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THE NILPOTENCE CLASS OF CORE-FREE 
QUASINORMAL SUBGROUPS 

ROBERT H. BRADWAY, FLETCHER GROSS AND W. R. SCOTT 

1. Introduction. If H is a subgroup of the group G, H is said to be 
quasinormal in G if HK = KH for each subgroup K of G. if is core-
free in G if H contains no nonidentity normal subgroup of G Ito and 
Szép [2] proved that a core-free quasinormal subgroup of a finite 
group must be nilpotent. The question raised by Deskins [1] of 
whether such a subgroup must be abelian was resolved first by 
Thompson [4] and later by Nakamura [3] who gave examples where 
the subgroup had class 2. In the present paper, it is shown that the 
nilpotence class is unbounded. More specifically, if n is a positive 
integer and p is a prime > n, there is a finite p-group containing a 
core-free quasinormal subgroup of class n. Using diese examples, we 
show that the theorem of Ito and Szép is false for infinite groups. It is 
true, however, that a core-free quasinormal subgroup of an infinite 
group is residually finite nilpotent. 

Our final result generalizes a theorem of Nakamura [3]. Suppose 
H is a core-free quasinormal subgroup of the finite p-group G. 
Nakamura proved that if H has exponent p, then H is abelian. Our 
generalization of this is that if H has exponent pn, then H has a normal 
series of length n in which the factor groups all are elementary abelian. 

2. Notation and assumed results. If H is a subgroup of G, HG, the 
core of H in G, is the largest normal subgroup of G contained in H. 
Equivalently, HQ = f i VGG x~lHx. <t>(G) is the Frattini subgroup of 
G and <J>n(G) is defined inductively by 0°(G) = G, <f)n+l(G) = $(<£n(G)). 
If G is a finite group, f{G), the Frattini length of G, is the smallest 
integer n such that <£n(G) = 1 . If G is a p-group, fKi(G) is the subgroup 
of G generated by all elements of order at most pn and Ü n(G) is the 
subgroup generated by all pnth powers of elements of G. Commutators 
are defined inductively by [x, y] = x~ly~lxy and [x1? • • -, xn] 
= [ [*1> •> ^ n - l j ? xn\ -

The following results are well known and easily proved. Hence we 
merely state them here. 
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2.1. If N ^ H ^ G and N is normal in G, then H is quasinormal 
in G if, and only if, HIN is quasinormal in GIN. 

2.2. If G = {x, y | %P2 = t/p = 1, t/"1**/ = x p + 1 } , where p is an odd 
prime, then ili(G) = (xp, t/>, U l(G) = (xp>, and (t/) is quasinormal 
in G. 

2.3. The class of finite nilpotent groups G satisfying f(G)^ n for 
some fixed integer n is closed under the operations of taking homo-
morphic images, subgroups, and finite direct products. 

3. Construction of the examples. 

3.1. THEOREM. Let nbe a positive integer and let p be a prime > n. 
Then there is a finite p-group G which contains a core-free quasi-
normal subgroup H such that H has class n. 

PROOF. If n = 1 and p ^ 2, this follows from 2.2. If n = 1 and 
p = 2, let G = (x, y | x8 = y2 = 1, y~lxy = x5) and H = (y). We 
now assume that n ^ 2 and so p is odd. Set ra = (n — l)p + 1 and 
let V be a vector space of dimension m over GF(p) with basis 
t>i> 2̂> ' ' ', ^m- We adopt the convention that V{ = 0 if i ^ 0. V* will 
denote the subspace of V spanned by the Vi for i ^ k. Next let X be 
the linear transformation of V defined by Ü»X = Vi + V{-\ for all 
i = m. (X — l) m is both the minimal and characteristic polynomial of 
X. It follows from this that (X - 1)P? = 0 ^ (X - 1)" and so X is 
an element of order p2 in the group L = GL(V). 

