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SCATTERING THEORY1 

PETER D. LAX AND RALPH S. PHILLIPS 

Introduction. In this series of lectures we shall develop a theory of 
scattering for first order systems: 

du (1) ut = Gu = S A'd/u + Bu, dju = ~ , u(x, 0) = /(%) 

over Rk. Here u is an n-component vector-valued function, Ai(x) and 
B(x) are n X n matrix-valued functions depending smoothly on x but 
independent oft. We impose the following conditions: 

(1) The Lz-energy is conserved. This means that the energy at time 
t, namely 

E[u(t)] s jRk\u(t)\*dx 

is constant in time. Hence with respect to the energy norm G must be 
skew-symmetric and this in turn requires that the M be Hermitian 
symmetric and that 

(2) B(x) + B*(x) = S djAJ(x). 

In fact 

dt 
:[u] = J(d,ti-ti + u-dtu)dx 

= J ( Ê AJdju-u + u-AJdju + ß r « + wßw )dx 

= J S^(A^-w)rfx + | ( ß + ß* - 2 djA>)u'udx. 

Integrating over all space the first term in the right vanishes; in order 
that dE[u]ldt vanish for all smooth data u we see that the relation 
(2) must hold. Thus if we work in the Hilbert space H of square 
integrable functions [L2(R

k)]n, then we can expect that the solution 
operator 
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U(t):f^u(t) 
will be unitary. 

(2) The propagation speeds are nonzero. This means that the eigen­
values of 

k 

G ( Û > , X ) = 2 AJ(x)<ûj 
j=i 

are ^ 0 for all real nonzero /c-vectors co. Otherwise said, G is an elliptic 
operator. 

Note that when k > 1, the nonzero vectors of Rk lie in a connected 
set so that the number of positive [negative] eigenvalues is inde­
pendent of co. Since the eigenvalues for G(— co) are just the negative 
of those for G(<o), it follows that the number of positive eigenvalues is 
the same as the number of negative eigenvalues; in particular n is 
even. We shall assume even for k = 1 that the number of positive and 
the number of negative eigenvalues are the same. 

(3) The coefficients are independent of x sufficiently far out. In 
other words, we assume that 

A>*(x) = M and B(x) = 0 for |x| > p. 

We shall take as the unperturbed system 

k 

(3) vt = G0v= 2 Afrfi, v(x, 0) = / . 
j = i 

(4) The number of space variables is odd. This assures us of Huy-
gens' principle, at least for the unperturbed system. 

(5) The unique continuation property for G If Gf= 0 in an open 
set A a n d / = 0 in an open subset, t h e n / = 0 in A. 

Throughout, H will denote the L2 space of square integrable vector-
valued functions, 
will denote the L2 space integrable vector-valued functions. 

Abstract theory. Hyperbolic problems of this sort lend themselves 
especially well to an abstract treatment in which certain representa­
tions play a central role. We will now sketch this abstract theory; a 
complete development can be found in [3]. However, in the main 
body of these lectures we will take a more direct approach and derive 
these representations from the Radon transform. 

We choose two particular subspaces D+ and D_, the so-called out­
going and incoming subspaces defined as sets of data 

D+ = [/; [U(t)f](x) = 0 for |x |<p+c*, t^ 0] , 
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D_ = [/; [U(t)f](x) = 0 for \x\<p- ct,t^0); 

here c corresponds to the smallest velocity for the system (3). It is 
clear just from the definition that 

U(t)D+CZD+ for f ^ O , 
(i) 

U(t)D.CD. for t^O; 
(n) nu(t)D± = {0}. 

Let H0 denote the null space for G, i.e., the subspace of data /annihi­
lated by G, and set H' = H 0 H0. It can then be proved that 

(iii) U U(t)D± is dense in H'. 

The basic representation theorem is then: 

THEOREM, it can he unitarily mapped into L2(— °°, °° ; N)> where 
N is an auxiliary Hilbert space, so that D+[D-] is mapped onto 
L2(0, oo ; N) [ L2(— 0°, 0; N)] and the action of U(t) is right translation 
by t units. 

These representations are called the outgoing and incoming transla­
tion representations, respectively. A g i v e n / G H' can be represented 
by both its incoming représenter fc_ and its outgoing représenter k+. 
The mapping 

S: k--*k+ 

turns out to be the scattering operator. It is clear that S is (a) unitary, 
and (b) commutes with translations. It can be shown that D + and D_ 
are orthogonal and it follows from this that S is causal: 

(c) SLa(- o o , 0 ; N ) C L 2 ( - o o , 0 ; N ) . 

