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ABSTRACT. We show a new and unexpected application
of integral equations and their systems to the problem of the
unique identification of continuous probability distributions
based on the knowledge of exactly one regression function
of ordered statistical data. The most popular example of
such data are the order statistics which are obtained by non-
decreasing ordering of elements of the sample according to
their magnitude. However, our considerations are conducted
in the abstract setting of so-called generalized order statis-
tics. This model includes order statistics and other interest-
ing models of ordered random variables. We prove that the
uniqueness of characterization is equivalent to the uniqueness
of the solution to the appropriate system of integral equa-
tions with non-classical initial conditions. This criterion for
uniqueness is then applied to give new examples of charac-
terizations.

1. Introduction. We begin with introducing the notation and defi-
nitions used throughout this paper. Our basic objects of study are var-
ious models of ordered statistical data. The simplest example of such
a model are the order statistics X1:n ≤ · · · ≤ Xn:n obtained by putting
elements of the random sample X1, . . . , Xn of size n in increasing order.
The less standard example is comprised of record values {Rn, n ≥ 1} of
the sequence {Xn, n ≥ 1} of independent identically distributed ran-

2010 AMS Mathematics subject classification. Primary 60E05, 62E10, 62G30.
Keywords and phrases. Characterization, generalized order statistics, regression,

order statistics, uniqueness of solutions to integral equations.
The first author was supported by the Polish National Science Centre, grant

No. 2015/19/B/ST1/03100.
Received by the editors on March 6, 2017, and in revised form on October 19,

2017.
DOI:10.1216/JIE-2018-30-4-491 Copyright c⃝2018 Rocky Mountain Mathematics Consortium

491



492 MARIUSZ BIENIEK AND KRYSTYNA MACIA̧G

dom variables. They are defined recursively as R1 = X1, U(1) = 1 and
Rn = XU(n), n ≥ 1, where U(n + 1) = min{j > U(n) : Xj > Rn}.
Other examples include progressively censored type II order statistics
or kth record values (see [1, 6]).

Kamps [16] demonstrated that research concerning various models
of ordered random variables can be unified with the aid of the model
of generalized order statistics (GOSs), defined as follows. Fix n ∈ N,
parameters γ1, . . . , γn > 0, and let B1, . . . , Bn be independent random
variables such that Bi has Beta(γi, 1) distribution. Then, GOSs based
on uniform distribution on [0, 1] are defined as the random vector

(U
(1)
∗ , . . . , U

(n)
∗ ), where

U
(r)
∗ = 1 −

r∏
i=1

Bi for 1 ≤ r ≤ n.

Furthermore, if F is a continuous distribution function with the quan-
tile function

F−1(y) = inf{x : F (x) ≥ y}, y ∈ [0, 1),

then GOSs X
(1)
∗ , . . . , X

(n)
∗ , with parameters γ1, . . . , γn, based on F ,

are defined by X
(r)
∗ = F−1(U

(r)
∗ ) for 1 ≤ r ≤ n. The most important

special cases include ordinary order statistics (with γi = n − i + 1,
1 ≤ i ≤ n) and record values R1 ≤ · · · ≤ Rn (with γi = 1). Other
special cases are kth record values, Pfeifer’s record values, progressively
censored type II order statistics and sequential order statistics. For
details, see e.g., [6].

In the literature, many papers may be found devoted to the problem
of characterization of probability distributions by properties of order
statistics. Among the most interesting results are those related to
characterizations of probability distributions by regression conditions
involving order statistics. We are especially interested in regression
conditions of the type

(1.1) E
(
h(Xs:n) | Xr:n = x

)
= ξ(x),

for fixed 1 ≤ r < s ≤ n, where h and ξ are known functions defined
on the support of the underlying F . Beginning with Ferguson [11]
who, in the case s = r + 1, characterized exponential, power and
Pareto distributions as the only absolutely continuous distributions
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with h(x) = x and ξ the linear function ξ(x) = ax + b, there is
extensive literature on this subject. For a review of recent literature,
the interested reader is referred to [1]. Among those results, we mention
the paper by Dembińska and Weso lowski [9], who extended Ferguson’s
result for continuous distributions to the non-adjacent case s > r + 1.
Franco and Ruiz [12, 14] considered the adjacent case s = r + 1,
but with general functions h and ξ, even in the case of arbitrary
distributions (not necessarily continuous).

It appears that many results for order statistics have their analogues
for the record values; thus, parallel research concerns characterizations
of probability distributions by an analogous regression condition

(1.2) E
(
h(Rs) | Rr = x

)
= ξ(x).

For instance, see [10] for linear regression ξ in the non-adjacent case
and [13] for general regression in the adjacent case. However, in the
non-adjacent case, the problem of characterization by either of the
regressions (1.1) or (1.2) remains open.

The study of these regression conditions can be unified as follows.

Fix r, ℓ ≥ 1 with r + ℓ ≤ n, and consider X
(r)
∗ and X

(r+ℓ)
∗ based upon

the continuous distribution function F concentrated on a fixed interval
(α, β), where −∞ ≤ α < β ≤ ∞ satisfy

α = inf{x ∈ R : F (x) > 0}, β = sup{x ∈ R : F (x) < 1}.

Let h : (α, β) → R be a fixed, strictly increasing and continuous

function such that E|h(X
(r+ℓ)
∗ )| < ∞. Define the regression function

of h(X
(r+ℓ)
∗ ) on X

(r)
∗ as the function ξ : (α, β) → R, given by

(1.3) ξ(x) = E
(
h(X

(r+ℓ)
∗ ) | X(r)

∗ = x
)
, x ∈ (α, β).

Obviously, this is a direct extension of (1.1) and (1.2). Moreover,
the left-hand side of (1.3) depends upon r, ℓ and the parameters
γ1, . . . , γr+ℓ as well, but, in order to avoid complicated symbols, we
omit this dependence in the notation.

Cramer, et al., [7] proved that each continuous distribution F
uniquely determines the continuous and strictly increasing version of
the regression ξ. More precisely, ξ can be calculated as the expectation
of the regular version of the corresponding conditional probability of

X
(r+ℓ)
∗ given X

(r)
∗ = x. In this paper, we consider the inverse problem
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of the unique identification of F by the knowledge of single regression ξ
given by (1.3).

This problem is completely solved in the adjacent case, i.e., for ℓ = 1.
Then, simple reasoning shows that F can be recovered from ξ and h as

F (x) = 1 − exp

(
− 1

γr+1

∫ x

α

dξ(t)

ξ(t) − h(t)

)
, x ∈ (α, β),

see [7]. Bieniek [2] proved that F is also uniquely determined by the

reverse regression of h(X
(r)
∗ ) given X

(r+1)
∗ . However, the arguments for

the adjacent case cannot be extended to the non-adjacent case, even in
simple special cases of order statistics and record values.

