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ABSTRACT. In this article, we investigate the local ex-
istence of a unique mild solution to a reaction diffusion sys-
tem with time-nonlocal nonlinearities of exponential growth.
Moreover, blowing-up solutions are shown to exist, and their
time blow-up profile is presented.

1. Introduction. In the past few years, anomalous diffusion equa-
tions have been extensively investigated due to their importance of
applications in many fields: physics [6, 9, 10], mechanics [18], biology
[14], chemistry [15, 16], financial engineering [21], control theory [20]
and signal and image processing [5].

In this paper, we study the semi-linear system of nonlocal in time
and space reaction diffusion equations
(L.1)

1 t
us + (_A)W/QU = m/o (t — S)_’Yev(s) dS, S RN, t > O7

1 1
/ (t— s)_‘se“(s) ds, zeRN t>0,

AV 2y —
v+ (—A)1 2y Ti-9) /,
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supplemented with the initial data
(1.2) u(z,0) = up(x), v(z,0) = vo(z), xRN,

with ug,v9 € Co(RY), N >1,0<n<2,0<+,d <1andT is the
Euler gamma function. Here, u; stands for the derivative in time of u
and (—A)"/?2 for the fractional Laplacian operator defined by

(—A)"2u(e) = FHE"F (u)(€)(@),

where F~! is the inverse of the Fourier transform F, for u €
D((—A)"2) = H"(RY), where H"(RY) is the homogeneous Sobolev
space defined by:

H'(RY) = {u €8 (—A) 2y e L2(RN)} , ifn¢N,
H'(RY) = {u e L2(RY); (A2 ¢ L?(RN)} . ifpeN,
&’ is the Schwartz space and

Co(RY) = {u € C(R") such that u(z) — 0, as |z| — o0} .

From an application point of view, the nonlinear memory term of
exponential growth can be considered as a model of the Arrhenius
reaction effect associated with either chemical kinetics or combustion
phenomena [2].

Recently, the equation

1 t
w4 (—A) 2y = o / (t—s)"7e"®ds, zeRN, t>0,
0

I —

was considered in [1] which addressed local existence and blow-up
questions. Our work generalizes the previous results of Ahmad, Alsaedi
and Kirane [1] to the case of a system of two equations.

Our study is based on the observation that system (1.1) can be
written in the form
(1.3) up + (—A)" 2y = Joi(€”) we RY, t >0,

’ vt—i-(—A)”/Qv:JOﬁlt(e“) reRN t>0,

where a:=1-7 € (0,1), := 148 € (0,1) and J§, is the Riemann-
Liouville fractional integral of order 6 € (0, 1) defined in (2.11) below.
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This paper is comprised of five sections. In Section 2, we present
some definitions and properties. In Section 3, the existence of a unique
local solution of (1.1)—(1.2) is presented. In the next section, we prove
the existence of blowing-up solutions. Finally, in the last section, the
blow-up rate of solutions is obtained.

2. Preliminaries. We begin by recalling some basic definitions and
properties which will be useful throughout this paper.

First, the fundamental solution of the homogeneous linear fractional
diffusion equation

(2.1) u + (—A)"2u =0, ne(0,2], zecRY, t>0,
is given by
1 iw-e—tlg]”
— de.
2m)7 K ¢

It is well known that S,(z,t) satisfies
(2.3)

S, (1) € L®(RN)n LYRY), S, (x,t) >0, Sy (z,t) dx =1,
RN

(2.2) Sy(t)(x) = Sy(z,t) =

for all z € RY and ¢ > 0. Using the Young inequality for convolution
and the self-similar form of S, we have

(2.4) 185 (1)  vllg < Ct=N/MAr=1/a) |y,
forall v € L"(RY) and all 1 <r < ¢ < o0, t > 0;
(2.5) 195 (t) x vllq < [lvllq

for all v € LY(RY) and all 1 < ¢ < oo, t > 0, where * stands for the
space convolution.
Moreover, by Plancherel’s formula, we have
(2.6) / u(x)(=A)"2(z) de = / v(z)(=A)"?u(z) de,
RN RN

for all u, v € D((—=A)"/?) = H'(RN).
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Let ¢ be a nonnegative, smooth and bounded function. Then, the
following inequality [4, 11]

(2.7) L' M (=2)"2p > (—2)"2,

holds for all I > 1.