Taking the Fourier transforms 

f±(a) = \ehs k±(s)ds 

we obtain the incoming and outgoing spectral representations. The 
mappings f-*f± are again unitary; D+ [D_] is mapped onto the 
Hardy class A+ [A_] of square integrable functions analytic for 
Im 5 > 0 [Im s < 0] ; the action of U(t) corresponds in this case to mul­
tiplication by eht. The scattering operator is transformed into a unitary 
operator S which commutes with scalar multipliers and is causal: 
^A_ C A_. It follows from this that S is itself a multiplicative 
operator: 
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such that for each a, J>(<r) is unitary in N. Moreover, this operator-
valued function is the boundary value of an operator-valued function 
<£(z) which is holomorphic and of norm ^ 1 in the lower half-plane. 

It should be noticed that the scattering operator as defined above 
depends only on the group U(t) and its action on D+ and D_. There 
is another object which can also be defined in terms of these three 
quantities, 

Z(t) = P+C7(t)P-, * = 0 , 

where P ± is the orthogonal projection on D ì , the orthogonal comple­
ment of D ± . This operator annihilates D+ © D_ and acts like a semi­
group of contractions on K = H ö (D+© D_). The semigroup 
property is easily understood from the outgoing translation represen­
tation of H'. In this representation D+ = L2(0, oo ; N) and D_ is a 
subspace of L2(—°°, 0; N). Since D_ is invariant under U(t), t < 0, 
its complement D i is invariant under U(t), t > 0, so that a function 
representing an element of K when right translated remains in De, and 
if it is truncated to the right of 0, i.e., multiplied by the characteristic 
function of (— °o, 0), it stays in D+. Hence the action of Z(t) is right 
translation followed by truncation, obviously a semigroup action. 

We have shown in [3], see also Theorem 6.4 below, that there is 
a close relation between Z(i) and S. Denote by B the infinitesimal 
generator of Z; the spectrum of B lies in Re X < 0 and consists pre­
cisely of those points X for which <£(ik) is not invertible. 

This result enables one to deduce many properties of <£ by studying 
the semigroup Z; we summarize here some of the results which will be 
derived in the course of these lectures by this method: 

(1) (See Theorem 6.3): Z(2p)(z— B)~l is a compact operator. This 
implies that <S(z) is meromorphic in the entire z-plane. 

(2) (See Theorem 7.3): If all rays associated with equation (1) tend 
to » , then for t large enough the operators Z(t) are compact. It fol­
lows from this that the real parts of the eigenvalues X& of B tend to 
— oo, i.e., that they can be arranged so that 

O ^ R e X i ^ ReA2 = " - = R e X „ - » - o o . 

It further follows that for every fin K, Z(t)f has an asymptotic expan­
sion of the form 

Z(t)f~ Ì<*eVti*(x), 
k=0 

valid uniformly on compact subsets of x-space. Here Wk is the eigen-
function of B corresponding to the eigenvalue of X&, and Ck is a constant; 
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if to* is a generalized eigenfunction, Ck is a power oft. 
(3) (See Theorem 7.1): Suppose that all rays associated with equa­

tion (1) tend to oo ; then for t large enough the range of Z(t) is con­
tained in the domain of B. This implies that the eigenvalues \k of B are 
contained in the region 

Re À* S - a - fo|log Im Xfc|, b > 0. 

The values of the scattering matrix J>(a) for cr real are related to 
the asymptotic behavior of solutions of (1) for large t and large x; the 
results quoted above show a relation between the values of <S(z) for 
complex z and the asymptotic behavior of solutions of (1) for large t 
SLXidfixed x. 

Not all results presented in these lectures concerning the location 
of the poles of J>(z) are derived with the aid of the semigroup Z. The 
results contained in §§9-12 concerning the distribution of the imagin­
ary zeros of the scattering matrix of the wave equation in the exterior 
of an obstacle are derived directly from a representation of the scat­
tering matrix in terms of the so-called transmission coefficient of the 
obstacle. 