For ℓ ≥ 2, if h(x) = x, and ξ is a linear function of the form
ξ(x) = ax + b, then either a ∈ (0, 1) and F is the unique power
distribution, or a = 1 and F is exponential, or a > 1 and F is a Pareto
distribution, see [5, 7]. Unfortunately, the method of proof introduced
by Dembińska and Weso lowski [9, 10], utilizing a solution to the so-
called integrated Cauchy functional equation, cannot be applied to the
non-linear regression ξ. The reason is that, for general ξ, this approach
leads to a functional equation whose solution is unknown. However,
Bieniek [3] proved that F is uniquely determined by the knowledge of
two regression functions:

ξ1(x) = E
(
h(X

(r+ℓ)
∗ ) | X(r)

∗ = x
)
,

and

ξ2(x) = E
(
h(X

(r+ℓ)
∗ ) | X(r+1)

∗ = x
)
,

namely, in this case,

F (x) = 1 − exp

(
− 1

γr+1

∫ x

α

dξ1(t)

ξ1(t) − ξ2(t)

)
, x ∈ (α, β).

This poses the question of whether it is possible to determine ξ2 when
ξ1 and h are given, which is the main idea of this paper.

Here, we continue the approach proposed by the authors in [4] for
absolutely continuous distributions with continuous density function
to study the uniqueness of the characterization by the single regres-
sion (1.3) in the case of arbitrary continuous distributions. We show
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that, for ℓ ≥ 2, the uniqueness of the characterization of the underly-
ing F by the knowledge of the continuous regression ξ is equivalent to
the uniqueness of solution to the corresponding system of ℓ−1 integral
equations (see Theorem 4.6 below). In particular, for ℓ = 2, the con-
tinuous regression ξ determines F uniquely if and only if the integral
equation

y(x) = y(α) +
γr+2

γr+1

∫ x

α

y(t) − h(t)

ξ(t) − y(t)
dξ(t)

has the unique solution φ such that h(x) < φ(x) < ξ(x) for all
x ∈ (α, β). Moreover, then,

(1.4) F (x) = 1 − exp

(
− 1

γr+1

∫ x

α

dξ(t)

ξ(t) − φ(t)

)
.

Note that, if ξ has continuous derivative, then the integral equation
turns into the ordinary differential equation

(1.5) y′ =
γr+2

γr+1

y − h(t)

ξ(t) − y
ξ′(t),

which was obtained in [4].

Unfortunately, although our criterion for uniqueness of the char-
acterization is surprisingly simple, it appears to be very difficult to
implement, even in the special cases of h and ξ. This is due to the fact
that our integral equations do not have classical initial conditions like
y(x0) = y0, but non-classical like h(x) < y < ξ(x) for x ∈ (α, β). At
this time, we are able to prove the uniqueness of the solution only in
the case when ℓ = 2. If

h(β) = lim
x→β

h(x) < ∞,

then ξ(β) = h(β), which easily implies the desired uniqueness. On the
other hand, if h(β) = ∞, then also, ξ(β) = ∞, and it is possible that

ξ(x) − h(x) −̸→ 0 as x → β.

However, our approach will be applied to prove uniqueness in the case
when h(β) = ∞ and ξ is a continuous increasing and asymptotically
linear function of h, i.e., there exist a ≥ 1 and b > 0 such that
limx→∞[ξ(x) − (ah(x) + b)] = 0. For instance, this yields a new
characterization of gamma distributions.
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Remark 1.1. Here and in the remainder of the paper we adopt the
convention that all the limits as x → β should be understood as left-
hand side limits.

The paper is organized as follows. In Section 2, we recall basic results
on the distribution theory of GOSs, and we study basic properties of
the regression function ξ, which are used in our considerations. Then,
in Section 3, the Markov property of GOSs based on continuous distri-
bution functions is applied to study the specific recurrence structure of
the regressions of GOSs. In Section 4, our main results on the unique-
ness of the characterization are stated and proven. Section 5 deals with
the case ℓ = 2, i.e., we consider the uniqueness of characterization by

E(h(X
(r+2)
∗ ) | X(r)

∗ = x). New characterizations of particular continu-
ous distributions by the regression of record values or GOSs, obtained
using our approach, are presented in Section 6. Finally, in Section 7,
we summarize the results of the paper and discuss their relevance for
researchers in both statistics and integral equations.

2. Auxiliary results. In this section, we recall some known results
on the distribution of GOSs and essential properties of the regression
function ξ defined by (1.3). Cramer and Kamps [6] proved that the
marginal density function of the rth uniform generalized order statistic

U
(r)
∗ can be written as

fU(r)
∗ (x) = cr−1G

r,0
r,r

(
1 − x

∣∣∣∣ γ1, . . . , γr
γ1 − 1, . . . , γr − 1

)
, x ∈ (0, 1),

where Gr,0
r,r is a particular Meijer’s G-function, defined by

(2.1) Gr,0
r,r

(
s

∣∣∣∣ γ1, . . . , γr
γ1 − 1, . . . , γr − 1

)
=

1

2πi

∫
L

sz∏r
i=1(γj − 1 − z)

dz,

and L is an appropriately chosen contour of integration (see, e.g.,
[17, Chapter 3] for the definition of a general G-function). In the
remainder of the paper, for brevity, we write Gr(x | γ1, . . . , γr) instead
of Gr,0

r,r(1 − x | γ1,...,γr

γ1−1,...,γr−1 ).

Remark 2.1. Due to (2.1), whenever this is necessary, without loss of
generality, we may assume that γr+1 ≤ · · · ≤ γr+ℓ.
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Let F = 1 − F be the survival function, and let PF denote the
probability measure on R, determined by F . If F is a continuous

distribution function, then X
(r)
∗ has density with respect to measure

PF , given by

fX(r)
∗ (x) = cr−1Gr(F (x) | γ1, . . . , γr)I(α,β)(x),

where IA denotes the indicator function of a set A. In particular, the

conditional PF -density function of X
(r+ℓ)
∗ , given X

(r)
∗ = x, ℓ ≥ 1, can

be written as (see [7])

fX(r+ℓ)
∗ |X(r)

∗ (t | x) =
cr+ℓ−1

cr−1
Gℓ (Fx(t) | γr+1, . . . , γr+ℓ)

1

F (x)
I(x,β)(t),

for x, t ∈ R, where

Fx(t) =

{
F (t)−F (x)

F (x)
for t ≥ x,

0 for t < x,
α < x, t < β.