Let S(t) = et "% Since (—A)"2 is a positive definite self-
adjoint operator in L2(RY), S(t) is a strongly continuous semigroup
on L?(RY) generated by —(—A)"/? (see Yosida [22]). It holds S(t)v =
S, (t) * v for all v € L2(RY), t > 0, where S, is given by (2.2).

We denote by A?)/Q the fractional Laplacian in an open bounded
domain 2 with homogeneous Dirichlet boundary conditions. We recall
the following facts:

If A\ (k € N*) are the eigenvalues of —Ap with homogeneous Dirich-
let boundary conditions considered in L?(£2) and ¢y, is its corresponding
eigenfunction, then

AY2 0 = A0, in Q,

(2.8)
pr =0, on 0%,

with

D(Ayz) = {u € L*(Q) such that ujpo =0,
n/2 n/2
A ull 2y =Y I u, 1) < oo}.
k=1

Then, for u € D(A"D/Q), we have

oo

(2.9) AW =3 N u, on) o
k=1

The formula of integration by parts

(2.10) /Qu(x)Az)/zv(x)dx:/Qv(x)Az)/zu(m) dx

holds true for all u, v € D(A?).
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Next, the left- and right-handed Riemann-Liouville fractional inte-
grals of order 6 € (0,1) are defined as

(21) 0= g5 [ 0= ps)as
1 T
(2.12) T f(t) = @/f (s — )01 (s) ds

for all f € LP([0,7]), T > 0,1 < p < oo and T is the Euler gamma
function.

Let AC(]0, T)) be the space of functions that is absolutely continuous
n [0,7]. The left- and right-handed Riemann-Liouville fractional
derivatives of order 6 € (0,1) are defined as

@13 D0 = g [ -9 i

T
Q1) Dlpf )=~y g [ =07 ds

for all f € AC([0,T]). Furthermore, for every f, g € C(|0,T]) such that
Dgltf, Dfng exist and are continuous, for all ¢ € [0,7] and 6 € (0, 1),
the formula of integration by parts can be given by [19]

T
(2.15) /0( 0|tf t)dt = / f(t) t|Tg () dt.

Note also that, for all f € LP([0,T]), 1 < p < oo, we have [12]

(2.16) (Do) (1) = f(1).
Moreover, for all f € AC%([0,T]), we have [12]
(2.17) @ D f(t) = DI £,

dt

where AC2([0,T]) :== {f : [0,T] — R; f € AC([0,T)) and f’ €
AC([0,T7)}.

Let wi(t) =(1—-t/T)%,t>0,T >0, 0> 1. Then

(1—60+0)T(c+1), t\7°
(2.18) Dfjpwy (t) = F@ 05 0) T 9(1—) ,
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(2.19)

. (1=0+0)(o—O(0+1) (5 AN
Dte\; wy (t) = T@— 0% o0) -0+ )<1—T>

for all 8 € (0,1); hence,
(2.20) (Dfpwi)(T) =0;  (Dfjpw1)(0) = CT,

where

(1= 0+0)(c+1)
(2.21) C= o gra

3. Local existence. In this section, we show the local existence
and uniqueness of a mild solution of (1.1)—(1.2) by applying the Banach
fixed point theorem. We define a mild solution of (1.1)—(1.2) as follows.

Definition 3.1 (Mild solution). Let ug, vg € L¥(RY), 0 < n < 2
and T > 0. We say that (u,v) € C([0,T]; Co(RY) x Co(RY)) is a mild
solution of system (1.1)—(1.2) if (u,v) satisfies the following integral
equations

B0 u(t) = St u0+/ S(t—5)Jg,(*D)ds, te[0,T],

32 () UO+/ S(t— )70 (*)ds, te0,T].

Theorem 3.2 (Local existence). Let ug, vg € Co(R™). Then, there
exist a mazimal time Tyax > 0 and a unique mild solution (u,v) €
C([0, Timax); Co(RYN) x Co(RY)) of problem (1.1)—~(1.2). Furthermore,
we have the alternative:

(i) either Thax = +00;
or

(ii) Tmax < +oo and limyr,,, ([u(t)|ze@y) + [[0@)][ Lo @y)) =
+oo. In addition, if ug, vo > 0, ug 0, vo Z 0, then u(t), v(t) > 0 for
all 0 < t < Tyax. Furthermore, if ug, vo € L"(RY), for 1 < r < oo,
then (u,v) € C([0, Tmax); L™ (RY) x LT (RN)).
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Proof. For T > 0, we define the Banach space

