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ABSTRACT. Motivated by the state-based peridynamic
framework, we introduce a new nonlocal Laplacian that ex-
hibits double nonlocality through the use of iterated integral
operators. The operator introduces additional degrees of flex-
ibility that can allow for better representation of physical
phenomena at different scales and in materials with different
properties. We study mathematical properties of this state-
based Laplacian, including connections with other nonlocal
and local counterparts. Finally, we obtain explicit rates of
convergence for this doubly nonlocal operator to the classical
Laplacian as the radii for the horizons of interaction kernels
shrink to zero.

1. Introduction. Physical phenomena that are beset by discontinu-
ities in the solution, or in the domain, have been challenging to study in
the context of classical partial differential equations (PDEs). Moreover,
nonlocal or discrete material behavior provides an additional catalyst to
investigate integral type models for which discontinuous solutions are
allowable. In particular, successful predictions of dynamic fracture in
different materials (homogeneous or heterogeneous) have been obtained
through the peridynamic formulation introduced by Stewart Silling in
[20]; see fiber-reinforced composites [10], composite laminates [11],
orthotropic material [8], layered glass [2], concrete [12]. Over the
past decades nonlocal theories have also been successfully employed
in modeling various other phenomena, including nonlocal diffusion [1],
porous media flow [13] and tumor growth [14].
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The peridynamic theory offers a unified approach to capture the
deformation of the material as well as the propagation of the cracks. In
its original bond-based formulation the system captures the cumulative
effects of the interactions between a point and all its neighbors. These
interactions are weighted by distance-dependent kernels along bonds,
which are vectors that connect every two nearby points. A novelty of
the theory was the introduction of a horizon of interaction, a physical
constant which characterizes a model, a material, or a phenomenon.
Mathematically, this constant measures the size of the interaction set
for the kernel given by its support. The nonlocality takes the form of an
integral operator which replaces the spatial differential operators used
in classical PDEs, giving rise to partial integro-differential equations
(PIDEs). In the integral framework little to no regularity of solutions
is needed, thus the set of allowable solutions includes all functions for
which an integral can be defined, even very irregular functions. The
protagonist of the bond-based formulation is the nonlocal Laplacian,
which for clarity we label as the bond-based Laplacian:

(1.1) Lµ[u](x) =

∫
Bδ

(u(y)−u(x))µ(y−x) dy.

In the above formula, Bδ :=Bδ(0) is the ball of radius δ centered at zero,
while the kernel µ measures the strength of the bond y−x. Observe that
this operator is well-defined even for very rough functions u : Rn→ Rk,
n, k ≥ 1, as long as the integration for each component of u is valid,
(Lµ ∈ Rk). The constant δ > 0 is the radius of the horizon, and in
applications it can vary from very small values (peridynamics) to very
large ones (δ =∞ in nonlocal diffusion [1]). Of interest to us is the
case of a finite horizon as well as the transition to infinitesimal values;
in other words, we study the limiting behavior of nonlocal operators as
δ goes to zero.

The convergence of the bond-based Laplacian to the classical Lapla-
cian as the horizon δ shrinks to zero has been studied in several papers.
It was shown that the rate of convergence for the nonlocal Laplacian
to the classical Laplacian, whenever applied to a sufficiently smooth
function u, is proportional to δ2 (the proportionality constant depends
on bounds for the fourth derivative of u); see [4, 6, 16], where the argu-
ments are based on the work in [3]; see also [24] where the analysis for
numerical error is performed. Furthermore, in [16, 17] the authors have
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shown convergence of nonlocal L2 solutions of the peridynamic system
to classical solutions (with H1

0 Sobolev regularity) of the Navier system.

In bond-based models particles interact through a central potential,
thus “seeing” only neighbors in their horizon. A consequence of this
formulation gives a restriction on the Poisson ratio of 1

4 for the class
of elastic materials modeled. Moreover, the bond-based systems lack
the generality of stress tensors that are usually considered in continuum
mechanics as they impose only a pairwise force interaction on particles.
For a more detailed discussion of these aspects and the motivation for a
more general theory, see [23]. To overcome these deficiencies Silling et
al. in [23] introduced the theory of state-based peridynamics, in which
the force between points are expressed through general operators called
states. A discussion of these states, as relevant to this paper, is given
in Section 2.3. The bond-based theory becomes a particular case of the
state-based setting where points interact not only with their immediate
neighbors (direct interactions), but also with neighbors of the neighbors
(indirect interactions). Thus, the behavior of a point x will be deter-
mined by the forces acting on x through its neighbors y, as well as by
the forces acting on y through y’s neighbors. This composition of inter-
actions could also be extended to model a broader range of phenomena,
such as seen in nonlinear elasticity, viscoelasticity, and viscoplasticity
(for bond-based formulations of these models see [5, 26, 7]).

The focus of this work is on the study of a newly introduced state-
based Laplacian operator:

Lsγη[u](x) =

∫
Rn

∫
Rn

(γ(p−x) + γ(q−x))η(q−p)[u(q)−u(x)] dq dp

−
∫
Rn

∫
Rn

(γ(x−p) + γ(q−p))η(q−x)[u(q)−u(p)] dq dp ,

which is inspired the state-based formulation of peridynamics (again,
the integration is performed on each component of u). As motivated
by the physical considerations above, this operator captures effects
from a wider and more diverse range set of interactions by looking at
cumulative effects modeled through two integral operators with two
(possibly different) kernels, γ and η. By incorporating two kernels the
operator gains an adjustable degree of flexibility that is important in
applications, thus increasing the physical relevance of the model. The
engineering and computational communities have provided us with
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many studies for state-based models (see [25, 19, 15, 9] and also the
overview paper [21]), but the theoretical investigations of these doubly
nonlocal operators are still in their early stages.

1.1. Why a new nonlocal Laplacian? Significance of this paper.
This new nonlocal Laplacian was inspired by three particular choices for
kernels given by Silling in [22]; the examples concern elastic materials
(in bond-based framework), linear fluids, and linear isotropic solids. At
a mathematical level the state-based Laplacian is a double convolution-
type operator, which generalizes the operator (1.1), while also providing
a “decomposition” of the operator with respect to the kernels γ and
η. The role of each kernel is discussed from a physical, as well as a
mathematical point of view. Additionally, by writing the state-based
Laplacian in convolution form we obtain an operator that is well-defined
on spaces of very irregular functions, even on the space of distributions;
see Section 3.1.1.

To summarize, the main contributions of this paper are:

• At a physical level we introduce a mathematical operator that captures
nonlocal effects in materials or phenomena that are more general
than the ones modeled with the single integral, bond-based operator.
While this operator arises naturally from the (very) general state-based
formulation, it allows us through its specific form involving two kernels
to incorporate a variety of examples. Thus we introduce a framework
in which the nonlocal Laplacian can model very different materials, or
even different behavior. In this more general context we have the ability
to study transitional behavior from one class of phenomena to another,
as well as the transition from one type of material to another.