PART I. SYMMETRIC HYPERBOLIC SYSTEMS 

1. Energy inequalities. We begin by deriving certain energy in­
equalities which are basic to the study of symmetric hyperbolic sys­
tems. We arrange the eigenvalues of — G(o), X) in decreasing order: 

T^CO, X) â * • • ê Tn / 2 (û), X) > 0 

> T n / 2 + l ( û > , x ) ^ " ' * S Tn(û>, X), 

(1.2) cmax = supr1(û>,x) and cmin =infrn/2 (co, x) . 

THEOREM 1.1. The energy of a solution u of the system (1) at time 
t=T inside the ball {\x\ < R— cmaxT} does not exceed the energy of 
u at time t = 0 contained inside the ball {\x\ < R}. 

PROOF. It will turn out that any solution can be approximated in the 
energy norm by smooth solutions, so it suffices to prove the assertion 
for smooth u. Taking the scalar product of 

ut - ^A? dju - Bu = 0 

by u and integrating over the truncated cone 

C = {\x\<R-cmaxt;0^t<T} 

(1.1) 

and set 
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we get 

0 = J J c [ ** ( " •« ) - ^Zdj(Atu-u)- (B+ B*-2djAiiu'u\dxdt. 

Because of the relation (2), the integrand is of divergence form. 
Applying Green's theorem we can transform this integral into an 
integral over the surface of C which consists of three parts: top, bottom 
and mantle. We get 

f \u(x,T)\2dx- f \u(x,0)\2dx 

= + [ (G(>n,x)u-Tu)'udS, 
J mantle 

where r = acmax, rj = axl\x\ and 1 = a2^^ + 1). Since r is at 
least as large as any eigenvalue of G(y), x), the integrand in the right 
side is nonpositive; therefore so is the integral. This proves the asser­
tion of the theorem. 

In particular if u is identically zero in the ball {\x\ < R} at t = 0 it 
will also vanish identically in the smaller ball {|x| < R — cmax T} at 
time t = T. It follows that any signal solution of (1) does not propa­
gate at a speed greater than cmax. Thus a solution with initial data 
having support in the ball {\x\ < R} will vanish outside the cones 
{ | * | < R + c m a x | * | } . 

The above analysis applies as well to the unperturbed system (3). 
In this case, however, more is true, in fact signals do not propagate 
with a speed less than cmin. This is a kind of Huygens' principle which 
we now state; its proof will be given in the next section. 

THEOREM 1.2. If fix) = 0 outside the ball {\x\ < R} then the solution 
v of the unperturbed problem (3) is zero inside the cones {\x\ < cmin\t\ 
-R}. 

2. The Radon transform for the unperturbed system. As we shall 
see, the Radon transform for the unperturbed system is closely related 
to the translation representation. We shall suppose at first that the 
initial data/belongs to C0°° and in the process of constructing its trans­
lation représenter, we will prove that a solution v to (3) exists and that 
the mapping 

V(t) :f^v(t) 

is an isometry. A limiting procedure then extends these results to 
general fin H. 

DEFINITION. For fin CQ, S in R and a unit vector <o in Sfe_! we set 

(2.1) m(s,(o)= f fix)dS. 
J X .(o = S 
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The Radon transform off is then 

(2.2) cRf= £(*, co) = (-1)(*-D/2 d*-i m(s, co) . 

We remark that m(s, co) is an even function of (s, co); i.e., m( — s, — co) 
= m(s, co), that i(s, co) also is even, and that 

(2.3) J^Ä(«, (o)ds=0 forj= 0,1,2,---, fc-2. 

LEMMA 2.1. f f /Ei Ca, then the inverse Radon transform is given by 

(2.4) f(x)=j-\M = il(x-<o,w)da>. 

If f and £ are so related, then f is determined by the even part of 
£(s, co) which in turn is uniquely determined byf 

PROOF. Making use of (2.1) we can write the Fourier transform of 

(2.5) f(a, co) = J e™'<»f(x)dx = J jp* m(s, a>)ds 

and note that^cr, co) is even in (a, co). As a consequence we can write 
the inverse Fourier transform as 

(2.6) 
f{x)= Jui-i [Jo e"* r t• i , /^®)^- 1*• ]d<» 

= y j [ | " w e-™'«f(<r, <oyidj]d<o. 