Now CV(X)= Cv(Xr>+l)= Vi. It follows from this that X and 
Xp + 1 have the same Jordan normal form. Hence X and Xp+l are con­
jugate in L. If Y-!XY= Xp+1 , then Y> G CL(X). This implies that 
X and Xp + 1 are conjugate under a p-element of L. Next, since 
Vfc/Vjt-i = CVjvk_l(^) for 1 ^ fc^= ra, an inductive argument yields 
that Vfc, 1 ^ fc ^ ra, is invariant under NL((X)). It follows from this 
that NL( (X)) consists entirely of lower triangular matrices. 

Let S be the subgroup of L consisting of those lower triangular 
matrices whose eigenvalues all equal one and let P be the subgroup 
of S consisting of those elements of S which leave invariant the sub-
space spanned by v2, t>3, • • -, vm. Then S is a Sylow p-subgroup of 
L and S contains all lower triangular matrices that are p-elements. 
The previous discussion implies that X and Xp + 1 are conjugate in S. 

An easy calculation yields that the m X m matrix (a#) commutes 
with X if, and only if, a^ = 0 for l ^ i < j ê m and a# = ai+ij+i 
for 1 ^ i, j ' ^ m — 1. It follows readily from this that |CS(XJ| = p m _ 1 

and C s ( X ) n P = l . Since [ S ; P ] = p m " 1 , this implies that 
S = PCs(X). Thus P contains a unique element U such that U~lXU 
= Xp+1. Since [ / " G P n CS(X), we have 17» = 1. Thus the minimal 
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polynomial for U is (U — l) r where r ê p . To obtain further infor­
mation on r we need a lemma. 

LEMMA. vkU = vk — kvk-p+i (mod Vk-P). 

PROOF. This is certainly true for k = 1. Assume now that k > 1 
and that £>*£/= t>* + J t - i (kVk-i (mod V ^ p ^ ) . Using induction on 
k, we obtain 

P - i 
vkXU= vk + (ai + l K - i + 5] ö^fc-i 

t = 2 

+ (ap - & + l)üfc-p (mod Vfc_p_!). 

On the other hand, 

P - I 

üfe[/xp+i = vk + (fll + l K - i + 2 fa + « i - i K - i 
t = 2 

+ (1 + cip + ap_!)t;fc_p (mod Vfc_p_i). 

But XJ7 = C/X»+L Thus we obtain ax = a2 = ' \ ' = afc_2 = 0 if k ^ p, 
while ax = a2 = • • • = ap_2 = 0 and ap_i = — k if fc > p. In either 
case, this implies vkU = vk — kvk_p+1 (mod Vfc_p) and the lemma 
is proved. 

A consequence of the lemma is 

vk(U - iy s (-l)'fc(fc + 1) • • • (fc + r - lK_ r ( p_ 1 } 

(mod V f c_r (p-i)_i). 

It immediately follows that the minimal polynomial of U is (U — l )n . 
Next let A be the group of order p 5 with generators x and u and 

relations xp3 = wp2 = 1, u~lxu= xp+l. Then the mapping %-»X, 
u-* U determines a homomorphism of A onto (X, U). Let B be the 
semidirect product AV where A operates on V as indicated. We now 
use multiplicative notation for V. Let C = (u,v2, • • •, t>m). It is easily 
verified that (xp2Vi~l, t^ t^) is a normal subgroup of order p 2 in B. 
Finally, let G be the factor group B modulo this subgroup and let H 
be the image of C in G. We assert that G and H satisfy the conclusion 
of 3.1. 

Let W, Xi and i^ be the images of V, x, and u, respectively, in G. 
If H is not core-free in G, then H contains an element z of order p 
in ZfGj. But Cwnn(xi) = 1. Thus z^WHH. Since [H : H D W] 
= p, this would imply that H = (H H W) X (z) and so H would be 
abelian. Since U\ does not centralize H f i W , this is impossible. 
Therefore H is core-free in G. The fact that H has class n follows from 
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the fact that the minimal polynomial of U is (U — l)n . It only remains 
to show that H is quasinormal in G. This is a consequence of the next 
theorem. 