• At a mathematical level the double convolution operator gives us
a novel way to model physical behavior in the space of discontinuous
functions or distributions. The transition to “smooth” behavior can
be studied through convergence results of the nonlocal operator to the
classical Laplacian as the horizons of interaction shrink to zero. We
obtain explicit rates of convergence and we discuss below the importance
of regularity for functions on which the nonlocal operator is applied.

Finally, we make note of a couple of distinctions between this
operator and other operators. First, the structure of the state-based
Laplacian resembles the nonlocal biharmonic introduced in [18], due
to the presence of the double nonlocality. However, we show that the
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doubly nonlocal Laplacian approaches a second and not a fourth-order
differential operator. This aspect will be discussed in more detail in
Remark 3.3. Also, Lsγη is a nonlocal version of a Laplace type operator
and not of the Navier operator from elasticity, as it is missing the
nonlocal counterpart of the ∇ divu term [16].

1.2. Organization of the paper. The paper is structured in the
following way. In Section 2 we give a brief overview of the bond-based
theory of periydnamics followed by the extension to the state-based
version of peridynamics, and show how our new operator arises naturally
in this setting. We introduce the state-based Laplacian in Section 3
where we also include a discussion about the convolution form of the
operator, as well as the mathematical and physical significance of the
kernels. Section 4 contains a derivation for the scaling of the operator
and the main results regarding (interior) convergence of this operator
to ∆, its classical counterpart. The main theorems presented give
precise rates of convergence in terms of the two horizons δ and ε of
the kernels γ and η, respectively. The results are proven in the one-
dimensional case for analytic functions, as well as in higher dimensions
under less restrictive regularity assumptions. We conclude in Section 5
with a discussion of the results obtained in a physical and mathematical
context, and directions for future work.

2. Background: bond-based and state-based peridynamic
theory.

2.1. Bond-based peridynamic theory. In the original formulation
of peridynamics, introduced by Silling [20], each point x interacts with
all its neighbors within a domain, Hx, taken to be a ball of radius δ
centered at x. If p ∈Hx then ζ = p−x is called a bond for the point x.

In this context consider the cumulative force that is acting on x
through its neighbors inside the horizon, a force that is expressed through
integral operators. By replacing differential operators with integral
operators we allow low-regularity solutions to satisfy elasticity models.
The bond-based peridynamics equation of elasticity as introduced by
Silling [20] is given by

ρ(x)ü(x, t) =

∫
Hx

f(u(q, t)−u(x, t), q−x) dVx + b(x, t),
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where ρ is material density, u is the displacement vector field, and
f gives the force vector that the particle q exerts on the particle x.
The form of f embodies the constitutive information of the material.
However, as pointed out in [23] this system assumes that any two
particles interact only through a central potential, a prohibitive type of
interaction which eventually restricts the Poisson ratio of the material
to 1

4 . The state-based theory of peridynamics overcomes this issue and
generalizes the bond-based theory. The connection between the Laplace
type operators that appear in each of these formulations is one of the
goals of this work and is studied further in Section 3.4.

2.2. State-based peridynamic theory. The state-based theory of
peridynamics was introduced in [23] and it allows indirect force
interactions of a neighbor with its neighbor’s neighbors. A given point x
will be affected directly by its neighbors p, as well as indirectly, by the
neighbors q of p through the point p (see Figure 1). Mathematically,
the interactions of the point x will be expressed through double integrals
over the product space Bδ(x)×Bε(p), for every point p in the horizon
of x. (Here Bδ(x) denotes the ball of radius δ centered at x.) Thus,
the points acting on x can be ε+ δ distance away from x. This setting
allows a very general approach to modeling that can incorporate a wide
variety of physical behavior, which is achieved through the use of very
general operators called peridynamic states [23].

•
xδ

Horizon of x

•
p

Horizon of p

•
q

ε

Figure 1. The indirect interaction of point q on point x through their
common neighbor p.
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2.3. State-based peridynamic model and its linearization. The
state-based Laplacian arises naturally from the state-based formulation
which is described below, first in its most general form and then in its
linearized form.

The displacement from the equilibrium position of a point x in the
body B at time t≥ 0, denoted by u(x, t), is described by the equation

(2.1) ρ(x)ü(x, t) =

∫
H§
{T [x, t]〈q−x〉−T [q, t]〈x− q〉} dVq + b(x, t),

where ρ is material density and b is a prescribed body force density field.
Above the operator T is called a vector state which when computed
at the point x is applied to a bond q−x whose resulting action is the
force which q exerts on x. Thus the right-hand side of (2.1) describes
the cumulative effect of all action-reaction forces between x and its
neighbors, and provides a very general framework for incorporating the
material constitutive restrictions. A linearized version of this model is
obtained by introducing a double state-kernel K, at a point x, scalar
valued, which weighs the interactions between two bonds, p−x and
q−x, whose output is denoted by K[x]〈p−x, q−x〉. For a detailed
discussion of states and the linearization of the state-based formulation
see [22]. The resulting equation after linearization is given by

(2.2) ρ(x)ü(x, t) =

∫
B

∫
B
K[x]〈p−x, q−x〉(u(q, t)−u(x, t)) dVq dVp

−
∫
B

∫
B
K[p]〈x−p, q−p〉(u(q, t)−u(p, t)) dVq dVp

+b(x, t).

For a simple material, the equation above represents a linearized
state-based model for an elastic material if and only if K is symmetric,
i.e., for any two bonds ξ and ζ which share the same application
point, K[x]〈ξ, ζ〉 = K[x]〈ζ, ξ〉. See the discussion in [22, Section 4.2,
Proposition 4.1].

In [22] several choices of the state-kernel K are considered, each
of them leading to a different physical model. For K[x]〈ξ, ζ〉 given in
terms of a Dirac mass supported at ζ = ξ, one recovers the peridynamic
bond-based formulation. Below we introduce a generalization of this
particular example which gives rise to a new Laplace-type operator.
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The definition and properties of this new operator, together with the
connections to nonlocal and local Laplacians are discussed below.

3. A doubly nonlocal Laplacian operator. Motivated by the
discussion in the previous section we consider the state-kernel K given
by

(3.1) K[x]〈ξ, ζ〉 := [γ(ξ) + γ(ζ)]η(ζ− ξ),

where γ and η are symmetric functions (i.e., γ(−ζ) = γ(ζ) and
η(−ξ) = η(ξ)). Taking ξ = p−x and ζ = q−x, (3.1) becomes

(3.2) K[x]〈p−x, q−x〉= [γ(p−x) + γ(q−x)]η(q−p).

3.1. Introduction of the state-based Laplacian. We are now in
position to formally introduce the new Laplace-type operator.

Definition 3.1. We define the nonlocal state operator Lsγη with kernels
γ and η, to be the operator given by

(3.3) Lsγη[u](x)

= σγη

∫
Rn

∫
Rn

(γ(p−x)+γ(q−x))η(q−p)[u(q)−u(x)] dq dp

−σγη
∫
Rn

∫
Rn

(γ(x−p)+γ(q−p))η(q−x)[u(q)−u(p)] dq dp,

where σγη is a normalizing factor which is given by (4.1).