(33) Br={(u,v) € C(10,T); Co(R™) x Co(R));
s )]l < 2(lwolloo + lvolloo) }
where || [lao := || - || e vy and

[ (w, )| = [Jully + [Jvll1 := [Jull Lo (o, 735200 @Y )) + V][ Lo ([0, 775200 (V) -

Next, for every (u,v) € Er, we introduce the map ¥ defined on Er
by ©(u,0) = (¥ (4, 0), Us(u,v)), where

(3.4) Uy (u,0) = S(t)uo + /0 S(t — )5 (") ds,

(3.5) Uy (u,v) = S(t)vg + /0 S(t— s)JOﬁs(eu(T)) ds.

We shall prove the existence of a local solution as a fixed point of
¥ via the Banach fixed point theorem. For this purpose, we first show
that it maps Er onto Ep. Let (u,v) € Ep. Using (2.5), we obtain

1 t ps
1G] < ol + s || [ [ 5= e drds
P =2o Jo L([0.1))
1 t prs
+ HUO” 4+ — // (5_7')75”6“(7)” dr ds
I r(-96)Jo Jo o Loo([0.71)
< HU‘O”OO + # /t/t(s—T)_76|v(7')|oo ds dr
T =2 llJo Jx (0,7
+ Hvolloo+# /t/t(S_T)éeluwx ds dr
FA=0)llJo J- L=([0.7))
< H ” n e”““l T—’y+2
S U0 oo
FA—=y) X =7)2-7)
e”ulll T—0+2
+ HUO”OO +

T1—0)(1—0)2—0)
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1
= clvlip=r+2 lullip—o+2
rB3—7)° HCEN

T—-v+2  T—0+2
I@3—7)’ F(3—5)}

< [luolloo +volloo +

< |uo||oo+|vo||oo+e2<luoIw+lvolm>max{
Now, choosing T small enough such that

(3.6)
1 1
2(|luolloc+Ilvollo) T—7+2 T—6+2\
€ max {F(S—’y) ’ 1‘\(3_5) }HUOHOO—’_UOHKM

we conclude that U(u,v) € Ep.

Next, we show that ¥ (u, v) is a contraction map. Letting (u,v), (u,v) €
Er, we have

1 (u, v) = W (u,v)|

t
S'/S(tS)Jms( v _ (M) ds
1
/St—sJﬁ o “(T)ds
H/ / 5=t - “‘ﬂn ds dr
Fd=y L([0,T1)
H/ / s—7) e — " dsdr
r-s Lo ([0,T1)
<1 2(luolleetlvolleo) P42, _
= I‘(3—'y) [v ="l
L o(fuollootlvollo) pbtay,, _ =
- oo oo T _
T F(g,(;)e [l —allx
T—’Y+2 T—6+2
< o2(lluolloctlIvoll) .
> e max 1—\(3 _ ,y)’ 1—!(3 _ 5) H(U" U) (u,'U)”
1 -
S 5”(“3 U) - (U,,U)H,

due to the equality
(3.7) - -
(") — T = MO () ()], 0< A <A+ =1,
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and where T is chosen small enough such that

l\DH—\

1 1
5.8) e2(luollatlvoll0) T2 rosre)| o
(38) e M\ T4 | T(B-9) =

Consequently, by the Banach fixed point theorem, system (1.1)—(1.2)
admits a mild solution (u,v) € Er.

o Uniqueness of the solution. Let (u,v), (u,?) € Er be two mild
solutions in Ep for T > 0. Using (2.5) and (3.7), we have, for ¢t € [0, 7],

[u(t) — ()Iloo+||v t) = o)l

1 // (s —7)77e?™) — || d7 ds

+17—/ / (s — 7)) — %), dr ds
<E oo M // s—7)77e’™ — | dsdr

—i—m/o /T(s—T)_‘SHe”(T)—eﬂ(T)HoodsdT

1 /t 1 .
<7 t— 7)) — () oo dT
<t ), -0 ||

1 t _
- t— 1-6) u(r) _ Ju(r) - d

1 t
< 762(uuoum+uvonx>/ ¢ Aol — B dr
_F(2—'y) 0( ) ||() ()Hoo
1 : R
+ mgmgye ) [ (= o) () = )l dr
Hence, for
1 1
K = 2(lwollsetlvollee)
e max F(Qf'y)’ T2—0)
and

_Jmin{y,é} if (t—7) > 1,
J(r.0) = {max{fy,é} if (t—71)<1,

we conclude that
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[u(t) = u(®)lloo + [[0(t) = U)o
<K/ ) O lul(r) = a(r) e + llo(r) = 3(7)lloc] dr,

and, by Gronwall’s inequality [3], we obtain the uniqueness.