For fixed co, /(er, co) is by (2.5) the Fourier transform of m(s, co). Ac­
cording to (2.6) the inner integral in the right is the inverse Fourier 
transform of<7fe_1/(c7, co) which is simply 

i(s, co) = ik~l d*-lm(s, co) 

evaluated at s = x • co. Inserting this in (2.6) gives (2.4). 
If / and £ are related as in (2.4) it is easily seen by transforming 

co to — <w that the odd part of £ does not contribute to the integral. 
Finally it follows from the uniqueness of the Fourier transform and the 
above argument that/uniquely determines the even part of £. 

LEMMA 2.2. Set 

L(s,a>) = dlk-mm(s,0>). 

Then the mapping 
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f^±L(s, a,) 

is a unitary map of L2(R
k) onto the even (odd) functions of 

M R , MSfc-i)). 

PROOF. Denote the s-Fourier transform of £ and L by £ and L respec­
tively. It follows from the proof of the above lemma that 

<Tk-lf(<T, Co) = £(c7, û>). 

On the other hand 

1(S, CO) = (-l)<*-l>/2 d(jf-lV2 L(S, CO) 

so that 

Ì(a, co) = (-i7)(fc-D/2 L(tr, co) and ( ^ - ^ / ( c r , co) = L(cr, co). 

Hence by the Plancherel theorem 

= H [ J " . K^) ( k - 1 ) / 2 ^> o>)|%for]do> 

The onto property follows from the fact that the even (odd) functions 
with support bounded away from zero and infinity are dense among 
the even (odd) functions, and that for such functions/(cr, a>) = (itr)<i-fc)/2 

L(<7, co) is the Fourier transform of data in L2(R
k). 

THEOREM 2.3. Denote by G0(co) the symbol ofG0: 

k 

i=i 

arrange the eigenvalues of — G0(co) in decreasing order: 

(2.7) Ti(co)^ ' ^ Tn/2(C0) > 0 > Tn/2 + 1 ( C O ) ^ • • • ^ T n ( c o ) . 

Let Tj(û}) denote the normalized eigenvectors of G0(co): 

If the Radon transform of the initial data f EL Cfî is I and 
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(2.8) ij(s,(o) = l(s,(o)'rj((o\ 

then the solution to (3) is given by 

n/2 ç 

(2.9) v(x, t) = 5) lÀxm(ù ~ Ti( <*>)*> (o)rj(o))dù) . 

PROOF. Supposing t> to exist we set 

m(s, <o;t) = v(x, t)dS= v(s<o + x', t)dx' 
J X'<a=s JRk~l 

where x! in Rk~l is _L co. Then 

dtm(s, a>; £) = d* u(sco H- %', t)dx'. 

Since Ü satisfies the differential equation we can replace dtv by a first 
order spatial operator. After a transformation of coordinates this can 
be written as a divergence operator in the hyperplane ac-co = s plus a 
normal operator: 

G0(co) dsü(sco+x', £). 

The divergence part integrates out to zero and by interchanging order 
of integration and differentiation in the normal part we obtain 

(2.10) dtm(s,(o; t) = Go(<o)dsm(s, co, t). 

This equation is readily solved componentwise. In fact, setting 

nij(s, co; t) = m(s, co; t) -r^co) 

we see that 

dtmj(s, co; t) = —Tj(ù))dsmj(s, co; t) 

so that 

mj(s, co; t) = mj(s—Tj(a))t, co) 

where ray is the fjth component of 

m(s, co) = f(x)dS. 

We therefore have 
n 

(2.11) m(s, co; f) = ^mj(s—Tj(<o)t, co)fj(a>). 
i = i 

In order to verify that m(s, co; t) as defined in (2.11) is even we note 
that 

-G0(-co)r ;(co) = G0(co)ri(co) = - T , < co )*•,•( co). 
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Thus the eigenvectors for G0(— a>) and Go(co) are the same with cor­
responding eigenvalues mulitplied by ( — 1). Recalling the ordering 
(2.7) we see that 

T , ( - co) = -T/ (CO) and rj(- co) = rr(a>). 

where j ' = n — j + 1. Hence 

(2.12) m,-( — s, — co) = ra( —s, — co)*fj( — co) = m(s, co)fj'(co) = m/(s, co) 

and 

(2.13) mj( — s—Tj(—ù))t, — co) = mj'(s—Tr(ù))t, co). 