3.2. THEOREM. Assume the following: 
(a) G = (x)H is a finite p-group, p > 2. 
(b) Wis a normal elementary abelian subgroup ofG. 
( c) H is a subgroup ofG,u è H. 
(d) w=(wn <x» x (wnH), H = (wnH)<tt>. 
(e) x"2 E W, u» E W,!*"1*!* = xp+l. 
( f) If t/ is an element of order p2 in {%) and v ŒW, then 

(p — 1) Êiraes 
b , y , y , •• -,y] = l. 

Then H is quasinormal in G. 

PROOF. All of the above conditions are satisfied by the group G 
and its subgroup H which were constructed above. (The assumption 
in Theorem 3.1 that p > n is necessary to ensure that condition (f) 
is satisfied.) Thus Theorem 3.1 will be proved once the above theorem 
is proved. 

We now assume that G is a minimal counterexample to Theorem 
3.2. HWIW is quasinormal in GIW from 2.2. If <x> Pi W = 1, then 
W ^ H, and then 2.1 would imply that H is quasinormal in G. Hence 
<x>n W / 1. Also xp/ 1 since otherwise [ G : H] = p which 
would imply that H is normal in G. 

Next suppose H contains a nontrivial normal subgroup N of G. 
Then, replacing G, H, W, x, and u, respectively, by GIN, HIN, WNIN, 
xN, and uN, we find that the hypothesis of the theorem is satisfied. 
Hence, by induction, HIN is quasinormal in GIN. But this implies 
that H is quasinormal in G. Thus HG = 1. Since G = H(x), this 
implies Cliix-iHx*) = 1. Since CH(x) ̂  x^Hx* for all i, we have 
CH(x) = 1. It now follows that GG(x) = <x>. 

Now let K be a subgroup of G. We will finish the proof of the 
theorem by showing that HK is always a subgroup of G. We consider 
four distinct cases. 

Case I. K^ <x">H. 
It is easy to see that (xp )H is a proper subgroup of G. Then, replac­

ing x by xp, (xp )H satisfies the hypothesis of the theorem. Hence, by 
induction, H is quasinormal in (xp)H. Therefore HK is a subgroup of 
(xp)H. 

Case 2. K f i W ^ H H W. 
In this case we must have W = (K Pi W)(ff Pi W). But then 
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HK = H(H n W)(K n W)K = HWK. Since HWIW is quasinormal 
in GIW, HWK must be a subgroup of G. 

Owe3. K^ (xp)H, K D W g HHW, xp2f 1. 
From 2.2, fl^G/W) = H<x»>/W and U^G/W) = (xp)WIW. It 

now follows that K must contain an element y such that t/p = xp 

(mod W). Hence yp = aft? for some v G W. Then ( X ^ ) P G K f l W 
â H D W . But an easy calculation shows that 

(p — 1) times 
(x"ü)p = xp2[v,xp,xp, . • % X P ] = XP2 

since xp is an element of order p 2 in (x). Since xp2 does not belong to 
H H W, we have a contradiction. Thus this case cannot occur. 

Case4. K ^ <x»)H, K (1 W^ HHW, xp2 = 1. 
In this case x has order p2 and so, since (x) H W / 1, xp G W. 

Then <x»)H = WH. Since w-»xw» = x ^ + 1 ) p = x, i^ G CH(x). Thus 
u» = 1. 

Now since |Cw(*)| = p, the Jordan normal form of x*, the trans­
formation of W+ ( W written additively) induced by x, must be 

r i "i 

1 1 

O i l 

Lo o o • • • o i i J 
Since we must have (x* — l)p~l = 0, this implies that W+ has dimen­
sion at most p — 1. In particular, then, any transformation of W+ 
has minimal polynomial of degree at most p — 1. Reverting to multi­
plicative notation, this implies that 

(p — 1) times 
[v,y,y, • • • , ( , ] = 1 

for all y G G, v G W. An immediate consequence of this is that 
(yv)p = J/" for all y G G, v G W. 