As is standard, the solution may be extended to a maximal interval
[0, Tinax) with the alternative described in the theorem.

e Positivity of solutions. If ug, vg > 0 and ug # 0, vg # 0, we have
from (3.1) and (3.2),

u(t) > St)ug >0, t € (0, Tmax)s
U(t) 2 S(t)'UO > Oa t 6 (Ovﬂnax)~

e Regularity of solutions. If ug, vg € L"(RY), for 1 < r < oo, then
applying the fixed point argument in the space
Er, = {(u,v) € C([0, T} (Co(RY) N LT (RY)) x (Co(RY) N L"(RY)));

[1(w, )] < 2([[uolloe + llvollo); [1(2; v)lloo,r < 2([Juollzr + [lvollzr)},
instead of E7, where
[ (ws V) loo,r = lull oo (o, 77; 2 YY) + 1Vl Los (0,737 YY) 5

we obtain a unique mild solution (u,v) in Egp . O

4. Blowing-up solutions. In this section, we prove the blow-up

result for system (1.1)—(1.2). Before stating our result, we define the
weak solution of problem (1.1)—(1.2).

Definition 4.1 (Weak solution). Let ug, vo € L (RY) and T > 0.
We say that

(U ’U) € LP((O T) L]OC(RN) X LIOC(RN))

is a weak solution of (1.1)—(1.2) if it satisfies the following equations
(4.1) / o(x)p(z, 0 dm+/ / J§ (e ) o, t) da dt
RN

N /o /RN ul, t)(—A)"?p(x, t) dr di
_/OT /RN u(z,t)py(x,t) de dt,
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T
[ e dea,
0o JrN
for any ¢, ¢ € C1([0,T]; H"(RY)) such that p(z,T) = ¢(z,T) = 0.

Lemma 4.2. Let T > 0 and (u,v) € C([0,T], Co(RN) x Co(RN)). If
(u,v) is a mild solution of (1.1)—~(1.2), then (u,v) is a weak solution of
(1.1)(1.2).

The interested reader is referred to [7] for the proof of this lemma.

Theorem 4.3. Let ug, vg € Co(RN) with ug > 0, ug # 0, vo > 0,
voZ0,0<n<2and~y, § € (0,1). Then the solution of (1.1)—(1.2)
blows-up in a finite time.

Proof. The proof is based on a contradiction argument and follows
along the lines of [17]. Suppose that (u,v) is a global mild solution
of (1.1)—(1.2). Then, (u,v) is a mild solution of (1.1)—(1.2) where
u, v € C([0,T],Co(RY)) for all T > 1, such that u(t), v(t) > 0
for all t € (0,T]. Moreover, according to Lemma 4.2, we have

T
uo(z)p(z x & (V@ (z x
4 [ e 0 [ e et de
:/ / w(z, t)(=A)" 20z, t) da dt
0 JrN

T
—/ / u(z, t)ps(x,t) dr dt,
0o JrY

—/T/ v(z, t)(x, t) dz dt,
o JrN
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where T > 1, p, ¢ € CY[0,T]; H"(RY)) such that op(z,T) =
Y(z,T) = 0. Let p € C*([0,T); H"(RY)) with

o(z,t) = e1(t)h(x), 1> 1,
where

t o
p1(t) = (1 - ) , o0>1, oeven,
Ly

eate) = €( 77 ).

and £ is a regular function such that

1 ifz<l,
) =9\ if1<z <2,
0 ifx>2,

with ¢ € C?(R).
At this stage, we take Dfi.¢ = cplz(x)DtO“T(l — (t/T))% instead of ¢
in (4.3) and Dfngo = Lpé(.’l?)Dﬁ (1—(t/T))3 instead of ¢ in (4.4). This