Therefore, (1.3) is equivalent to

ξ(x) =
cr+ℓ−1

cr−1

1

F (x)

∫ β

x

h(t)Gℓ (Fx(t) | γr+1, . . . , γr+ℓ) dF (t).(2.2)

Using representation (2.2), it is easy to prove the following properties
of regressions of GOSs, defined by (1.3).

Lemma 2.2. Let F be a continuous distribution function supported
on (α, β), and let ξ : (α, β) → R be defined by (2.2). Then, ξ has the
following properties:

(i) ξ is continuous on (α, β);
(ii) ξ is increasing and it is constant on an interval I ⊂ (α, β) if

and only if F is constant on I;
(iii) ξ(x) > h(x) for all x ∈ (α, β);
(iv) if h(β) < ∞, then ξ(β) = h(β).

We conclude this section with the remark that, whenever it is
necessary, without loss of generality, we may assume that h(x) = x,
following the representation of ξ given in [7, page 2891].
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3. The Markov property of GOSs. In what follows, we use the
Markov property of GOSs based on continuous distribution functions.
Note that, for distribution functions with possible jumps, the Markov
property of GOSs does not hold, see [8].

Theorem 3.1. If F is a continuous distribution function, then, for

any r ≥ 2, the conditional distribution of X
(r+1)
∗ given X

(1)
∗ , . . . , X

(r)
∗

is the same as the conditional distribution of X
(r+1)
∗ given X

(r)
∗ .

For instance, for any 1 ≤ p < r < s and for any function h : (α, β) →
R for which the conditional expectations exist,

E
[
h
(
X

(s)
∗

)
| X(p)

∗ , X
(r)
∗

]
= E

[
h
(
X

(s)
∗

)
| X(r)

∗
]
.

The next lemma is the crucial observation in the derivation of the
results of this paper. It is proven in [4]; thus, here, we only give a short
sketch of the proof. The lemma states that regressions of GOSs have
a specific recurrence structure so that the regression of non-adjacent
GOSs can be expressed as an appropriate regression of adjacent GOSs.

Lemma 3.2. Fix r ≥ 1, ℓ ≥ 2, and let φℓ : (α, β) → R be any

Borel measurable function such that E|φℓ(X
(r+ℓ)
∗ )| < ∞. Moreover,

for i = 0, 1, . . . , ℓ− 1 define

(3.1) φi(x) = E
(
φi+1(X

(r+i+1)
∗ ) | X(r+i)

∗ = x
)
, x ∈ (α, β).

Then,

E
(
φℓ(X

(r+ℓ)
∗ ) | X(r)

∗ = x
)

= φ0(x), x ∈ (α, β).

Sketch of the proof. It suffices to note that

E
(
φℓ+1(X

(r+ℓ+1)
∗ )

∣∣ X(r)
∗

)
= E

[
E
(
φℓ+1(X

(r+ℓ+1)
∗ )

∣∣ X(r)
∗ , X

(r+ℓ)
∗

)
| X(r)

∗
]

= E
[
E
(
φℓ+1(X

(r+ℓ+1)
∗ ) | X(r+ℓ)

∗
)
| X(r)

∗
]

= E
(
φℓ(X

(r+ℓ)
∗ ) | X(r)

∗
)
,

(3.2)
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where the first equality follows from the classical property of conditional
expectations, the second from the Markov property of GOSs, and the
third from definition (3.1). Now easy induction proof follows. �

4. Uniqueness of the characterization of continuous distri-
butions. In this section, we state necessary and sufficient conditions
for the uniqueness of the characterization of probability distributions
by the knowledge of the single regression ξ given by (1.3). We assume
that F is an arbitrary, continuous distribution function concentrated
on (α, β) (possibly not absolutely continuous). Referring to (2.2), the
regression ξ can be expressed in terms of the Riemann-Stieltjes integral,
so first we recall some auxiliary results on integration with respect to
functions which are monotone or of bounded variation.

Lemma 4.1. Suppose that f and g are continuous on [a, b] and A is
a function of bounded variation on [a, b]. Define

B(x) =

∫ x

a

f(t) dA(t), a ≤ x ≤ b.

Then, B is also of bounded variation and∫ b

a

g(t) dB(t) =

∫ b

a

g(t)f(t) dA(t).

Proof. This is a special case of a classical result in Lebesgue in-
tegration theory, see e.g., [19, Theorem 1.29]. See [15, Problems
1.2.26, 1.3.3] for an elementary proof based on Riemann-Stieltjes in-
tegral sums. �

The next lemma is an easy consequence of integration by parts for
Riemann-Stieltjes integrals.

Lemma 4.2. If f and g are continuous functions of bounded variation
on [a, b] and, additionally, g(t) ≥ c > 0 for a ≤ t ≤ b, then

f(b)

g(b)
− f(a)

g(a)
=

∫ b

a

1

g(t)
df(t) −

∫ b

a

f(t)

(g(t))2
dg(t).
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The next result is the key observation in further considerations. It
gives a nontrivial expression of any regression of adjacent GOSs.

Lemma 4.3. If F : (α, β) → (0, 1) is continuous distribution function,
and

ξ(x) = E
(
h(X

(r+1)
∗ ) | X(r)

∗ = x
)
, x ∈ (α, β),

for some continuous and strictly increasing functions h, ξ : (α, β) → R
such that h < ξ, then

ξ(x) = ξ(α) + γr+1

∫ x

α

[
ξ(t) − h(t)

]dF (t)

F (t)
, x ∈ (α, β).

Proof. For simplicity, put γ = γr+1. Since G1(x | γ) = (1 − x)γ−1,
then, by (2.2) with ℓ = 1, we obtain

(4.1) ξ(x) =
γ

F (x)γ

∫ β

x

h(t)F (t)γ−1 dF (t).

Setting

f(x) = γ

∫ β

x

h(t)F (t)γ−1 dF (t), g(x) = F (x)γ

by Lemma 4.2, for any x ∈ (α, β), we have

(4.2) ξ(x) − ξ(α) =

∫ x

α

1

g(t)
df(t) −

∫ x

α

f(t)

(g(t))2
dg(t).

However, by Lemma 4.1,

(4.3)

∫ x

α

1

g(t)
df(t) = −γ

∫ x

α

1

F (t)γ
h(t)F (t)γ−1dF (t)

= −γ

∫ x

α

h(t)
dF (t)

F (t)
.