In section 4 the scaling σγη will be determined for kernels γ, η with
finite radii of interaction, δ, ε such that

|Lsγη[u](x)−∆u(x)| → 0 as δ, ε→ 0,

for u sufficiently smooth and for every point x in the domain situated
at a distance larger than δ+ ε away from the boundary.

3.1.1. Convolution structure of the operator. Assuming that γ and η
are L1 integrable then the state-based Laplacian defined in (3.3) can
be expressed in terms of double and single convolutions as follows:

(3.4)
Lsγη[u]

2σγη
= (γ ∗η∗u)−(η∗u)‖γ‖L1 +(γ ∗u)‖η‖L1−u‖γ‖L1‖η‖L1 .
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The convolution above is performed component wise, so each component
of a vector is convolved with the scalar kernels. The expression (3.4) is
similar to the convolution form of the bond-based Laplacian from (1.1)
as expressed by

Lµ[u] = µ ∗u−u‖µ‖L1 .

For a physical interpretation of the operator Lµ when µ is a probability
measure, in the context of nonlocal diffusion, see [1].

Remark 3.2. The convolution formulation (3.4) shows that the op-
erator Lsγη can be conveniently defined for functions u of different
smoothness levels depending on choices of γ and η. In particular, γ and
η in C∞ will allow choosing u less smooth (even a distribution), and
vice-versa. The support for each of the kernels γ and η could be taken
to be unbounded, but for applications linked to peridynamics, the finite
horizon is the relevant choice. Moreover, γ and η can be chosen to be
Dirac masses, or derivatives of Dirac masses, as shown below.

Remark 3.3. Note that although the double integral form of the
operator in its (3.3) or (3.4) form implies similarity to the biharmonic
operator

Bµ[u] = L2
µ[u] = u ∗µ ∗µ− 2u ∗µ‖u‖L1 +u‖µ‖2L1 ,

introduced in [18], the convolution formulation of Lsγη clearly shows
that no choice of kernels γ and η will yield the nonlocal biharmonic.
Indeed, in order to eliminate the single convolution term one would have
to choose a kernel that would also eliminate the double convolution
term (single convolution is associated with bond-based Laplacian, while
double convolution is associated with the state-based Laplacian). Finally,
the doubly nonlocal state-based Laplacian will be shown to converge
to a second-order differential operator, while the nonlocal biharmonic
provides and approximation to the classical biharmonic ∆2.

3.2. Kernels of the state-based Laplacian. Note from (3.1) that
while K is symmetric with respect to the bonds ξ and ζ, i.e., K[x]〈ξ, ζ〉=
K[x]〈ζ, ξ〉, the kernels γ, η play different roles in describing the dynamics.
Indeed, the kernel elongations of the bonds ξ and ζ are measured by
the kernel γ, while η accounts for the interdependence between ξ and
ζ. Thus the choice η(ζ − ξ) = δ0(ζ − ξ), where δ0 is the Dirac mass



388 PETRONELA RADU AND KELSEY WELLS

centered at the origin, will yield the bond-based model, [22]. With the
same choice for η, and γ given by two derivatives of the Dirac mass, we
obtain the classical Laplacian, [4]. These connections are strengthened
below as we show convergence of the operator to the classical Laplacian.

As previously done for bond-based peridynamics models, we will
consider bounded regions of interactions for both stretching and bond
interdependence effects, as given by γ, respectively η. Our specific
assumptions for the kernels are given below.

Assumption 1. Assume that γ and η are nonnegative radial functions,
so with an abuse of notation we write γ(ξ) = γ(|ξ|) and η(ζ) = η(|ζ|).
Assume that γ is supported inside the ball of radius δ and that η is
supported inside the ball of radius ε so that we have

γ(|ξ|) = 0 for |ξ|> δ, and η(|ζ|) = 0 for |ζ|> ε.

Assumption 2. We consider specific rational forms for γ and η that
allow us to explicitly compute the scaling for the operator Lsγη which
gives the convergence to the classical Laplacian. For ε, δ>0 and α, β<n,
the choices

(3.5) γ(ξ) =


1

|ξ|α
, |ξ| ≤ δ,

0, |ξ|> δ,
η(ζ) =


1

|ζ|β
, |ζ| ≤ ε,

0, |ζ|> ε,
,

produce the state-kernel K

(3.6) K[x]〈ξ, ζ〉=

(
1

|ξ|α
+

1

|ζ|α

)
1

|ζ− ξ|β
,

for all |ξ|< δ and |ζ− ξ|< ε.

Next we introduce two functions π, θ : (0,∞)→ [0,∞) related to our
kernels γ and respectively η, which will be needed for the proof of our
convergence result to allow us to move the derivatives on the function u
through integration by parts. They are selected such that they satisfy

(3.7) ∇yπ(|y|) = yγ(y), π(δ) = 0,

and

(3.8) ∇rθ(|r|) = rη(r), η(ε) = 0.
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With the same abuse of notation for radial functions, we have that π
and θ are given explicitly by

(3.9)

π(y) = π(|y|) :=

∫ |y|
δ

λγ(λ) dλ,

θ(r) = θ(|r|) :=

∫ |r|
ε

ρη(ρ) dρ.

Under Assumption 2 we obtain

π(ξ) =


|ξ|2−α− δ2−α

2−α
, if α 6= 2,

ln(|ξ|/δ), if α= 2,

(3.10)

θ(ζ) =


|ζ|2−β − ε2−β

2−β
, if β 6= 2,

ln(|ζ|/ε), if β = 2.

(3.11)

We continue to use Bδ and Bε to denote the balls of respective radii
centered at zero.

Lemma 3.4. Under Assumption 1 with π and θ satisfying (3.7) and
(3.8), we have

1

n

∫
Bδ
y2γ(y) dy =−

∫
Bδ
π(y) dy,(3.12)

1

n

∫
Bε
r2η(r) dr =−

∫
Bε
θ(r) dr.(3.13)

Proof. We prove the first equality, the second follows in a similar
fashion. By taking the inner product of (3.7) with y we obtain

y · ∇yπ(y) dy = y2γ(y).

Integration with respect to y on Bδ yields∫
Bδ
y · ∇yπ(y) dy =

∫
Bδ
y2γ(y) dy.
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By performing an integration by parts on the left side, where ν is the
normal derivative in the y direction, we have∫

Bδ
y · ∇yπ(y) dy =

∫
∂Bδ
π(y)y · ν dy−

∫
Bδ

div(y) ·π(y) dy

=

∫
∂Bδ
π(y)y · ν dy−n

∫
Bδ
π(y) dy.

For y ∈ ∂Bδ we have π(y) = π(δ) = 0; thus (3.12) holds. �

In order to employ the functions π and θ in the proof of our
convergence result, we will need a different formulation for the state-
based Laplacian, which is obtained in the next subsection.