T
yields
[ wole) Dzt 0+ [ Iu(e ) Dot
(45) = [ (=87 Dreta.
—/ u(z t)iDa oz, t)
O ) dt t|T s U)y
and
/Qvo(m)Dfngo(z,O)—F/ﬂ J(ﬁt(e"(mfr))DﬁTga(x,t)
(4.6) :/Q U(J;,t)(—A)"NDﬁTcp(a:,t)

d s
_/QT 'U(xvt)%DﬂTﬁp(xat)v
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with Q7 = [0,T] x Q, Q = {z € RY; |z < 27/},

T
/2/ dr and / :/ /dmdt.
Q Q Qr 0o Jao

Using the integration-by-parts formula (2.15), (2.16) and (2.20) on the
left-hand sides of (4.5) and (4.6), and (2.17) on the right-hand side, we
obtain

ClT‘a/Quo(x)sﬁé(x)jL/QT " " (x, t)
:A;M@prw”%<>ﬁwﬂﬂ

+ [ e Dt
and
Cy7? / vo(z) b (x) + / @0 o(z, 1)
Q Qr
= | oAy @D 1)
+/Q v(x,t)Dtll;’ggo(%t).
Moreover, in light of (2.7) and the properties of ¢y, we have
@ or / o ()b () + / "0 oz, 1)
Q Qr
<1 /Q ul, 065 (@) (=AY 2 (2) Do (1)
+ [ e eb@ Dl o).
<t e DI-A)" (@) D)
+/ u(e, )DL (1) = 1Ty + 7,
Qr

and
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48) a1 [ wi)hio)+ [ (e )
<t ol ek @) (-8 o)D)
Qr
- ol @D 0),
<t ol DA @) Dipea(t
Qr

+/ (513 t)Dt\T 301( ) ZIQ +j2
Qr
Using Young’s inequality [8] (e = exp(1))
B
AB §seA+Bln—€ for A,B >0, >0,
e

with e = 1/(4l)p(z,t), A=wand B = |(_A)"/2<p2(gp)\foT<p1(t) in 7y,
we obtain

4]
T S/Q |(—A)n/2<P2(95)|D?|(T<P1(t> ln( !

—A)"/2<P2($)|D?|T<Pl(f))
eph()p1(t)

1
il u(w,t) ).
+ 4l QT € SD(',L‘7 )

Similarly, for J; with e = (1/4)p(z,t), A=wu and B = D1|T p1(t), we
obtain

1 AD, o1 (1)
jl < 7/ u(ac t) .Z‘ t / D1+o¢(p1 ( )
14 Jq, 0T eph ()1 (t)

Then, from (2.18) and (2.19), it follows that
@9 T < [ 1A an@lDire
T

1 (O e T20 — (/D)
eph ()

1 u(zx,t)
il ) t
+ 1 QTe o(z,t),

and
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1 .
(4.10) J1 < Z/Q @D (1) —i—/Q DllT p1(t)
T

n AC;T= V(1 — (¢/T)) ;7"
1 ( eeh(@) )

where
(I1—a+o)l(c+1)

C1= I2—a+o)

and
(I1-a+o0)(oc—a)'(c+ 1).

r'2—-a+o)

Cs =

A similar argument applied to Iy with e = 1/(4l)p(x,t), A = v and
B = |(=A)"?py(x )|Dt‘T¢;1( ), and for Jo with e = (1/4)p(x,t), A=wv
and B = Dtl‘;ﬁgpl( ), gives

(411) Tr < /Q (=) 204 (@) Dl o1 (1)

‘In <4l02|<—A>"/2w2(x)|T—5(1 — ®/T)); ﬁ)
eph(x)

1
t o [N,
4l Jo.,

and

1
(412) 7> < 4/9 e’ (a, t) / Dt1|-’;ﬁ()01
T

(AT @)
! ( oo (@) )

where
(1-84+0)T(c+1)

r2-B+o)

Cy =

and (1=B+0)lo = AT +1)

r2—-pg+o)
Using (4.9) and (4.10), inequality (4.7) becomes

Cy =
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(4.13)
—« vzt 1 ua:,t
et [+ [ e amn<g [ e
+ / |(—)" 2, (2)| Do (£)
Qr

AICH |(= )" 2o ()| T~ (1 = (¢/T))5°
1 (HCUCAP AT WV [ g

eph ()

| (ACT e ( — ay)
! ( el(@) )