Moreover,

(4.4)

∫ x

α

f(t)

(g(t))2
dg(t) =

∫ x

α

ξ(t)
dg(t)

g(t)
= −γ

∫ x

α

ξ(t)
dF (t)

F (t)
.

Putting (4.3) and (4.4) into (4.2) easily completes the proof. �
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Now, we state our main result in the special case ℓ = 2. Denote by
H = − logF the so-called cumulative hazard function of F .

Theorem 4.4. Assume that h, ξ : (α, β) → R are continuous and
strictly increasing functions such that h < ξ. Then, the regression
relation

(4.5) ξ(x) = E
(
h(X

(r+2)
∗ ) | X(r)

∗ = x
)
,

characterizes continuous distribution function F uniquely if and only if
the integral equation

(4.6) y(x) = y(α) +
γr+2

γr+1

∫ x

α

y(t) − h(t)

ξ(t) − y(t)
dξ(t)

has exactly one solution y = φ(x) such that

(4.7) h(x) < φ(x) < ξ(x), x ∈ (α, β).

Then, F is given by the inversion formula

(4.8) F (x) = 1 − exp

(
−
∫ x

α

dη(t)

ξ(t) − h(t)

)
, x ∈ (α, β),

where η : (α, β) → R is defined by

(4.9) η(t) =
ξ(t)

γr+1
+

φ(t)

γr+2
.

Proof. Assume that the regression condition (4.5) holds, and define

(4.10) φ(x) = E
(
h(X

(r+2)
∗ ) | X(r+1)

∗ = x
)
.

Then, by Lemma 3.2 with ℓ = 2 (see (3.2) with φ2 = h) we get

(4.11) ξ(x) = E
(
φ(X

(r+1)
∗ ) | X(r)

∗ = x
)
.

Moreover, by twice applying Lemma 2.2 (iii) with ℓ = 1, we obtain
ξ > φ > h on (α, β). From Lemma 4.3, equations (4.10) and (4.11) can
be written as

ξ(x) = ξ(α) + γr+1

∫ x

α

[
ξ(t) − φ(t)

]dF (t)

F (t)
,
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and

φ(x) = φ(α) + γr+2

∫ x

α

[
φ(t) − h(t)

]dF (t)

F̄ (t)
,

respectively. Therefore, subtracting and then again applying Lemma 4.1,
we get

ξ(x) − φ(x) = ξ(α) − φ(α) +

∫ x

α

(
1 − γr+2

γr+1

φ(t) − h(t)

ξ(t) − φ(t)

)
dξ(t)

= ξ(x) − φ(α) − γr+2

γr+1

∫ x

α

φ(t) − h(t)

ξ(t) − φ(t)
dξ(t);

(4.12)

thus, φ satisfies the integral equation (4.6). Moreover, with η defined
by (4.9), we have∫ x

α

dη(t)

ξ(t) − h(t)
=

1

γr+1

∫ x

α

dξ(t)

ξ(t) − h(t)
+

1

γr+2

∫ x

α

dφ(t)

ξ(t) − h(t)

=

∫ x

α

ξ(t) − φ(t)

ξ(t) − h(t)

dF (t)

F (t)
+

∫ x

α

φ(t) − h(t)

ξ(t) − h(t)

dF (t)

F (t)

=

∫ x

α

dF (t)

F (t)
= H(x),

since H(α) = 0, where the second equality follows from Lemma 4.1.
This easily implies the inversion formula (4.8). �

Remark 4.5. The underlying F can also be recovered from (1.4), or
from

F (x) = 1 − exp

(
− 1

γr+2

∫ x

α

dφ(t)

φ(t) − h(t)

)
.

Now, we prove the extension of the last theorem for arbitrary ℓ ≥ 3.
This is the main result of the paper.

Theorem 4.6. The regression relation (1.3), i.e., ξ(x) = E(h(X
(r+ℓ)
∗ ) |

X
(r)
∗ = x), for x ∈ (α, β), for the continuous and strictly increasing

function ξ : (α, β) → R characterizes the continuous distribution func-
tion F , uniquely supported on (α, β), if and only if the system of ℓ− 1
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integral equations

(4.13) yi(x) = yi(α) +
γr+i+1

γr+1

∫ x

α

yi(t) − yi+1(t)

ξ(t) − y1(t)
dξ(t),

1 ≤ i ≤ ℓ − 1, with yℓ = h has exactly one solution (φ1, . . . , φℓ−1)
satisfying the condition

(4.14) h(x) < φℓ−1(x) < · · · < φ1(x) < ξ(x), x ∈ (α, β).

Then, F is given by the inversion formula

(4.15) F (x) = 1 − exp

(
−
∫ x

α

dη(t)

ξ(t) − h(t)

)
, x ∈ (α, β),

where η : (α, β) → R is given by

(4.16) η(t) =
ξ(t)

γr+1
+

ℓ−1∑
i=1

φi(t)

γr+i+1
.

Proof. Denote again φℓ = h, and refer to Lemma 3.2 to conclude
that φ0 = ξ. By Lemma 4.3 applied to (3.1), we obtain

φi(x) = φi(α) + γr+i+1

∫ x

α

[φi(t) − φi+1(t)]
dF (t)

F (t)
,

for i = 0, 1, . . . , ℓ − 1. Now, consider the differences ξ(x) − φi(x) =
φ0(x) − φi(x) for i = 1, . . . , ℓ − 1. Performing analogous calculations
as in the proof of equality (4.12), we easily prove that (φ1, . . . , φℓ−1)
solves system (4.13). Moreover, for η defined by (4.16), we have∫ x

α

dη(t)

ξ(t) − h(t)
=

ℓ−1∑
i=0

1

γr+i+1

∫ x

α

1

ξ(t) − h(t)
dφi(t)

=
ℓ−1∑
i=0

∫ x

α

φi(t) − φi+1(t)

ξ(t) − h(t)

dF (t)

F (t)

=

∫ x

α

1

ξ(t) − h(t)

( ℓ−1∑
i=0

[φi(t) − φi+1(t)]

)
dF (t)

F (t)

=

∫ x

α

dF (t)

F (t)
= H(x).

This suffices to easily complete the proof. �
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Remark 4.7. If we, additionally, assume that the regression ξ is
differentiable, then the system of integral equations turns into the
system of ℓ− 1 differential equations

(4.17) y′i =
γr+i+1

γr+1

yi − yi+1

ξ(x) − y1
ξ′(x), 1 ≤ i ≤ ℓ− 1,

satisfying the condition (4.14). The uniqueness of the solution to
system (4.17) with (4.14) ensures the uniqueness of the characterization
of the absolutely continuous distribution F , given by (4.15) with dη(t)
replaced by η′(t) dt. Moreover, if ℓ = 2, then system (4.17) reduces
to the single ordinary differential equation (1.5) with condition (4.7).
Therefore, the results of this section are generalizations of the results
of [4].

