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ABSTRACT. In this article, we apply Mönch and Engl’s
fixed point theorems associated with the technique of mea-
sure of weak noncompactness to investigate the existence of
random solutions for a class of partial random integral equa-
tions via Hadamard’s fractional integral, under the Pettis
integrability assumption.

1. Introduction. Fractional differential and integral equations arise
in a variety of areas of biological, physical and engineering applications,
see [22, 32]. There has been a significant development in ordinary and
partial fractional differential and integral equations in recent years; see
the monographs of Abbas et al. [1, 2], Kilbas et al. [24], Miller and
Ross [25] and Zhou [37, 38] and the papers of Abbas et al. [4], Ben-
chohra et al. [11], Wang et al. [33, 34, 35, 36], Zhou et al. [39], and
the references therein. In [14], Butzer et al. investigated properties
of the Hadamard fractional integral and derivative. In [15], they ob-
tained the Mellin transform of the Hadamard fractional integral and
differential operators, and in [30], Pooseh et al. obtained expansion
formulas of the Hadamard operators in terms of integer order deriva-
tives. Many other interesting properties of those operators and others
are summarized in [31], and the references therein.

The measure of weak noncompactness is introduced by De Blasi
[16]. The strong measure of noncompactness was developed first by
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Banas̀ and Goebel [7] and subsequently developed and used in many
papers, see for example, Akhmerov et al. [5], Alvàrez [6], Benchohra
et al. [12], Guo et al. [19], and the references therein. In [12, 28], the
authors considered some existence results by applying the techniques
of the measure of noncompactness. Recently, several researchers ob-
tained other results by application of the technique of measure of weak
noncompactness; see [2, 9, 10]. Existence of random solutions for func-
tional differential and integral equations has extensively been studied
in various papers, see [3, 8, 17], and the references therein.

This article deals with the existence of solutions to the following
random Hadamard partial fractional integral equation of the form:

(1.1)

u(x, y, w) = µ(x, y, w) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1

× f(s, t, u(s, t, w), w)

stΓ(r1)Γ(r2)
dt ds,

if (x, y) ∈ J , w ∈ Ω, where J := [1, a]× [1, b], a, b > 1, r1, r2 > 0,

µ : J × Ω −→ E, f : J × E × Ω −→ E

are given continuous functions, (Ω,A, ν) is a measurable space, Γ(·) is
the Euler gamma function and E is a real (or complex) Banach space
with norm ∥ · ∥E and dual E∗ such that E is the dual of a weakly
compactly generated Banach space X.

2. Preliminaries. In this section, we introduce notation, defini-
tions and preliminary facts which are used throughout this paper.

Let C := C(J,E) be the Banach space of continuous functions
u : J → E with the norm

∥u∥C = sup
(x,y)∈J

∥u(x, y)∥E .

Denote by L∞(Ω, ν) the Banach space of measurable functions

u : Ω → C,

which are essentially bounded and equipped with the norm

∥u∥L∞ := inf{c > 0 : ∥u(w)∥C ≤ c, a.e. for ω ∈ Ω}.
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Let (E,w) = (E, σ(E,E∗)) denotes the Banach space E with its weak
topology.

Denote by (E,w) = (E, σ(E,E∗)) the Banach space E with its weak
topology.

Definition 2.1. A Banach space X is called weakly compactly gener-
ated (WCG) if it contains a weakly compact set whose linear span is
dense in X.

Definition 2.2. A function h : E → E is said to be weakly sequentially
continuous if h takes each weakly convergent sequence in E to a weakly
convergent sequence in E, i.e., for any (un) in E with un → u in (E,w)
then h(un) → h(u) in (E,w).

Definition 2.3 ([29]). The function u : J → E is said to be Pettis
integrable on J if and only if there is an element uj ∈ E corresponding
to each j ⊂ J such that

ϕ(uj) =

∫∫
j

ϕ(u(s, t)) dt ds

for all ϕ ∈ E∗, where the integral on the right hand side is assumed to
exist in the sense of Lebesgue, (by definition, uj =

∫∫
j
u(s, t) dt ds).

Let P (J,E) be the space of all E-valued Pettis integrable functions
on J , and let L1(J,R) be the Banach space of Lebesgue measurable
functions

u : J −→ R.