3.3. Rewriting the Laplacian. The new expression for the state-
based Laplacian will more easily allow us to identify the domains of
integration for the variables and simplify the integrand. This more
convenient form is given by Proposition 3.1.

Proposition 3.1. Under Assumption 1, the state-based Laplacian can
be written in the following form for all x ∈ Rn:

(3.14) Lsγη[u](x)

= 2σ(ε, δ)

∫
Bδ

∫
Bε
γ(y)η(r)

×[u(x+y+r)−u(x)−u(x+r)+u(x+y)] dr dy.

Proof. By rearranging (3.3) we obtain

(3.15)
Lsγη[u]

2σ(ε, δ)
(x) =

∫
Rn

∫
Rn
γ(p−x)η(q−p)[u(q)−u(x)] dq dp

−
∫
Rn

∫
Rn
γ(x−p)η(q−x)[u(q)−u(p)] dq dp

+

∫
Rn

∫
Rn
γ(q−x)η(q−p)[u(q)−u(x)] dq dp

−
∫
Rn

∫
Rn
γ(q−p)η(q−x)[u(q)−u(p)] dq dp.

We perform a change of variables in each of the above integrals:
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• y := p−x and r := q−p, in the first integral,
• y := p−x and r := q−x, in the second integral,
• y := q−x and r := p− q, in the third integral,
• y := q−p and r := q−x in the fourth integral.

The resulting form is

Lsγη[u]

2σ(ε, δ)
(x)

=

∫
Rn

∫
Rn
γ(y)η(r)[u(y+x+ r)−u(x)−u(x+ r) +u(x+y)] dr dy

+

∫
Rn

∫
Rn
γ(y)η(r)[u(y+x)−u(x)−u(r+x) +u(r+x−y)] dr dy.

A final change of variables in∫
Rn

∫
Rn
γ(y)η(r)u(r+x−y) dr dy,

and the fact that γ(y) = γ(−y), together with Assumption 1, gives
(3.14). �

4. Convergence of the operators. The main result of this section
shows that the state-based Laplacian applied to sufficiently smooth
functions provides an approximation for the classical Laplacian applied
to the same function, for δ, and ε close to zero. In fact, under C4

assumptions for the function, we exhibit a rate of convergence for
the error of this approximation that is quadratic with respect to the
kernel horizons (Theorem 4.2). For C2 functions we obtain simple
convergence (of unspecified order), while for C2,α with 0 < α < 1 the
rate of convergence is proportional to the horizon raised to exponent α
(see Theorem 4.5).

The scaling of the state-based Laplacian needed for this approxima-
tion will be shown to satisfy

(4.1) σ(ε, δ) =− 1

2
∫
Bεη(r) dr

∫
Bδ π(y) dy

,

where η is the kernel in Lsγη and π is the function associated with γ
given by (3.7). From Lemma (3.4) we find that the scaling is equivalent
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to

(4.2) σ(ε, δ) =
n

2
∫
Bεη(r) dr

∫
Bδ y

2γ(y) dy
.

In particular, under Assumption 2 for the specific kernels of (3.5), if
α 6= 2, we have

(4.3) σ(ε, δ) =
(n−β)(n−α+ 2)nεβ−nδα−n−2

2w2
n−1

,

where wn−1 is the volume of the ball in n− 1 dimensions. We begin
by showing that in one dimension the difference between the nonlocal
Laplacian and the classical Laplacian, when applied to analytic functions
decays at the rate ε2 + δ2.

Theorem 4.1. Let Ω = (a, b) ⊂ R be a bounded interval and let u be
analytic in Ω, with

(4.4) M := sup
x∈Ω
|u(k)(x)|<∞, k ≥ 4.

Let γ and η satisfy Assumption 1 above, the scaling σ(ε, δ) be given by
(4.2) with n= 1, and let

Ω′ := (a+ δ+ ε, b− δ− ε).

We have

(4.5) ‖Lsγη[u]−∆u‖L∞(Ω′) <C(ε2 + δ2),

as δ, ε→ 0, where the constant C depends on M given by (4.4).

Proof. From (3.14) we have

Lsγη[u]

2σ(ε, δ)
(x) =∫
Bδ

∫
Bε
γ(y)η(r)

[
u(x+ y+ r)−u(x)− [u(x+ r)−u(x+ y)]

]
dr dy.

Using the analytic expansion for u around x in the first term and
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around x+y in the third term we obtain

Lsγη[u]

2σ(ε, δ)
(x)

=

∫
Bδ

∫
Bε
γ(y)η(r)

[
u′(x)(y+ r) +u′′(x)

(y+r)2

2
+u′′′(x)

(y+r)3

3!

+u(4)(x)
(y+r)4

4!
+

∞∑
n=5

u(n)(x)
(y+r)n

n!

]
dr dy

−
∫
Bδ

∫
Bε
γ(y)η(r)

[
u′(x+y)(r−y)+u′′(x+y)

(r−y)2

2
+u′′′(x+y)

(r−y)3

3!

+u(4)(x+y)
(r−y)4

4!
+

∞∑
n=5

u(n)(x+y)
(r−y)n

n!

]
dr dy.

Since γ(y) and η(r) are symmetric, each of the term that is an odd power
in y or r in the first integral on the right-hand side of the preceding
display is antisymmetric, with respect to y, or respectively r; hence,
they vanish after integration. Similarly, in the second integral the terms
containing odd power of r are therefore they also disappear (note that
the same does not hold for y due to the presence of y in u(x+y)). We
obtain

Lsγη[u]

2σ(ε, δ)

=

∫
Bδ

∫
Bε
γ(y)η(r)

[
u′′(x)

y2 + r2

2
+u(4)(x)

y4 + 6y2r2 + r4

4!

+

∞∑
n=3

u(2n)(x)

n∑
i=0

(2n

2i

)y2n−2ir2i

(2n)!

]
dr dy

−
∫
Bδ

∫
Bε
γ(y)η(r)

[
−u′(x+ y)y+u′′(x+y)

r2 + y2

2
.

−u′′′(x+y)
3r2y+ y3

3!
+u(4)(x+y)

r4 + 6r2y2 + y4

4!

−
∞∑
n=3

u(2n−1)(x+y)

n−1∑
i=0

(2n−1

2i

)y2n−1−2ir2i

(2n− 1)!

+

∞∑
n=3

u(2n)(x+y)

n∑
i=0

(2n

2i

)y2n−2ir2i

(2n)!

]
dr dy.
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Gathering the even derivative terms we have

Lsγη[u]

2σ(ε, δ)

=

∫
Bδ

∫
Bε
γ(y)η(r)

[
(u′′(x)−u′′(x+y))

y2 + r2

2

+ (u(4)(x)−u(4)(x+y))
y4 + 6y2r2 + r4

4!

+

∞∑
n=3

(u(2n)(x)−u(2n)(x+y))

n∑
i=0

(2n

2i

)y2n−2ir2i

(2n)!