5. Uniqueness of the characterization for ℓ = 2. In the previ-
ous section, the equivalent condition for the uniqueness of the charac-
terization of continuous distributions by the regression (1.3) has been
proved. Unfortunately, although our criterion is surprisingly simple, it
appears to be very difficult to implement, even in the special cases of h
and ξ. This criterion is formulated in terms of integral equations which
are non-linear with respect to the unknown functions. Moreover, the
solution to (4.6) is required to satisfy the non-classical condition given
by inequality (4.7).

In the remainder of this paper we consider the desired uniqueness of
the characterization of continuous distributions by regression of GOSs
in the case when ℓ = 2 and, additionally, one of the following conditions
holds:

(i) h is bounded so that h(β) = limx→β h(x) < ∞;
(ii) h is unbounded so that h(β) = ∞, and ξ is asymptotically

linear transformation of h, i.e.,

lim
x→β

[ξ(x) − (ah(x) + b)] = 0

for some a ≥ 1.

In order to prove it, we need the following lemma, which discusses
auxiliary properties of solutions to the problem
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(5.1)


y(x) = y(α) + γ

∫ x

α

y(t) − h(t)

ξ(t) − y(t)
dξ(t),

h(x) < y(x) < ξ(x),

x ∈ (α, β).

Lemma 5.1. Assume that h, ξ : (α, β) → R are two arbitrary, strictly
increasing and continuous functions such that h(x) < ξ(x) for all
x ∈ (α, β). Suppose that γ > 0, and φ : (α, β) → R is a fixed solution
to problem (5.1). If y is any other solution, then

(i) y(x) ̸= φ(x) for all x ∈ (α, β);
(ii) either y < φ or y > φ on (α, β);

(iii) if z = |y − φ|, then z is strictly increasing on (α, β);
(iv) if h < y < φ and w = (φ− y)/(φ− h), then w(α) < w < 1,

and w is increasing on (α, β);
(v) if φ < y < ξ, and additionally γ ≥ 1 and w = (y − φ)/(ξ − φ),

then w(α) < w < 1, and w is increasing on (α, β).

Remark 5.2. In what follows, for brevity, we write
∫ x

α
f dg instead of∫ x

α
f(t) dg(t), if it does not lead to confusion.

Proof. Fix arbitrary x0 ∈ (α, β), and denote φ0 = φ(x0). Let

D = {(x, y) : x ∈ (α, β), h(x) < y < ξ(x)},

and choose ε > 0 small enough such that the ball

B = B((x0, φ0), ε) ⊂ D.

Consider the function K : D → (0,∞), given by

K(x, y) =
y − h(x)

ξ(x) − y
,

so that the integral equation in (5.1) becomes

(5.2) y(x) = y(α) + γ

∫ x

α

K(t, y(t)) dξ(t).

Then, for y1, y2 such that (x, y1) and (x, y2) are in D, we have

|K(x, y1) −K(x, y2)| =
ξ(x) − h(x)

(ξ(x) − y1)(ξ(x) − y2)
|y1 − y2|,
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so that K satisfies the Lipschitz condition with respect to y on B.
Standard methods show that the integral equation (5.2) with the
initial condition y(x0) = φ0 has the unique solution on the interval
(x0 − δ, x0 + δ) for some δ > 0 sufficiently small. Thus, if y is any
other solution to (5.1), then y(x0) ̸= φ(x0). This proves part (i) of the
lemma.

In order to prove part (ii), it suffices to note that φ and y are
continuous. Since their difference is never zero, it must be either
positive or negative on the entire interval of interest.

To prove part (iii), we first note that, if y and φ are any two solutions
to (5.1)), then

(5.3) y(x) − φ(x) = y(α) − φ(α) + γ

∫ x

α

(ξ − h)(y − φ)

(ξ − y)(ξ − φ)
dξ.

Thus, assume that y > φ, and consider z = y − φ. Since ξ is strictly
increasing and the integrand is positive on (α, β), it follows that z is
also strictly increasing. If y < φ, then it suffices to consider z = φ− y.

(iv) Let h < y < φ < ξ and w = (φ− y)/(φ− h). Setting f = φ− y
and g = φ− h in Lemma 4.2 for any x ∈ (α, β), we obtain

(5.4) w(x) − w(α) =

∫ x

α

1

φ− h
d(φ− y) −

∫ x

α

φ− y

(φ− h)2
d(φ− h).

The first integral in (5.4) is equal to∫ x

α

1

φ− h
d(φ− y) = γ

∫ x

α

(ξ − h)(φ− y)

(φ− h)(ξ − y)(ξ − φ)
dξ

=

∫ x

α

(ξ − h)(φ− y)

(φ− h)2(ξ − y)
dφ,

(5.5)

where the first equality follows from (5.3) applied to φ − y, and the
second equality follows from Lemma 4.1. Substituting (5.5) for (5.4)
yields

w(x) − w(α) =

∫ x

α

(φ− y)(y − h)

(φ− h)2(ξ − y)
dφ +

∫ x

α

φ− y

(φ− h)2
dh.

Due to the assumption h < y < φ, both of the integrands in the last
formula are positive. Therefore, w is increasing since φ and h are
increasing on (α, β).
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(v) If φ < y < ξ, then a similar approach applied to w =
(y − φ)/(ξ − φ) yields

w(x) − w(α) =

∫ x

α

y − φ

ξ − φ
dλ,

where λ(t) = y(t) + (γ − 1)ξ(t) + φ(t). Since γ ≥ 1, the function λ is
increasing. Due to the assumption φ < y < ξ, the integrand of the last
integral is positive; thus, w is strictly increasing. �

This lemma allows us to prove the uniqueness of the characterization
of distribution by regression of GOSs in the case when ℓ = 2. First, we
consider the case when h is bounded, i.e., h(β) < ∞.

Theorem 5.3. Assume that h, ξ : (α, β) → R are continuous and
strictly increasing functions such that h < ξ. If h(β) < ∞, then the
regression condition (4.5), i.e.,

E
(
h(X

(r+2)
∗ ) | X(r)

∗ = x
)

= ξ(x),

uniquely determines the continuous F by the inversion formula (4.8).