One now sees by inspection that m(s, co; t) is indeed even in (s, co). In 
fact, more is true; the relation (2.13) shows that 

n/2 

m(s, co; t) = even part of 251 mj(s~Tj((t))t> co)fj(co). 
i = i 

We are now essentially finished. The Radon transform oft; is given by 
the even part of 

n/2 

2 51 %(s-T;(co), co)f)(co); 
j= l 

and hence (2.9) follows from Lemma 2.1. Finally we verify directly 
that (2.9) satisfies (3). In fact, writing £' for djl we have 

dtV= 51 —Tj(<ù)lj(x-0} — Tj((ù)t,<Jùi)rj(<jù)dù) 

= 51 ^j(x'û)—Tj(ù))t,ù))G0(ù))rj((o)dù) 

= 5 1 5 1 ^ J C O ^ ^ X - C O - T ^ C O ) * , cü)fj(co)dco = Got; 

m j 

and 
r n/2 

Ü(OC, 0) = even part of 51 %(x ' <*, co)r,-(co)cico 
i = i 

= — £(x • co, co)cico = f(x) . 

If we proceed as in the derivation of (2.10) we see that 

GofdS = G0((o)ds m(s, co) 
X'ùi =S 

and hence that 
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(2.14) ^(Gof) = Go(»)dJL(s, CU). 

It follows from Lemma 2.2 that we can by completion extend the 
Radon transform to any L2 functions / In this case (2.9) continues to 
hold in the distribution sense. 

We now have all of the ingredients for the translation representation 
of the unperturbed system. Let C+(co) denote the space spanned by 

ri(a>),-' ,rn/2(<*>), 

and let K be the set of all square integrable functions k(s, co) on 
(— oo 7 oo ) with values in C+(<o) for each co in Sk-\ with norm 

(2.15) Wk\\2= J!» / H*>*)\*duds. 

THEOREM 2.4. The mapping 

n/2 

(2.16) fin Lzm^kois, co) = £ (TJ(W))« L,(TJ(W)S, C O » ) in K 

defines the translation representation for the unperturbed system (3). 

PROOF. It follows from Theorem 2.3 that under this mapping 

n/2 

W - * S fo(«)y* **fo(«)(*- *), "M") = * Ö ( * - t, co). 

Moreover, 
n/2 r r 

\M\2= S \\\LM<»>,<»)Mo)dsdu> 

n/2 /• /• 

= 2 lLj(s,a>)\*dsd<o; 

making use of (2.12) and Lemma 2.2 we see that 

IN I 2 = i l W I 2 = It/112 

which shows that the mapping is an isometry. In order to prove the 
unitaiy property we need only establish that the mapping is onto K. 
Now by Lemma 2.2 any k0 in K has as its even [or odd depending on 
the parity of (k—1)/2] part a function corresponding to data / in 
L2(R

k). Under the mapping (2.16)/-» k0. 
We close this section with the promised proof of Theorem 1.2. It 
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suffices to consider fin C00 with support in the ball {|x| < R}. It is 
clear that m(s, co) and hence H(s, co) will vanish outside the interval 
[ - R, R]. Now 

\X-U>-Tj((0)t\> Cmin\t\- \x\ 

and therefore v(x, t) as given in (2.9) vanishes for cmin\t\ — |x| > R as 
asserted. 

3. The spectrum of G. We are now going to employ the Radon 
transform to study the point spectrum of the perturbed operator G 
We denote by H0 the null space of G. 

THEOREM 3.1. (a) The point spectrum of G consists of at most the 
point 0. 

(b) H0 is of finite dimension. 

Our proof of this theorem hinges on a Rellich type uniqueness 
theorem. We shall base our proof of this on properties of the Radon 
transform. 

The next theorem gives a complete characterization of the Radon 
transform of functions with compact support; it is a counterpart of the 
Paley-Wiener theorem, which does the same for the Fourier transform, 
see Helgason, [2], and Ludwig, [9] ; for another proof see [7] . 

THEOREM 3.2. Let f be in L2(R
k), £ its Radon transform. Suppose 

that 

fix) = 0 for |*| > p; 

then (i) 

(3.2) £(«, co) = 0 for \s\ > p; 

(ii) for every integer a 

(3.3) J sal(s, <o)ds 

is a polynomial in co of degree a — k + 1. Conversely, if £ is in 
df~l),2L2, and if (3.2), (3.3) are satisfied then, the Radon inverse of 
lis zero for \x\ > p. 