]
dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

[
u′(x+ y)y+u′′′(x+y)

3r2y+ y3

3!

+

∞∑
n=3

u(2n−1)(x+y)

n−1∑
i=0

(2n−1

2i

)y2n−1−2ir2i

(2n− 1)!

]
dr dy.

Employing analytic expansions in each of the even derivative terms near
x gives

Lsγη[u]

2σ(ε, δ)
=−

∫
Bδ

∫
Bε
γ(y)η(r)

[(
u′′′(x)y+

∞∑
j=2

u(2+j)(x)
yj

j!

)
y2 + r2

2

+

(
u(5)(x)y+

∞∑
j=2

u(4+j)(x)
yj

j!

)
y4 + 6y2r2 + r4

4!

+

∞∑
n=3

( ∞∑
j=1

u(2n+j)(x)
yj

j!

) n∑
i=0

(2n

2i

)y2n−2ir2i

(2n)!

]
dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

[
u′(x+ y)y+u′′′(x+y)

3r2y+ y3

3!

+

∞∑
n=3

u(2n−1)(x+y)

n−1∑
i=0

(2n−1

2i

)y2n−1−2ir2i

(2n− 1)!

]
dr dy.

As before, each of the odd power terms (in y) in the first integral are
antisymmetric and vanish. Simplifying produces

Lsγη[u]

2σ(ε, δ)
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=−
∫
Bδ

∫
Bε
γ(y)η(r)

[ ∞∑
n=1

( ∞∑
j=1

u(2n+2j)(x)
y2j

(2j)!

) n∑
i=0

(2n

2i

)y2n−2ir2i

(2n)!

]
dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

[
u′(x+ y)y+u′′′(x+y)

3r2y+ y3

3!

+

∞∑
n=3

u(2n−1)(x+y)

n−1∑
i=0

(2n−1

2i

)y2n−1−2ir2i

(2n− 1)!

]
dr dy.

Next, we perform an analytic expansion around x for each of the odd
derivatives in the second integral to obtain

Lsγη[u]
2σ(ε, δ)

=−
∫
Bδ

∫
Bε
γ(y)η(r)

[ ∞∑
n=1

( ∞∑
j=1

u(2n+2j)(x)
y2j

(2j)!

) n∑
i=0

(2n
2i

)y2n−2ir2i

(2n)!

]
dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

[(
u′(x)+u′′(x)y+

∞∑
j=2

u(1+j)(x)
yj

j!

)
y

+

(
u′′′(x)+u(4)(x)y+

∞∑
j=2

u(3+j)(x)
yj

j!

)
(3r2y+ y3)

3!

+

∞∑
n=3

( ∞∑
j=0

u(2n−1+j)(x)
yj

j!

) n−1∑
i=0

(2n−1
2i

)y2n−1−2ir2i

(2n− 1)!

]
dr dy.

Once again, the odd power terms (in y) in the second integral are
antisymmetric and vanish. Simplifying and moving 2σ(ε, δ) to the right
side of the equation we obtain

Lsγη[u](x) =−2σ(ε, δ)

∫
Bδ

∫
Bε
γ(y)η(r)

[ ∞∑
n=1

( ∞∑
j=1

u(2n+2j)(x)
y2j

(2j)!

)

·
n∑
i=0

(2n

2i

)y2n−2ir2i

(2n)!

]
dr dy

+ 2σ(ε, δ)

(∫
Bδ

∫
Bε
γ(y)η(r)y2 dr dy

)
u′′(x) + [continues]
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+ 2σ(ε, δ)

∫
Bδ

∫
Bε
γ(y)η(r)

∞∑
j=1

u(2+2j)(x)
y2j+1

(2j+ 1)!
y dr dy

+ 2σ(ε, δ)

∫
Bδ

∫
Bε
γ(y)η(r)

[ ∞∑
n=2

( ∞∑
j=0

u(2n+2j)(x)
y2j+1

(2j+ 1)!

)

·
n−1∑
i=0

(2n−1

2i

)y2n−1−2ir2i

(2n− 1)!

]
dr dy.

The scaling given by (4.2) normalizes the coefficient of u′′, so the error
of the approximation is given by the remaining terms:

|Lsγη[u](x)−u′′(x)|

≤ 2Mσ(ε, δ)×{∫
Bδ

∫
Bε
γ(y)η(r)

[ ∞∑
n=1

( ∞∑
j=1

|y|2j

(2j)!

) n∑
i=0

(2n
2i

) |y|2n−2i|r|2i

(2n)!

]
dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

∞∑
j=1

|y|2j+1

(2j+1)!
|y| dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

[ ∞∑
n=2

( ∞∑
j=0

|y|2j+1

(2j+1)!

) n−1∑
i=0

(2n−1
2i

) |y|2n−1−2i|r|2i

(2n− 1)!

]
drdy

}
,

where M is defined in (4.4). Since |y|< δ and |r|< ε, we get

|Lsγη[u](x)−u′′(x)|

≤ 2Mσ(ε, δ)×{[ ∞∑
n=1

( ∞∑
j=1

δ2j−2

(2j)!

) n∑
i=0

(2n
2i

)δ2n−2iε2i

(2n)!

]∫
Bδ

∫
Bε
γ(y)η(r)y2 dr dy

+

∞∑
j=1

δ2j

(2j+1)!

∫
Bδ

∫
Bε
γ(y)η(r)y2 dr dy

+

[ ∞∑
n=2

( ∞∑
j=0

δ2j

(2j+1)!

) n−1∑
i=0

(2n−1
2i

)δ2n−2−2iε2i

(2n− 1)!

]∫
Bδ

∫
Bε
γ(y)η(r)y2drdy

}
.

Using σ(ε, δ) as given in (4.2) we have
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|Lsγη[u](x)−u′′(x)|

≤M
[ ∞∑
n=1

( ∞∑
j=1

δ2j−2

(2j)!

) n∑
i=0

(2n

2i

)δ2n−2iε2i

(2n)!

]
+M

∞∑
j=1

δ2j

(2j+ 1)!

+M

[ ∞∑
n=2

( ∞∑
j=0

δ2j

(2j+ 1)!

) n−1∑
i=0

(2n−1

2i

)δ2n−2−2iε2i

(2n− 1)!

]
.

Separating the n= 1 terms in the first set of summations, those with
j = 1 in the second summation and those with n= 2 in the third set of
summations, we obtain

|Lsγη[u](x)−u′′(x)|

≤M δ2 + ε2

2

∞∑
j=1

δ2j−2

(2j)!
+M

[ ∞∑
n=2

( ∞∑
j=1

δ2j−2

(2j)!

) n∑
i=0

(2n

2i

)δ2n−2iε2i

(2n)!

]

+M
δ2

6
+M

∞∑
j=2

δ2j−2

(2j)!
+M

δ2 + 3ε2

6

∞∑
j=0

δ2j

(2j+ 1)!