Similarly, taking into account (4.11) and (4.12), inequality (4.8) be-

comes
(4.14)
0t @@+ [ o <3 [ e
T
[ A @I D)

In (4ZC2|(—A)’7/2<92(»’6)|T_’5(1 — (t/T))IB)
eph ()
) 4C,T —(B+1) 1— T —B-1
/ Dyl i ()1 ( . )(t/ DE )

ewy (T

Now, combining (4.13) and (4.14) and as ug, vp > 0, we get

| ettt
Qr
4
<4 /Q (= A)"?p3(a) | Do (1)

3
(O (=A)" 2o ()| T (1 = (¢/T))3"
1“( e (@) )
4 Ita AC3 T~ (D (1 — (#/T)) 3"
(4.15) + 3 /QT Dt‘T ©1(t) 1n< @) >

L2 / (= 8)"245(2) D]} (1)
Qr
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. (4z02(—A)"/2<p2(x)lT‘5(1 — (t/T))lﬁ>

ewh(x)
2 [ s g (ACT OV — (/7))
+:a/thT ()] ( oo (@) )
and
(4.16) )
/Q (e 1) < 21 /Q |(~A)" s ()| DE pion (1)
eph(x)
. 40, T+ (1= (/7)) 77~
/ Dz er(0)] ( —aAm )

v / 18)" 2 ea(@) Do (1

G A s ()T (1 — (/T))S"
n ( e (2) )

2 4Cs T~ (D (1 — (/7)) 7
o [ pieon(S )

We pass to the scaled variables 7 = t/T and y = 2/TY", T > 1. Tt
follows that

(—A2)" 20y = T7H(=A)" s,
Dgppr = CT~(1 —1)7°,
Dﬁﬂﬂl =CoTP(1 - T)i_Ba
Dyioy = CyT~ (et (1 — 7)Y

)

and

Dtll-;ﬁcpl C4T—(/3+1)<1 _ T)jfr*(ﬁJrl).

Now, we set Qy = [0,1] x {y € RV |y| < 2} and

/ :/ dy dr.
Qz Qz
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Using these definitions, (4.15) and (4.16) can be rewritten as

(4.17)

4
/Q ev(r,t)@(x’t) < Clng(N/”)’“ (—Ay)"/2g02(T1/’7y)|
T

|
Qo

~ { In (‘”Cl |<—Ay>"/%2<T1/”y>|) ~ Un(pa(TV7y)

e

—aln(l—7)y — (1+«) lnT}

4
+Cagrire

{10 (52) = thaGeatriiry)
Qo

—(a+1)In(1 —7)4 — (a+ l)lnT)}

2
+ Cag TN ||,y (T )

|
Q2

Ao (M) - Dea(Th)
—BIn(l—7), — (1+8) lnT}
{m <4f4> — Un(po (T y))

- B+1)In(l—7)y — (B+ 1)lnT},

+C’42T(N/77)*3/
3 Q

and
(4.18)
4
[ e 0oty < Cogt? 5 ||, 2y
QT 92

i (T 12 2o )] ) = Gl

—Bln(l—-7)+ —(1+P) lnT}

- C4§T(N/")‘B/ {m (404> — 1n(po (T )
5 (&

Q
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B+ —7),— (B + 1)1nT}
+ Clng(N/n)fa/ |(—Ay)”/2<p2(T1/"y)|
3 Q0
| {1“ (4l60 1 |<—Ay>"/2so2<T”"y>|) — (s (1))

—aln(l-7)y — 1+« lnT}
+C’3§T(N/")‘“/ {m (“j’) — Un(pa(T"y))
Q2

—(a+1)In(1 —7)4 — (a+ l)lnT}.

Thus, we have two bounded functions: o and (—Ay)”/ 25 in Qy and
po — 1 as T — 4o0.

Using Lebesgue’s dominated convergence theorem, we deduce that the
right hand sides of (4.17) and (4.18) diverge to —oo when T' — +o00,
while the left hand sides are positives. This leads to a contradiction. [

5. Blow-up rate. In this section, we study the profile of solutions
near the blow-up time. For this, we will derive an upper and lower
bound for the blow-up rate.