Proof. Recall that, by Lemma 2.2 (iv), we also have ξ(β) = h(β).
Let φ be any solution to integral equation (4.6) satisfying (4.7). Assume
that there exists another solution y. Then, for z = (y − φ)2, we have
0 ≤ z(x) ≤ (ξ(x) − h(x))2; thus, limx→β z(x) = 0. On the other hand,
z(α) > 0, and, according to Lemma 5.1 (iii), z is strictly increasing, a
contradiction. The conclusion follows from Theorem 4.4. �

Unfortunately, we were not able to find the proof of a corresponding
result in the case when h is not bounded, so that h(β) = +∞, which
is valid for any possible regression ξ. However, below, we prove the
uniqueness of the characterization in the case when the regression ξ
is asymptotically equivalent to a linear transformation of h, more
precisely,

(5.6) lim
x→β

[
ξ(x) − (ah(x) + b)

]
= 0.

Obviously, if this is the case, then necessarily, we have a ≥ 1 and b > 0
since ξ > h on (α, β). First, we need the following lemma.
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Lemma 5.4. Assume that ξ,Φ : (α, β) → R are any continuous
functions and ξ is strictly increasing with limx→β ξ(x) = +∞. Define
g : (α, β) → R by

g(x) = g(α) +

∫ x

α

Φ(t) dξ(t).

If limx→β Φ(x) = A ∈ (0,∞), then limx→β g(x)/ξ(x) = A.

Proof. This is an easy application of Stolz’s theorem. Let {xn}n≥1

be any strictly increasing sequence in (α, β) such that limn→∞ xn = β.
Then, for n ≥ 1, we have

g(xn+1) − g(xn) =

∫ xn+1

xn

Φ(t) dξ(t).

By the mean value theorem for Stieltjes integrals, for every n ≥ 1, there
exists a θn ∈ (xn, xn+1) such that

g(xn+1) − g(xn)

ξ(xn+1) − ξ(xn)
= Φ(θn).

Obviously, θn → β as n → ∞; thus, due to the assumptions on Φ, we
have Φ(θn) → A as n → ∞. By the classical Stolz lemma we obtain

lim
n→∞

g(xn)

ξ(xn)
= A,

which completes the proof. �

Theorem 5.5. Assume that h(β) = +∞, and ξ : (α, β) → R is a
continuous and strictly increasing function satisfying (5.6) for some
a ≥ 1. Assume that γ ≥ 1 and the problem (5.1) has a solution φ such
that

(5.7) lim
x→β

[
φ(x) − (ch(x) + d)

]
= 0

for some c ≥ 1 and d ∈ (0, b).

(a) If a = 1, then c = 1 and d = b/(1 + γ), and φ is the unique
solution to (5.1).
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(b) If a > 1, then c ∈ (1, a) is the unique solution to the quadratic
equation

(5.8) c2 + a(γ − 1)c− aγ = 0

in (1, a), and φ is the unique solution to (5.1).

Proof.

(a) Obviously,

1 <
φ(x)

h(x)
<

ξ(x)

h(x)
;

thus, if a = 1, then, trivially, c = 1, and by (5.6) and (5.7), we obtain

lim
x→β

φ(x)

ξ(x)
= 1

and
lim
x→∞

[
ξ(x) − φ(x)

]
= b− d > 0.

Setting

(5.9) Φ(x) =
φ(x) − h(x)

ξ(x) − φ(x)
,

we have Φ(x) → d/(b− d) as x → β and

φ(x) − φ(α) = γ

∫ x

α

Φ(t) dξ(t).

Applying Lemma 5.4, we get

lim
x→β

φ(x)

ξ(x)
= γ

d

b− d
.

On the other hand, we know that this limit must be equal to 1; hence,

(5.10) 1 = γ
d

b− d

and d = b/(1 + γ).

Now, if y is any other solution to (5.1) satisfying h < y < ξ, then

1 <
y(x)

h(x)
<

ξ(x)

h(x)
;
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thus, also, limx→∞ y(x)/h(x) = 1 and limx→β y(x)/ξ(x) = 1. If
φ < y < ξ, then we consider z = y − φ. From Lemma 5.1 (iii), z
increases from z(α) > 0 to a constant C ∈ (z(α), b− d]. Defining

(5.11) Ψ =
z + φ− h

ξ − φ− z
,

and letting x → ∞, we obtain

Ψ(x) −→ C + d

b− d− C
.

Again applying Lemma 5.4 to

y(x) − y(α) = γ

∫ x

α

Ψ(t) dξ(t),

and taking into account that y(x)/ξ(x) → 1 as x → β, we obtain

1 = γ
C + d

b− d− C
.

Comparing this equality with (5.10), we obtain C = 0, a contradiction.
If h < y < φ, it suffices to consider z = φ − y to obtain another
contradiction. Therefore, φ is the unique solution to (4.6).

(b) The proof for the case a > 1 follows the ideas of the proof of
part (a); thus, here, we only sketch it. Note that

lim
x→β

ξ(x)

h(x)
= a and lim

x→β

φ(x)

h(x)
= c.

This implies

(5.12) lim
x→β

φ(x)

ξ(x)
=

c

a
.

Rewriting Φ, defined by (5.9) in the form

Φ(x) =
φ(x)/h(x) − 1

(ξ(x)/h(x)) − (φ(x)/h(x))
,

and passing to the limit as x → β, we obtain

Φ(x) −→ c− 1

a− c
.
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Once again, by Lemma 5.4, we obtain

φ(x)

ξ(x)
−→ γ

c− 1

a− c

which, together with (5.12), leads to the quadratic equation (5.8). Since
∆ = a2(γ − 1)2 + 4aγ > 0, this equation has two solutions of opposite
signs. Define f(c) as the left-hand side of (5.8). Since a > 1, then
f(1) = 1− a < 0 and f(a) = aγ(a− 1) > 0; therefore, (5.8) has exactly
one solution in (1, a).

Now, if y is any other solution to (4.6), and, if the limit L(y) =
limx→β y(x)/h(x) exists, then similar reasoning using Lemma 5.4 shows
that L(y) ∈ (1, a) and

L(y)

a
= γ

L(y) − 1

a− L(y)
.

However, this is the equation defining a unique c; thus, L(y) = c for
any solution y to (4.6).

If φ < y < ξ, then, we consider w = (y − φ)/(ξ − φ). Then, by
Lemma 5.1 (v), w increases from w(α) > 0 to C ∈ (w(α), 1]. The
function Ψ defined by (5.11) can be rewritten as

Ψ =
(y − φ)/(ξ − φ) + Φ

1 − (y − φ)/(ξ − φ)
=

w + Φ

1 − w
.