+M

[ ∞∑
n=3

( ∞∑
j=0

δ2j

(2j+ 1)!

) n−1∑
i=0

(2n−1

2i

)δ2n−2−2iε2i

(2n− 1)!

]
.

Since all of the above series are convergent for δ, ε < 1 we note that
each term is of order δ2 or ε2. Thus as δ and ε shrink to zero, Lsγη[u]

converges to u′′ at a rate of δ2 + ε2. �

Next we will present a much more general convergence result that
holds in any dimension, under less regularity for u, however we add an
additional restriction on the support of the kernels. The ideas follow
the method developed in [6] to show convergence of the bond-based
Laplacian to the classical Laplacian.

Theorem 4.2. Let Ω ⊂ Rn, n ≥ 1, be possibly unbounded, and for
0< ε≤ δ let

Ω′ := Ω \ {y ∈ Ω |dist(y, ∂Ω)≤ ε2 + δ2}.

For u ∈ C4(Ω) assume

(4.6) M4 := sup
x∈Ω
|u(4)(x)|<∞.
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Let γ and η satisfy Assumption 1, with the additional restriction that

c1|y|−α≤ γ(y)≤ c2|y|−α for 0≤ α < n, and 0< c1 ≤ c2.

Then Lsγη[u] with scaling factor σ(ε, δ) given by (4.1) satisfies:

‖Lsγη[u]−∆u‖L∞(Ω′) <Cδ2,

where C depends on M4 given above.

Proof. From (3.14) we have that for every x ∈ Ω′

(4.7)
Lsγη[u]

2σ(ε, δ)
(x)

= 2

∫
Bδ

∫
Bε
γ(y)η(r)

(
u(x+y+r)−u(x)−[u(x+r)−u(x+y)]

)
dr dy.

Applying the fundamental theorem of calculus we obtain

Lsγη[u]

2σ(ε, δ)
(x)

= 2

∫
Bδ

∫
Bε
γ(y)η(r)

∫ 1

0

[∇u(x+ s(y+ r))](y+ r) ds dr dy

− 2

∫
Bδ

∫
Bε
γ(y)η(r)

∫ 1

0

[∇u(x+y+ s(r−y))](r−y) ds dr dy,

where ∇u is the Jacobian matrix for u. Expanding and collecting
similar terms produces

Lsγη[u]

2σ(ε, δ)
(x)

=

∫
Bδ

∫
Bε
γ(y)η(r)

∫ 1

0

(∇u(x+s(y+r))+∇u(x+y+s(r−y)))y ds dr dy

+

∫
Bδ

∫
Bε
γ(y)η(r)

∫ 1

0

(∇u(x+s(y+r))−∇u(x+y+s(r−y))r ds dr dy.

Using π and θ as defined in (3.7) and (3.8) we obtain

(4.8)
Lsγη[u]

2σ(ε, δ)
=: I1 + I2
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where

I1 :=

∫
Bδ

∫
Bε

∫ 1

0

η(r)
(
∇u(x+ s(y+ r)) +∇u(x+y+ s(r−y))

)
· ∇yπ(y) ds dr dy,

I2 :=

∫
Bδ

∫
Bε

∫ 1

0

γ(y)
(
∇u(x+ s(y+ r))−∇u(x+y+ s(r−y))

)
· ∇rθ(r) ds dr dy.

Note that I1 and I2 are vector-valued quantities. Integration by parts
in I1 yields

I1 = −
∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y) divy[∇u(x+ s(y+ r))] dy ds dr

−
∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y) divy[∇u(x+y+ s(r−y))] dy ds dr

+

∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y)∇u(x+ s(y+ r))

y

δ
dy ds dr

+

∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y)∇u(x+y+ s(r−y))

y

δ
dy ds dr.

For y ∈ ∂Bδ, we have π(y) = π(δ) = 0; thus the last two terms vanish,
and I1 becomes

I1 = −
∫
Bε

∫ 1

0

∫
Bδ
η(r)s∆u(x+ s(y+ r))π(y) dy ds dr

−
∫
Bε

∫ 1

0

∫
Bδ
η(r)(1− s)∆u(x+y+ s(r−y))π(y) dy ds dr,

which, after adding and subtracting ∆u(x), we can write as

I1 =−
∫
Bε

∫ 1

0

∫
Bδ
η(r)s[∆u(x+ s(y+ r))−∆u(x)]π(y) dy ds dr

−
∫
Bε

∫ 1

0

∫
Bδ
η(r)(1−s)[∆u(x+y+s(r−y))−∆u(x)]π(y) dy ds dr

−∆u(x)

∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y) dy ds dr.
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We use the same approach for I2; we first integrate by parts, using the
fact that θ(r) = θ(ε) = 0 for r ∈ ∂Bε, and then add and subtract ∆u(x)
to obtain

I2 =−
∫
Bδ

∫ 1

0

∫
Bε
γ(y)s[∆u(x+ s(y+ r))−∆u(x)]θ(r) dr ds dy

+

∫
Bδ

∫ 1

0

∫
Bε
γ(y)s[∆u(x+y+ s(r−y))−∆u(x)]θ(r) dr ds dy.

In order to make the coefficient of the Laplacian in the third integral
of I1 equal to 1, we take σ(ε, δ) as given by (4.1). With this choice of
scaling we write

Lsγη[u](x)−∆u(x) =: 2σ(ε, δ)(J1 + J2 + J3 + J4),(4.9)

where

J1 =−
∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y)s[∆u(x+ s(y+ r))−∆u(x)] dy ds dr,

J2 =−
∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y)(1−s)[∆u(x+y+s(r−y))−∆u(x)] dy ds dr,

J3 =−
∫
Bδ

∫ 1

0

∫
Bε
γ(y)θ(r)s[∆u(x+ s(y+ r))−∆u(x)] dr ds dy,

J4 =

∫
Bδ

∫ 1

0

∫
Bε
γ(y)θ(r)s[∆u(x+y+ s(r−y))−∆u(x)] dr ds dy.