Theorem 5.1. Let ug, vg € Co(RN), ug >0, ug Z0, vg >0, vg # 0,
and let (u,v) be the blowing-up solution of (1.1)~(1.2) at Tyax = T
Then, there exist four positive constants ¢; < Cl, i =1, 2, such that

In (cl(T* — t)*(Q*‘s)) < sup u(z,t),
TzERN

In (CQ(T* - t)_(2_7)) < sup v(z,t),

z€RN

fort e (0,T%), and

u(z,t) < In (c;(t* - t)_(2_5)) :
v(z,t) <ln (Cé(t* — t)_(2_7)) ,

fort € (0,t*) where t* is the blow-up time of the non-diffusive system.
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Proof. The proof consists of two steps.

I. The lower bound. If we repeat the same proof of the local existence
in Theorem 3.2 by taking ||uly < M; and |jv]; < Ms instead of
[[(w, v)]| <2 (JJuoplloo +||v0|loo) in the space Er for all positive constants
My, My >0 and all 0 <t < T, then the condition on 7" will be

1
luolloc + T2 77eMe < My, (T2 TN < o

and

lvolloo + T2 0™ < My, dT? 0™ <

)

N —

where 1 1
c=——— and ¢=——.

T3 —7) T(3—9)

By the same reasoning, we deduce that ||[u(t)]ecc < My and [|v(t)|leo <
M, for all t € (0,T), whereupon, if

||2o]] 0o +et>VeM2 < My, et?TVeM2 <

DN | =

and

1

lvolloe + ¢t <My, 1270 < o,

then [|u(t)]lco < M; and ||Jv(t)]|eo < Ma. Applying this to any point in
the trajectories, we see that, if 0 < s < ¢t and

My —u(s) | 2 1
5.1 t—s)?r < — 270X t— v <
1) -t e g
and
5 Mz — (s - 1
2—4§ 2 00 2—6
(t=9)"" < ceM ’ (=)= 2¢/eMr’

then we deduce that ||u(t)||co < M1 and [[v(t)||ee < Mo for all 0 < ¢

< T. Moreover, if 0 < s < T*, ||u(9)|loc < M7y and ||v(s)]|ec < M2,

then

My — [Ju(s)]l
ceM2

1
2ceMz2’

(5.2)  (T* —s)*7 > . (T =) >
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and
1
2c¢eM1”

In fact, arguing by contradiction and assuming that, for some M; >
[[w(8)]|oos Ma > ||v(s)]|eo and all ¢ € (s, T*), we have

My — [[o(8)]loo

(T* _ 8)2—6 > 3, , (T* _ 8)2—5 >

—y My —u(s)]l _ 1
— g2 ! o0 _ )27
(=577 < ceM2 ’ (=57 < 2ceMz’
or
_s _ Mz —jv(s)|l - 1
2—68 2 ) 2—6
(t=s) = c'eM ’ (t=s) = 2cleMr”

Then, using (5.1), we infer that ||u(t)||cc < M7 or ||v(t)]|ee < Mz for
all t € (s,T%); this is a contradiction to the fact that

[w(t)]|oo — 00

and
lv(t)]|oo —> 00 ast — T*.

Next, letting M7 = |Ju(s)]|co +1 and Mz = ||v(s)|lco + 1 in (5.2), we see
that, for 0 < s < T*, we have

(T* = 8)277 > cpe POl and (T* — 5)?7° > ¢ 14,
Since u and v are continuous and positive, we obtain

In(c (T* — )~ 2=9) < sup u(z, s)
z€RN

and
In(co(T* — 5)~ =) < sup v(x,s),
z€RN

for all s € (0,7%).
I1. The upper bound. Let (u(t),v(t)) be the solution of the system

1 k -
' (t 27/ t—s)e"®ds, t>0,
(t) T ] 0(

I—vy

_ 1 /t —5 ;u(s)
= —— — uls d t
T (t) T =9) J, (t—s)"’e s, t>0,

(5.3)
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with the initial conditions

5.4 u(0) = d v(0) = .

G4)  6(0) = maguo(e) and T(0) = max vo(x)

Through comparison, we see that (@, v) is an upper solution for (u,v).
Moreover, following the lines of [13], we can show that the solution to
(5.3)-(5.4) blows up in a finite time ¢t*, and the profile near the blow-up
time is given by

T(t) ~ (2 — 6)In (1)

t*r—1

and

W(t) ~ (2 — ) In <

- t)’ ast — t*.

Consequently, we have the upper bound
u(z,t) <In (C;(t* - t)’(Q"S))

and
v(z,t) <In (C;(t* - t)’(2’7)> : O
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