Therefore, the limit of Ψ at β exists and is equal to [C + (c/γa)]/(1 − C).
On the other hand,

y(x) = y(α) + γ

∫ x

α

Ψ(t) dξ(t);

thus, from Lemma 5.4, we obtain the existence of the limit

lim
x→β

y(x)

ξ(x)
= γ

C + c/γa

1 − C
.

Writing y/ξ = y/h · h/ξ, we obtain the existence of the limit

lim
x→β

y(x)

h(x)
,

which implies
c

a
= γ

C + c/γa

1 − C
.
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However, this is only possible if C = 0, a contradiction. If h <
y < φ, then it suffices to apply analogous considerations to w =
(φ− y)/(φ− h) to arrive at another contradiction. �

Remark 5.6. Note that the assumption γ ≥ 1 is used only in part (b)
of the above theorem. We want to apply it with γ = γr+2/γr+1;
however, according to Remark 2.1, in general, we need not assume
that γr+1 ≤ γr+2.

Corollary 5.7. Assume that h, ξ : (α, β) → R are continuous and
strictly increasing functions such that h < ξ, h(β) = ∞ and ξ satis-
fies (5.6) for some a ≥ 1. If the problem (5.1) has a solution φ which
satisfies (5.7), then the regression condition (4.5), i.e.,

E
(
h(X

(r+2)
∗ ) | X(r)

∗ = x
)

= ξ(x),

uniquely determines continuous F by the inversion formula (4.8).

6. New characterizations of particular distributions. In this
section, we give new characterizations of particular distributions by the
single regression (1.3) of record values in the case when ℓ = 2, and, for
simplicity, h(x) = x, i.e., by the condition

ξ(x) = E
(
Rn+2 | Rn = x

)
.

We know that record values are GOSs with γi = 1; hence, using (2.2)
(see also (4.1) with γ = 1) we have a corresponding regression of adja-
cent record values

(6.1) φ(x) = E
(
Rn+2 | Rn+1 = x

)
=

1

F (x)

∫ ∞

x

t dF (t).

Utilizing Lemma 3.2 with ℓ = 2, we obtain

(6.2) ξ(x) = E
(
φ(Rn+1) | Rn = x

)
=

1

F (x)

∫ ∞

x

φ(t) dF (t).

In the first example, we show that, when F is a continuous distribu-
tion with density which is not continuous, then the regression ξ need
not be differentiable at some points.
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Example 6.1. Consider a mixture of uniform distributions with den-
sity and distribution function, respectively, given by

f(x) =
1

3
I[0,1)(x) +

2

3
I[1,2](x),

and

(6.3) F (x) =

{
x/3 for x ∈ [0, 1),

(2x− 1)/3 for x ∈ [1, 2].

Using (6.1), and after some elementary calculations, we obtain

φ(x) =

{
(x2 − 7)/(2(x− 3)) for x ∈ [0, 1),

(x/2) + 1 for x ∈ [1, 2].

Then, by (6.2), a simple computation leads to

ξ(x) =

{
(x2 + 6x− 21 + 4 ln((3 − x)/2))/(4(x− 3)) for x ∈ [0, 1),

(x + 6)/4 for x ∈ [1, 2].

It is easy to verify that ξ is continuous, but not differentiable, at
x = 1. However, β = 2; thus, h(β) < ∞, and the uniqueness of the
characterization of the continuous distribution (6.3) by this regression
of Rn+2 on Rn immediately follows from Theorem 5.3.

In the next example, we give a new characterization of a particular
gamma distribution by the regression of record values. Recall that
gamma distribution Γ(k, θ) on (0,∞), with parameters k, θ > 0, is
defined by the density function

f(x) =
θk

Γ(k)
xk−1e−θx, x ≥ 0.

Example 6.2. Consider gamma Γ(2, 1) distribution with f(x) = xe−x,
and F (x) = (1 + x)e−x for x > 0. We also use the following notation:

E(x) =
ex

x

∫ ∞

x

e−t

t
dt, x > 0.
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Elementary computations show that

E′(x) =

(
1 − 1

x

)
E(x) − 1

x2
,

and limx→∞ E(x) = limx→∞ E′(x) = 0. A series of elementary
calculations shows that φ(x) = x + 1 + 1/(x + 1), and therefore, if
F ∼ Γ(2, 1), then

ξ(x) = x + 2 +
2

x + 1
− E(x + 1), x > 0.

Now, we prove that this regression determines the gamma dis-
tribution Γ(2, 1) uniquely. Note that we cannot use Theorem 5.3
since h(β) = +∞. In addition, computations show that φ(x) =
x + 1 + 1/(x + 1) is a solution to

(6.4) φ′(x) =
φ(x) − x

ξ(x) − φ(x)
ξ′(x)

such that x < φ(x) < ξ(x) for x > 0. On the other hand, we have

lim
x→∞

[ξ(x) − (x + 2)] = 0, lim
x→∞

[φ(x) − (x + 1)] = 0.

Therefore, by Theorem 5.5 (a), we see that φ is the unique solution
to (6.4). From Corollary 5.7, we see that Γ(2, 1) is the only distribution
for which

E
(
Rn+2 | Rn = x

)
= x + 2 +

2

x + 1
− E(x + 1), x > 0.

In the next example, we extend the conclusions of the previous one
and show that each gamma distribution Γ(k, θ) is uniquely determined
by the corresponding regression

ξ(x) = E
(
X

(r+2)
∗ | X(r)

∗ = x
)

of GOSs. However, in contrast to the previous example, due to the
complicated computations involved, we do not determine an explicit

form for ξ and φ(x) = E(X
(r+2)
∗ | X(r+1)

∗ = x).
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Example 6.3. Recall that, for any distribution function F with
density f , we define the failure rate of F as

(6.5) λF (x) =
f(x)

F (x)
, x ∈ (α, β).

For Γ(k, θ), it is elementary to prove that, for any k > 0, we have

lim
x→∞

λF (x) = θ.

Applying the arguments from the proof of [4, Lemma 5], we see that

lim
x→∞

(
φ(x) − x

)
=

1

γr+2
lim
x→∞

1

λF (x)
=

1

bγr+2
,

and similarly,

lim
x→∞

(
ξ(x) − x

)
=

(
1

γr+1
+

1

γr+2

)
lim
x→∞

1

λF (x)
=

1

b

(
1

γr+1
+

1

γr+2

)
.