Again, J1, J2, J3 and J4 are vector-valued. We now look to bound each
integral; we begin with J1. Integrating by parts with respect to s and
using antisymmetry of the integrands we obtain

J1 =

∫
Bε

∫
Bδ

1− s2

2
(∆u(x+ s(y+ r))−∆u(x))η(r)π(y)

∣∣∣s=1

s=0
dy dr

−
∫
Bε

∫
Bδ

∫ 1

0

1− s2

2
∆∇u(x+ s(y+ r))(y+ r)η(r)π(y) ds dy dr,

which after evaluating at s= 0 and s= 1 in the first term gives,

J1 =−
∫
Bε

∫
Bδ

∫ 1

0

(1− s2)

2
∆∇u(x+ s(y+ r))(y+ r)η(r)π(y) ds dy dr.
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Integrating by parts with respect to s again we obtain

J1 =

∫
Bε

∫
Bδ

(
1

3
− s

2
+
s3

6

)
∆∇u(x+ s(y+r))(y+r)η(r)π(y)

∣∣∣s=1

s=0
dy dr

−
∫
Bε

∫
Bδ

∫ 1

0

(
1

3
− s

2
+
s3

6

)
∆[∇2u(x+ s(y+ r))(y+ r)](y+ r)

· η(r)π(y) ds dy dr,

where ∇2 is the Hessian tensor. Evaluating the first integral at s = 1
yields a factor of zero, while evaluating at s = 0 produces an anti-
symmetric function which vanishes after integration. Hence, we have

J1 =−
∫
Bε

∫
Bδ

∫ 1

0

(1

3
− s

2
+
s3

6

)
∆[∇2u(x+ s(y+ r))(y+ r)](y+ r)

· η(r)π(y) ds dy dr,

Taking M4 as defined in (4.6) we estimate the magnitude of J1 as
follows:

|J1| ≤M4

∫
Bε

∫
Bδ

∫ 1

0

(
1

3
− s

2
+
s3

6

)
(|y|2+|r|2+2|yr|)η(r)|π(y)|ds dy dr

≤ M4

4

∫
Bε

∫
Bδ

(|y|2 + |r|2)η(r)|π(y)| dy dr.

Using the coarea formula we obtain

(4.10) |J1| ≤
M4

4

(
nωn−1

∫
Bε
η(r) dr

∫ δ

0

λn+1|π(λ)| dλ

+nωn−1

∫ ε

0

ρn+1η(ρ) dρ

∫
Bδ
|π(y)| dy

)
=
M4

4
(δ2 + ε2)

∫
Bε

∫
Bδ
η(r)|π(y)| dy dr,

where in the last equality we used also the fact that

λn ≤ λn−1δ and ρn ≤ ρn−1ε.(4.11)

Multiplying by 2σ(ε, δ) given by (4.1) gives the bound

|2σ(ε, δ)J1| ≤
M4

4
(δ2 + ε2).

To bound on J2, we first integrate by parts with respect to s to obtain
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J2 =

−
∫
Bε

∫
Bδ

2s− s2− 1

2
(∆u(x+y+s(r−y))−∆u(x))η(r)π(y)

∣∣∣s=1

s=0
dy dr

+

∫
Bε

∫
Bδ

∫ 1

0

2s− s2− 1

2
(∆∇u(x+y+s(r−y))(r−y))η(r)π(y) dy dr,

after which evaluation at s= 0 and s= 1 gives

J2 =−1

2

∫
Bε

∫
Bδ

(∆u(x+y)−∆u(x))η(r)π(y) dy dr

+

∫
Bε

∫
Bδ

∫ 1

0

2s− s2− 1

2

(
∆∇u(x+y+ s(r−y))−∆∇u(x)

)
· (r−y)η(r)π(y) ds dy dr.

In the last line we have added the last term, which is zero by the
antisymmetry of the integrand. Using the fundamental theorem of
calculus for the first integral and and integrating by parts with respect
to s in the second integral we have

J2 =−1

2

∫
Bε

∫
Bδ

∫ 1

0

(∆∇u(x+ sy)y)η(r)π(y) ds dy dr

+

∫
Bε

∫
Bδ

(
s2−s

2
+

1−s3

6

)(
∆∇u(x+y+s(r−y))−∆∇u(x)

)∣∣∣s=1

s=0

· (r−y)η(r)π(y) dy dr

−
∫
Bε

∫
Bδ

∫ 1

0

(
s2−s

2
+

1−s3

6

)
∆[∇2u(x+y+ s(r−y))(r−y)]

· (r−y)η(r)π(y) ds dy dr.

Without changing the value of the integral we can insert again an
antisymmetric integrand in the first integral. We also evaluate the
second integral at s= 0 and s= 1, to produce

J2 =−1

2

∫
Bε

∫
Bδ

∫ 1

0

(∆∇u(x+ sy)−∆∇u(x))yη(r)π(y) ds dy dr

− 1

6

∫
Bε

∫
Bδ

(∆∇u(x+y)−∆∇u(x))(r−y)η(r)π(y) dy dr

−
∫
Bε

∫
Bδ

∫ 1

0

(
s2−s

2
+

1−s3

6

)
∆[∇2u(x+y+s(r−y))(r−y)](r−y)

· η(r)π(y) ds dy dr.
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Now, integrating by parts with respect to s in the first integral and
applying the fundamental theorem of calculus in the second integral
produces

J2 =
1

2

∫
Bε

∫
Bδ

(1− s)(∆∇u(x+ sy)−∆∇u(x))yη(r)π(y)
∣∣∣s=1

s=0
dy dr

− 1

2

∫
Bε

∫
Bδ

∫ 1

0

(1− s)∆[∇2u(x+ sy)y]yη(r)π(y) dy dr

− 1

6

∫
Bε

∫
Bδ

∫ 1

0

∆[∇2u(x+ sy)y](r−y)η(r)π(y) dy dr

−
∫
Bε

∫
Bδ

∫ 1

0

(s2− s
2

+
1− s3

6

)
∆[∇2u(x+y+s(r−y))(r−y)](r−y)

· η(r)π(y) ds dy dr.

Evaluating the first integral at s= 0 and s= 1 gives

J2 =−1

2

∫
Bε

∫
Bδ

∫ 1

0

(1− s)∆[∇2u(x+ sy)y]yη(r)π(y) dy dr

− 1

6

∫
Bε

∫
Bδ

∫ 1

0

∆[∇2u(x+ sy)y](r−y)η(r)π(y) dy dr

−
∫
Bε

∫
Bδ

∫ 1

0

(
s2− s

2
+

1− s3

6
)∆[∇2u(x+y+s(r−y))(r−y)](r−y)

· η(r)π(y) ds dy dr.

By bounding the fourth-order derivatives as we did with J1 and using
|y|< δ and |r|< ε we obtain

|J2| ≤
7M4

12
(δ2 + ε2)

∫
Bε

∫
Bδ
η(r)|π(y)| dy dr,

and hence

|2σ(ε, δ)J2| ≤
7M4

12
(δ2 + ε2).

Using approaches similar to the ones employed to bound J1 and J2, we
find the following bounds for J3 and J4:

|J3| ≤
M4

4

∫
Bδ

∫
Bε

(|y|2 + |r|2)|θ(r)|γ(y) dr dy,

|J4| ≤
5M4

6

∫
Bε

∫
Bδ

(|y|2 + |r|2)|θ(r)|γ(y) dy dr.
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Using Lemma 3.4 we have

|J3| ≤
M4

4

∫
Bε

∫
Bδ
|r|2η(r)|π(y)| dy dr+

M4

4n

∫
Bε

∫
Bδ
|r|4η(r)γ(y) dy dr.