Since K ^ HW, K must contain an element of the form y = ulxjv 
where v EiW and p does not divide j . Then yp = (M'XJ')P = i^x7'^ = x^ 
where e = [(p + l)*p — l] / [ (p + 1)' — 1]. Since p does not divide 
j , p 2 does not divide je. This implies that xp G K Pi W which is a 
contradiction. This finishes the proof of Theorems 3.1 and 3.2. 

Before showing that the theorem of Ito and Szép is false for infinite 
groups, we require a preliminary result about the direct product of 
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quasinormal subgroups. In general if Hi is a quasinormal subgroup of 
Gi for i = 1, 2, Hi X H2 is not necessarily a quasinormal subgroup of 
Gi X G2. For example, let Gi and G2 both be nonabelian of order 
p3 and exponent p 2 where p is an odd prime. Let Hi, i = 1, 2, be a 
nonnormal subgroup of order p in Gj. Then f/j is quasinormal in 
Giy but Hx X H2 is not quasinormal in Gi X G2. 

3.3. THEOREM. Let {Gi \i ELI} be a collection of periodic groups 
such that if i^j, x £ Giy and y G GJ? then x and y have relatively 
prime orders. Assume that Hi is a quasinormal subgroup of Gi for 
each i G I. Then ^ÌGIHÌ is quasinormal in ^ e iGi. 

PROOF. Here ^Ì&GÌ is the restricted direct product of the groups 
Gi. Let G = ^tEfGj, H = ^ G / H t . H is quasinormal in G if, and 
only if, for each pair x G H, y G. G, there is an integer n such that 
y~nxy G H. Accordingly, assume x £ H , y G G. Then t/ = j / ^ t/j 
• • • t/im for some m where yik G Gifc. Let e* be the order of j / t j t and 
let Xi k be the ifc-component of x. Then, since H^ is quasinormal in 
Gik, there is an integer n^ such that y^x^ y^ G Hifc. By the Chinese 
Remainder Theorem, there is an integer n such that n= nu (mod e^) 
for 1 ^ fc ^ m. It now follows that y~nxy G H. 

3.4. THEOREM. There is a countable, solvable, locally finite, locally 
nilpotent group G containing a nonnilpotent, metabelian, core-free 
quasinormal subgroup H. 

PROOF. Let p1? p2 , • • • be all the odd primes. By Theorem 3.1, 
there is a finite prgroup G» containing a core-free quasinormal sub­
group Hi of class pi — 1. Let G = ^ Gj and H = ^ Hi. An examina­
tion of the groups constructed in the proof of 3.1 reveals that Gi and 
Hi can be chosen so that Gj has derived length 3 and Hi is metabelian. 
It now is verified easily that G and H satisfy the conditions in the 
theorem. 

4. Residual nilpotence of core-free quasinormal subgroups. 

4.1. THEOREM. If H is quasinormal in G = HC, H D C = 1, and C 
is infinite cyclic, then H is normal in G. 

PROOF. Using 2.1, it may be assumed that H is core-free. We also 
may assume H j£ 1. Let C = (x). Since H fi C = 1, if Ti G H and 
n > 1, then hx^H(xn) = (xn)H. Hence /ix G xH or xlH. Similar­
ly, hx~l G xH or x_ 1H, xh G Hx or J/x - 1 , and x~lh G Hx or Hx - 1 . 
If hx = xhL and hx~l = xh2 with ^ G H, then 

X2 = (hx-l)-l(hx) = (xh2)-\xhi) ŒH, 
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a contradiction. Therefore, if hx G x H , then hx~l Gx~lH. By this 
and an analogous argument, we have 

either hx G xH and hx~l Gx~lH 
(1) 

or hxGx~lH and hx~lGxH. 
Let K = {h G H | hx G xH} = H D xHx~K If follows from (1) that 
K also equals H D x~lHx. Thus x~lKx ^ x~lHx D H= K. This 
implies that K ^ C\g<=Gg~lHg = HG = 1. Hence hxGx~lH for 
all nonidentity elements of H. Then, if ft, h' G H — {1}, ft'fot 
E ft 'x~lH = xif, which implies ft 'ft = 1. 

