebyshev polynomials with Ci = 2y2 — 1, C2 = 8t/3 — 6y for 
which the solution of the equation Cn(y) = 0 in the interval 
(sn_i — l)/(«n_i + 1) < y < 1 is desired. But one observes that now 
if one denotes by Tn(y) the Tchebyshev polynomials of type I: 
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(38) Cn(y) = Tn+l(y) = cos(n + 1) 0, 0 = cos~\y). 

Hence the n zeros of Cn(y) = 0 are 

<7T 3<7T (2n + lW 
(39) cos^riy' cos2(^i)'---' c o s k r i -
The largest root is cos(fl7(2n + 2)) and this is the only root greater 
than cos(7r/2n). Hence sn = cot2(7r/2(2n + 2)). 

Thus it has been established that for 

(40) co t 2 - ^— < * ^ c o t 2 n ,x , v ; 2(2n) 2(2n + 1) 

ord0(— x) = 2n, ord0(°° ) = 2n + 1, and thus the order of generation 
of Gx is 2n 4- 2, and for 

(41) cot2 — - ^ — - < x g cot 
2(2n + 1) ~ 2(2n + 2) 

ord0(— x) = 2n + 2, ordo(°° ) = 2n + 1, and thus order of generation 
of Gx is 2n + 3. This establishes (8) in case k is even and odd respec­
tively. 

REMARK. This proof admits a simple interpretation on the sphere. 
The "optimal" method of taking either of the two fixed points in the 
northern hemisphere into the South pole involves successive rotations 
by 7T until the last two elements in the product (Lemmas 1 and 2). The 
"critical" values of ^ , the angle between the axes of rotation, are those 
for which a product consisting entirely of rotations by TT is needed to 
take one of those fixed points into the South pole. For example, if 
ifß = 7T/3, two rotations by IT are needed to take the point (— (sin i^)/2, 
0, (1 + cos i/f)/2) into the South pole; if \jß < 7T/3 the order of this 
point becomes at least 4; in fact, the order of this point is 4 for 
7r/5 ë i/f < 7T/3. If \fß = 7T/4, three rotations by IT take the North pole 
into the South pole; if ^ < 7r/4, the order of the North pole becomes 
at least 5 and is in fact equal to 5 for 77/6 ̂  i/f < 7r/4. 

REMARK. If the order of generation of SO(3) by T0 and S^is n, then 
eveiy rotation can be written as a product of length exactly n by inser­
tion of T0 = S0 = Identity an appropriate number of times. 

COROLLARY. Let the order of generation ofSO(3) by Td and S^ he n. 
Then every rotation can be expressed as a product of length n whose 
last element is a 7^. Further every rotation can also be expressed as a 
product of length n whose last element is an S0. 

PROOF. If the rotation can be expressed as a product of length less 
than n the result is trivial. If the rotation cannot be expressed as a 
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product of length less than n, then the point taken into the South 
pole must have order n — 1 so every rotation taking that point into 
the South pole can be written as a product of length n whose last 
element is 7 .̂ Similarly, the point taken by the rotation into 
((sini/r)/2, 0, (1 — cos ijj)l2) has order n — 1 so that every such 
rotation can be expressed as a product of length n with last element Sd. 

Appendix. 

THEOREM. Let G be a compact, connected Lie group; suppose X 
and Y generate the Lie algebra g and that etX, esY are compact. Then 
G is uniformly finitely generated by etX, esY. 

PROOF. Let Gn be all products of etX, esY of length ^ n; Gn is clearly 
compact; Un = i Gn = G. By the Baire category theorem as G is a com­
plete metric space, some GN (and hence Gn, n = N) contains an open 
set U. U r e e TU = G; since the sets TU are open, this is an open 
cover of G and has a finite subcover. Hence 3r1? • • *, Tk such that 
[Ji=iTiU = G. But each Tiy i = 1, • • -, k, is a finite product of etX, esY 

and as U C GN, the theorem is proved. 
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