Then using (4.11) we find

|J3| ≤
M4

4
ε2

∫
Bε

∫
Bδ
η(r)|π(y)| dy dr+

M4

4n
ε4

∫
Bε

∫
Bδ
η(r)γ(y) dy dr;

thus,

(4.12) |2σ(ε, δ)J3| ≤
M4

4
ε2 +

M4

4n
ε4

∫
Bδγ(y) dy

|
∫
Bδ π(y) dy|

.

Using the assumption that c1|y|−α ≤ γ(|y|)≤ c2|y|−α where 0≤ α < n
and 0< c1 ≤ c2, we get

|2σ(ε, δ)J3| ≤
M4

4
ε2 +

M4c2n(n+ 2−α)

4c1n(n−α)

ε4

δ2
.

Hence, under the assumption ε≤ δ, we have

|2σ(ε, δ)J3| ≤
M4c1n(n−α) +M4c2n(n+ 2−α)

4c1n(n−α)
ε2.

Similarly, we find the bound on J4 to be

|2σ(ε, δ)J4| ≤
5M4c1n(n−α) + 5M4c2n(n+ 2−α)

6c1n(n−α)
ε2.

Putting all of these together we find

|Lsγη(u)−∆u(x)| ≤ |2σ(ε,δ)J1|+ |2σ(ε,δ)J2|+ |2σ(ε,δ)J3|+ |2σ(ε,δ)J4|
≤C(δ2 +ε2)≤Cδ2,

where the value of the constant C changes from line to line and depends
on M4, n, α, c1 and c2. This estimate shows that our nonlocal state-
based Laplacian with the scaling of (4.3) converges to the classical
Laplacian at a rate of δ2 independent of the dimension. �

Remark 4.3. The growth assumption on γ from Theorem 4.2 is easily
guaranteed by Assumption 2, in which case we have an explicit value
for σ(ε, δ) in terms of α, β, δ, ε as given by (4.3).
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Remark 4.4. In Theorem 4.2 we can relax the growth restrictions on
γ by assuming instead that there exists a C1 > 0 such that

(4.13)

∫
Bδ
γ(y) dy ≤ C1

δ2

∣∣∣∣∫
Bδ
π(y) dy

∣∣∣∣.
Since ε≤ δ, (4.12) combined with (4.13) implies

|2σ(ε, δ)J3| ≤
M4(n+C1)

8n
ε2.

Similarly,

|2σ(ε, δ)J4| ≤
5M4(n+C1)

6n
ε2,

and the rate of convergence in the theorem holds.

Furthermore, we can replace the condition ε≤ δ by the assumption
that there exists a C2 > 0 such that∫

Bδ
γ(y) dy ≤ C2

ε2

∣∣∣∣∫
Bδ
π(y) dy

∣∣∣∣,
which becomes a condition that links the growth of γ with the growth
of η. We then obtain from (4.12) that

|2σ(ε, δ)J3| ≤
M4(n+C2)

8n
ε2,

and

|2σ(ε, δ)J4| ≤
5M4(n+C2)

6n
ε2.

The resulting rate of convergence will be δ2 + ε2.

We conclude this section with a more general convergence result re-
quiring only twice differentiability, which yields also weaker convergence
rates.

Theorem 4.5. Let Ω ⊂ Rn, n ≥ 1 be possibly unbounded, and for
0< ε≤ δ let

Ω′ := Ω \ {y ∈ Ω |dist(y, ∂Ω)≤ ε2 + δ2}.

Let γ, η satisfy Assumption 1, with the additional restriction that

c1|y|−α≤ γ(y)≤ c2|y|−α for 0≤ α < n and 0< c1 ≤ c2.
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Then Lsγη[u] with scaling factor σ(ε, δ) given by (4.1) satisfies the
following convergence estimates

(i) If u ∈ C2,a(Ω) with 0< a < 1, then

‖Lsγη[u]−∆u‖L∞(Ω′) <Cδa.

(ii) If u ∈ C2(Ω), then

‖Lsγη[u]−∆u‖L∞(Ω′)→ 0 as δ→ 0.

Proof. Both proofs follow along the same lines as that of Theorem
4.2. To show convergence and obtain explicit rates for part (i) we use
again the expression (4.9) with terms J1, J2, J3, J4 defined on page 400
Note that for u ∈ C2,a with 0< a < 1 we have

(4.14) |∆u(x)−∆u(y)|<C|x−y|a.

Applying (4.14) to estimate J1 we obtain

|J1| ≤
∫
Bε

∫ 1

0

∫
Bδ
η(r)π(y)s1+a|y+ r|a dy ds dr.

Since
|y+ r|a ≤ |y|a + |r|a,

after using exactly the same argument as in obtaining (4.10) we get

|2σ(ε, δ)J1| ≤ C(δa + εa).

Similarly, estimating J2, J3, J4 we obtain

|2σ(ε, δ)J2| ≤ C(δa + εa), |2σ(ε, δ)J3| ≤ Cεa, |2σ(ε, δ)J4| ≤ Cεa,

so by adding all these inequalities the claim of (i) follows.

For (ii) the same process is followed, with the exception that for
u ∈ C2 we have by the continuity of second-order derivatives that

(4.15) |∆u(x)−∆u(y)|= o(|x−y|),

so
|2σ(ε, δ)(J1 + J2 + J3 + J4)|= o(δ+ ε)

which gives the conclusion of (ii). �
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5. Conclusions. To summarize, the main ideas of this paper revolve
around the introduction of a new nonlocal Laplace-type operator, which
is intimately connected to the state-based theory of peridynamics.
The newly introduced state-based Laplacian offers an approximation
of the classical Laplace operator for functions that are sufficiently
smooth, however, it can be applied even to discontinuous functions
or distributions; also the operator provides a lot more flexibility in
modeling diffusion type phenomena. Note that the operator does not
approximate the Navier operator from the system of elasticity [16] as
we do not recover the term ∇ divu in the limit as the horizon goes to
zero. Our operator is applied to vector-valued functions, as it acts on
each component. A nonlocal generalization to introduce a state-based
Navier operator will be proposed in a future paper, by considering a
vectorial or tensorial structure of the kernels. As this paper also points
out, there are numerous nonlocal counterparts to a single local operator,
so it will be nontrivial work to introduce a doubly nonlocal Navier
operator with clear physical, as well as mathematical, significance that
will connect it to applications and existing results in local theory.

Regarding convergence results presented in this manuscript, we would
like to point out that the interior L∞ bounds obtained for the error

(Lsγη −∆)(u)

depend on the norm in a much smaller space (C2 or C4, depending
on the convergence rate) of u. Also, our bounds do not hold within
distance δ+ε away from the boundary, where the state-based Laplacian
capture information from outside the domain. Finally, our proof also
shows that the quadratic rate of this convergence with respect to the
horizons is optimal for functions u ∈ C4.

Finally, in the proof of Theorem 4.2 it is not clear if ε ≤ δ is a
necessary condition for convergence, so we are working to produce a
counterexample to the convergence result for ε > δ. Also, work in
progress further explores the convolution structure of the operator and
provides estimates for the solution of the Cauchy problem associated
with the state-based Laplacian.
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