Thus |H| = 2. Therefore C is normal in G, and either G= H X C 
or G is the infinite dihedral group. In the latter case H is not quasi-
normal since it does not permute with other subgroups of order 2. 
Hence the first case holds and H is normal in G. 

4.2. THEOREM. A core-free quasinormal subgroup H of a group G 
is residually finite nilpotent. If in addition, H satisfies the minimum 
condition on normal subgroups, then H is nilpotent. 

PROOF. If H is residually nilpotent, its lower central series reaches 
1 in co steps. Thus the first statement implies the second. 

Since H is core-free, DX^G HX = 1. It will therefore suffice to prove 
the following statement: 

(C)s If x G G, then there is a normal subgroup Nx of 
( ' H such that Nx C Hx and HINX is finite nilpqtent. 

If xn ÇÈ H for all n > 0, then the preceding theorem shows that (2) 
holds with Nx = H. Suppose that some xn G H with n > 0. Then 
[K:H] is finite, where K = H(x). Therefore KJHK is finite with 
quasinormal core-free subgroup HIHK. By [1], HIHK is nilpotent. 
Since HK is normal in K, HK Ç Hx, and (2) again holds. 

5. Quasinormal subgroups of finite p -groups. 

5.1. THEOREM. Suppose G is a finite p-group, \G\ > 1, such that 
G = HK where H, K are subgroups, K is cyclic, and HG = 1. Let 
pm = |K| and let pn be the exponent ofH. Then 

(a) f(H) â m — 1, f(G) = m, and n < m. 
(b) If H is quasinormal in G, thenfiH) = n. 

PROOF. If m ^ 1, then H is normal in G which implies H = HG = 1. 
We now assume m > 1 and proceed by induction on |G|. Since 
1 = HG = C\XEGX~1HX = C\XGKx~lHx, we must have CH(K) = 1. 
Hence CG(K) = K and H D K = 1. This implies that Z(G) g K. A 
consequence of this is that Oi(K) = Z(G). 
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Now let Lia^K) be the core of HQ^KJ/Q^K) in GICl^K). Then, 
by induction, fiGIL) = m - 1 and fiHÜ^KjlL) ^ m - 2. Since 
fMK) ^ L ^ Hfti(K), we must have L = fli(K)(H Pi L) = O^K) 
X (HDL). But this implies that x_ 1(H H L)x is a normal sub­
group of index p in L for all x G G . Since f i veG* -1(tf H L)x = 1, 
L is a subdirect product of groups of order p. Hence L is elementary 
abelian. From this follows f[G) ^§ m and f(H) ^ m — 1. Since G 
contains an element of order pm , f[G)^ m. Similarly, j{H)i^ n. 
(a) now follows. 

Now assume H is quasinormal in G and let Kx be the subgroup of 
K of order pn. Kij^K since n < m. If x is an element of order 
â pn in G, then, since (x )H is a group and [ (x )H : H] ^ pn , we have 
(x)H = (<x)H PI K ) H ^ KiH. Therefore, fl^G) = l^H, and so KXH 
is normal in G Let M be the core of H in KiH. Then, by part (a), 
f(KiHIM) = n. Sincef\<=GX_1Mx = 1, KiH is the subdirect product 
of p-groups of Frattini length n. It follows from this and 2.3 that 
n g f[H) â /(KiH) ^ n. Hence (b) is proved. 

COROLLARY. Suppose H is a core-free quasinormal subgroup of the 
finite p-group G. Let pn be the exponent ofH. Then 

(a) f[H) = n. 
(b) The exponent of G is ^ p n + 1 

PROOF. By applying the theorem to (x)H where x runs through the 
elements of G, we obtain that H is the subdirect product of groups 
of Frattini length ^ Min {n, m — 1} where pm is the exponent of G. 
Since f{H) ^ n, the corollary follows. 
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