REMARK. For a < k — 1 the conclusion is meant to say that (3.3) 
is zero, a fact already noted in (2.3). The assertion for a ^ k — 1 is 
not meant to exclude the possibility that (3.3) is zero. 

We show now how to use Theorem 3.2 to prove that G has no point 
spectrum other than 0. Suppose that for p, ^ 0 

(3.4) ( G - * * ) f = 0 
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for some square integrable/; we claim t h a t / = 0. To show this we set 

(3.5) (Go - ifi)f= g; 

since G and G0 are the same for |JC| > p, it follows that g = 0 for 
|x| > p. Since G is an elliptic operator, g is square integrable. 

THEOREM 3.3. Suppose that p, is real, ^ 0, f in L2, (G0 — fy*>)f= g 
also in L2, and zero for \x\ > p; thenf= Ofor \x\ > p. 

Using Theorem 3.3 we conclude that / satisfying (3.4) and in L^ 
vanishes for |x| > p. It follows from the principle of unique continua­
tion for G that fis zero throughout Rk; this completes the proof of the 
first assertion in Theorem 3.1. 

We turn to the proof of Theorem 3.3; denote by I and h the Radon 
transforms of /and g. Taking the Radon transform of (3.5) we get 

(3.6) G0((o)DJL - UJ&= h 

where Go(o>) is the symbol of Go. Since g is assumed to be zero for 
|x| > p, it follows from Theorem 3.2 that h = 0 for \s\ > p; we claim 
the same for &; to this end we solve the differential equation (3.6); 
multiplying by the eigenvector rm and using 

— G0((o)rm = Tmrm, 

we get for£m = I -rm that 

(3.7) -TmdJLm - iixlm= hm. 

Using the fact that hm = 0 for \s\ = p we get after integrating (3.7) 
that for \s\ > p 

£m(«, o>) = a(a>)exp(-i^Tm(ro))). 

It follows that for \s\ > p, d(1-fc)/2£ is a linear combination of imagi­
nary exponentials plus a polynomial in s of degree less than (k—1)/2. 
Since by ParsevaFs relation this is in L2, this can only be if d(1-fc>/2£, 
and so£ itself, is zero for \s\ > p. 

We appeal once more to the direct part of Theorem 3.2: Since g = 0 
for | jc |>p,by(3.3) 

(3.8) J sah(s? <o)ds 

is a polynomial in o> of degree a — k + 1. Multiplying (3.6) by s° 
and integrating we get, after integrating the first term by parts, divid­
ing by ifJL and rearranging terms, that 

(3.9) ^Ids = — jsahds + ^-Go(o>)a jsa~iids. 
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We claim that Jsaids is a polynomial in co of degree a — k + 1; we 
prove it by induction on a. For a = k — 2 the right side is zero by 
property (2.3). Suppose now we know the result for a — 1; we note 
that the first term on the right in (3.9) is a constant multiple of (3.8) 
and so of degree a + k — 1. The integral in the second term is, by 
induction hypothesis, of degree a + k — 2; it is multiplied by a linear 
function of co which makes the whole second term of order a + k — 1 
and completes the inductive proof that £ satisfies (3.3). We conclude 
then by the converse part of Theorem 3.2 that / , whose Radon trans­
form £ is, vanishes for |x| > p. This completes the proof of Theorem 
3.3. 

N.B.: For the proof of Theorem 3.3 we only need that Go(co) has 
real spectrum for co real; symmetry and T ^ 0 are unnecessary. 

We turn now to proving part (b) of Theorem 3.1, i.e., the finite-
dimensionality of the null space H0 of G. We shall deduce this from 

LEMMA 3.4. The unit sphere of H0 is compact. According to a clas­
sical result ofF. Riesz, this implies the finite-dimensionality of Ho. 

PROOF OF LEMMA 3.4./ belongs to H0 if it satisfies 

(3.10) Gf= 0. 

Since G is elliptic, one can estimate the L2 norm of /and of its first two 
derivatives in terms of/: 

(3.11) ||Z>/1| =i const 11/11, M ^ 2. 

Set 

(3.12) Go/= g; 

since G and Go have the same coefficients for \x\ > p, the function g 
is zero for |x| > p; for |x| < p, g is a linear combination of/ and its 
first derivatives. It follows then from estimate (3.11) and the Rellich 
compactness criterion that the set of g corresponding to / in the unit 
ball of Ho is precompact. 