Therefore, for any gamma distribution, we see that the corresponding
regressions ξ and φ satisfy (5.6) and (5.7) with a = c = 1. Moreover,
by the proof of Theorem 4.4, we know that φ is a solution to prob-
lem (5.1). From Corollary 5.7, we infer that this is the unique solution
to (5.1), so the gamma distribution Γ(a, b) is uniquely determined by
the corresponding regression ξ.

In the next example, we identify the unique distribution on the
positive half-axis determined by the specific regression of record values
satisfying condition (5.6) of asymptotic linearity with a = 4 and b = 3.

Example 6.4. Set D = x2 + 2x + 2, and let F be the distribution
with density function f(x) = 2

√
2(1 + 4x + 2x2)D−5/2, for x > 0, and

F (x) = 2
√

2(1 + x)D−3/2.

Then, putting γr+1 = γr+2 = 1, we obtain

φ(x) = E
(
Rn+2 | Rn+1 = x

)
= 2x + 1 +

1

x + 1

and

ξ(x) = E
(
Rn+2 | Rn = x

)
=

1

x + 1

(
8 + 9x + 5x2 + D

3
2 ln

(
1 + x

1 +
√
D

))
.

(6.6)
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Then, limx→∞[ξ(x) − (4x + 3)] = 0 and limx→∞[φ(x) − (2x + 1)] = 0;
thus, by Corollary 5.7, we see that F is the only distribution for
which (6.6) holds.

In the last example, we show that, in general, the regression ξ need
not be an asymptotically linear function of h, so, in general, the problem
of uniqueness of the characterization by (4.5) is still open.

Example 6.5. Consider the distribution F such that

F (x) =
e

x(log x)1+a
, x ≥ e.

In this case, from the results of Nagaraja [18], we have E(Rn) < ∞
if and only if n < a + 1. Therefore, E(R3) < ∞ if and only if a > 2.
Then, for h(x) = x, we have

φ(x) = E
(
R3 | R2 = x

)
= x

(
1 +

1

a
log x

)
and

ξ(x) = E
(
R3 | R1 = x

)
= x

(
1 +

1 + 2a

a2
log x +

1

a(a− 1)
(log x)2

)
.

Therefore, ξ does not satisfy (5.6); hence, we cannot apply Corollary 5.7
to claim that this regression characterizes F .

7. Summary and discussion of the results. We present an en-
tirely new approach to the classic problem of characterization of con-
tinuous probability distributions by the regression functions of ordered
statistical data. This approach allows for a reformulation of the prob-
lem of the uniqueness of the characterization as the problem of the
uniqueness of the solution to an integral equation or a system of inte-
gral equations with a non-classical “initial” condition. Although our
results are proven for a general model of generalized order statistics,
they are new even in the most important special cases of order sta-
tistics and record values. As a result of the new approach, we obtain
new characterizations of distributions, and we prove that gamma dis-
tributions are uniquely characterized by the corresponding regression
of GOSs.
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The main results of the paper are illustrated with examples which
show that our considerations are necessary due to the possible lack
of differentiability of the regression functions (Example 6.1), but the
problem needs further study (Example 6.5). Examples 6.2, 6.3 and 6.4
show new results that were not possible to obtain without the results
derived in this paper, especially Theorem 5.5 and Corollary 5.7.

Now, we discuss the significance of our results from the point of
view of statistics. We prove new characterizations of distributions by
the regression of non-adjacent GOSs with ξ, other than the linear one.
We stress that, in this paper, no assumptions are imposed on either the
underlying F (except for the continuity) or on the parameter vector of
GOSs (except for the obvious integrability conditions), while in [4],
a quite restrictive assumption was imposed that F has a continuous
density (or, equivalently, that the regression ξ being considered has
continuous first derivative). Also, in [4], it was shown that the
condition λF (x) → +∞ as x → β, where λF is the failure rate defined
by (6.5), is sufficient for the uniqueness of the characterization, and
Example 6.3 shows that the condition is unnecessary.

We also underline the fact that we have presented a new technique of
the proof of the uniqueness of the characterization without knowledge
of the explicit form of ξ. This technique requires Theorem 5.5, which
cannot be proven in the present form without the use of integral
equations. It is possible to prove it using only differential equations,
but with the additional assumptions on the existence of the limits of
the derivatives ξ′ and φ′ at β.

On the other hand, the practical applicability of our results is
somewhat limited, as is explained in [4, Section 5]. Any potential
application would require a large amount of observed data, and it would
involve many numerical computations. Therefore, it would only give
approximations of the characterized distributions.

Finally, we discuss the relevance of our paper to the theory of integral
equations. We show an unexpected application of integral equations
in the area of statistical distribution theory since we have translated
the problem in probability and statistics to the language of integral
equations. In our opinion, its complete solution demands additional
insight from integral equations rather than from the point of view of
statistics. Also, in Section 5, we provide an exemplary analysis of the
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properties of the solutions to a non-linear integral equation with non-
classical “initial” conditions. This type of analysis may appear to be of
independent interest to the integral equations community. Moreover,
since our main results are quite difficult to implement, there are some
open problems remaining to be solved. For instance:

(1) Is it possible to extend Theorem 5.3 for ℓ ≥ 3?
(2) Does this (1) also apply in the case when h(β) = +∞ for ℓ ≥ 2?
(3) For given r, ℓ ≥ 1, the parameter models γ1, . . . , γr+ℓ, and the

function h determines necessary and sufficient conditions for any
function ξ to be a possible regression function of GOSs.

(4) Assume that ℓ ≥ 3 and ξ(x) = ax + b for some a > 0. From [7,
Theorem 5.1] and our Theorem 4.6, we see that system (4.13) with
the condition (4.14) has the unique solution φ = (φ1, . . . , φℓ−1). It
is elementary to prove that φi(x) = cix+di for some appropriately
chosen ci, di, 1 ≤ i ≤ ℓ − 1. The open problem is to prove the
uniqueness of φ directly, as this would give an independent proof
of [7, Theorem 5.1].

All of these problems most likely require a deeper knowledge of inte-
gral equations than the average statistician has. Ordinary differential
equations are too weak of a tool to tackle such problems since they are
insufficient, even for absolutely continuous distributions, and for con-
tinuous distributions, integral equations appear to be an appropriate
tool.
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9. A. Dembińska and J. Weso lowski, Linearity of regression for non-adjacent
order statistics, Metrika 48 (1998), 215–222.

10. , Linearity of regression for non-adjacent record values, J. Stat. Plan.

Infer. 90 (2000), 195–205.

11. T.S. Ferguson, On characterizing distributions by properties of order statis-
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