We now take the Radon transform of (3.12): 

G0(co)D^ = h. 

Integrating with respect to s we get 

(3.13) a<i-*>/2£ = Go-l(<*>)Bril+k)i2h. 

We use now the Parseval relation for/and g to conclude: 
(i) Since ds(

l~k)l2l is square integrable, and since h is zero for 
\s\ > p, it follows that ds(

{-k)l2SL is zero for \s\ > p. 
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(ii) Since the functions g form a precompact set, so do {ds
{l~k)l2h}; 

therefore so do the functions ds
(l~k^l2i as given by (3.13), over the 

compact set [—p,p] X S*-1. 
This completes the proof of Lemma 3.4. 

4. The wave operators. As before we denote by V(t) and U(t) the 
solution operators for the free space and perturbed systems respective­
ly. They define one-parameter groups of unitary operators on H, 
symbolically 

V(t) = exp(G0f) and U(t) = exp(G£). 

Again let Ho denote the null space of G. For convenience we take 
^min = -t. 

The wave operators for these two groups are defined as 

(4.1) W±= s-lim U(-t)V(t) . 

The main result of this section is 

THEOREM 4.1. (a) The wave operators exist, 
(b) Range W+ = Range W_ = H G H0 . 

It follows that the scattering operator 

(4.2) S=W~lW. 

exists and is unitary on H. In order to prove Theorem 4.1 we require 
several intermediary results. 

A given fin H can be represented as in §2 by 

n/2 

(4.3) 2 W*> «)*(«)• 

We define the subspaces D+ [and D_] to consist of all those / 
whose representers hj (/ = 1, 2, • • -, n/2) are supported on the posi­
tive [negative] real s-axis. It follows from Lemma 2.2 that D+ and D_ 
are orthogonal and that H = D+(BD— It follows from (2.9) and 
cmin = 1 that V(t)f= 0 for |x| < t if/belongs to D + , and for \x\ < — t 
iff belongs to D_. We next define the subspaces D£ and D^ by 

(4.4a) Dp
+ = V{p) D+ , 

(4.4b) Dt=V(-p)D- . 

LEMMA 4.2. With D+ defined as above and fin D+ j 

U(t)f=V(t)f, t^O. 
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PROOF. We need only note that, by (2.9), V(t)f is zero in a truncated 
cone |x| < t + p; outside of this and for t > 0 the coefficients of G are 
constant. Both G and Go act in the same way on such data so that 
U(t)f= V(t)ffort^0. 

Using the above lemma we can now prove 

LEMMA 4.3. W+ exists for all fin V( — r)D+. 

PROOF. L e t / = V( — r)g for some g in D+. Then 

U(-t)V(t)f= U(-t)V(t)V(-r)g , 

or 
U(-t)V(t)f= U(-r)U(-t+r)V(t-r)g . 

Making use of Lemma 4.2 this becomes for alH è r 

U(-t) V(t)f= U(-r)g = U(-r) V(r)f , 

so that 

W+f = U(-r) V(r)f . 

Now if/vanishes outside the ball {|x| < R} then its Radon transform 
vanishes for \s\ > R and it follows from this and (2.9) that V(R + p)f 
belongs to D+. Since data of this sort is dense in H, and since 
U( — t)V(t) is unitary, part (a) of Theorem 4.1 now follows from the 
principle of dense convergence. Part (b) which is considerably more 
difficult will follow from the 

DENSITY LEMMA. {U(— r)Dp+\ Vr > 0} is dense in H QH0. 

We shall show that if there exists an m in H © H0 orthogonal to 
U( — r)D+ for all r then m must be zero. Now m _L U( — r)Dp

+ is the 
same as U(r)m _L D+. With this in mind we shall list as lemmas some 
facts about U(r) which we shall use in the proof of the Density Lemma. 

LEMMA 4.4. Define X = U(-2p) - V(-2p) and Qp by 

[ Ç ^ ( x ) = / , \x\^p, 
= 0, |x| > p , 

then 

(4.5) Qp+2cp X = X , 

(4.6) XQp+4cp = X ; 

here c = maximum sound speed. 

PROOF. The relation (4.5) asserts that the range of X consists of 
functions supported in \x\ < p 4- 2cp. This is true because U and V 