Define the class P1(J,E) by

P1(J,E) = {u ∈ P (J,E) : φ(u) ∈ L1(J,R), for every φ ∈ E∗}.

The space P1(J,E) is normed by

∥u∥P1 = supφ∈E∗

∥φ∥≤1

∫ a

1

∫ b

1

|φ(u(x, y))| dλ(x, y),

where λ stands for a Lebesgue measure on J .

The next result is due to Pettis, see [29, Theorem 3.4, Corollary
3.41].
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Proposition 2.4 ([29]). If u ∈ P1(J,E) and h is a measurable and
essentially bounded E−valued function, then uh ∈ P1([0, a], E).

In what follows, the sign “
∫
” denotes the Pettis integral. We recall

the definitions of Pettis integral and Hadamard integral of fractional
order.

Definition 2.5 ([20, 24]). The left sided mixed Pettis Hadamard
integral of order q > 0 for a function g ∈ P1([1, a], E) is defined as

(HIr1g)(x) =
1

Γ(q)

∫ x

1

(
ln

x

s

)q−1
g(s)

s
ds.

Remark 2.6. Let g ∈ P1([1, a], E). For every φ ∈ E∗, we have

φ(HIr1g)(x) = (HIr1φg)(x), for almost every x ∈ [1, a].

Definition 2.7. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For
w ∈ P1(J,E), define the left sided mixed Pettis Hadamard partial
fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
ln

x

s

)r1−1(
ln

y

t

)r2−1
w(s, t)

st
dt ds.

Let βE be the σ-algebra of Borel subsets of E. A mapping v : Ω → E
is said to be measurable if, for any B ∈ βE , we have

v−1(B) = {w ∈ Ω : v(w) ∈ B} ⊂ A.

In order to define integrals of sample paths of random process, it is
necessary to define a jointly measurable map.

Definition 2.8. A mapping

T : Ω× E −→ E

is called jointly measurable if, for any B ∈ βE , we have

T−1(B) = {(w, v) ∈ Ω× E : T (w, v) ∈ B} ⊂ A× βE ,

where A× βE is the direct product of the σ-algebras A and βE those
defined in Ω and E, respectively.
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Lemma 2.9 ([17]). Let T : Ω×E → E be a mapping such that T (·, v)
is measurable for all v ∈ E, and T (w, ·) is continuous for all w ∈ Ω.
Then, the map

(w, v) 7−→ T (w, v)

is jointly measurable.

Definition 2.10 ([21]). A function

f : J × E × Ω −→ E

is called random Carathéodory if the following conditions are satisfied:

(i) the map
(x, y, w) −→ f(x, y, u, w)

is jointly measurable for all u ∈ E, and
(ii) the map

u −→ f(x, y, u, w)

is continuous for almost all (x, y) ∈ J and w ∈ Ω.

Let T : Ω × E → E be a mapping. Then T is called a random
operator if T (w, u) is measurable in w for all u ∈ E, and it is expressed
as T (w)u = T (w, u). In this case, we also say that T (w) is a random
operator on E. A random operator T (w) on E is called continuous,
respectively, compact, totally bounded and completely continuous, if
T (w, u) is continuous, respectively, compact, totally bounded and
completely continuous, in u for all w ∈ Ω. The details of completely
continuous random operators in Banach spaces and their properties
may be found in [23].

Definition 2.11 ([18]). Let P(Y ) be the family of all nonempty
subsets of Y and F a mapping from Ω into P(Y ). A mapping

T : {(w, y) : w ∈ Ω, y ∈ F (w)} −→ Y

is called a random operator with stochastic domain F if F is measurable,
i.e., for all closed A ⊂ Y , {w ∈ Ω, F (w) ∩ A ̸= ∅} is measurable, and
for all open D ⊂ Y and all y ∈ Y , {w ∈ Ω : y ∈ F (w), T (w, y) ∈ D}
is measurable. T will be called continuous if every T (w) is continuous.
For a random operator T , a mapping y : Ω → Y is called a random
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(stochastic) fixed point of T if, for P -almost all w ∈ Ω, y(w) ∈ F (w)
and T (w)y(w) = y(w) and, for all open D ⊂ Y , {w ∈ Ω : y(w) ∈ D} is
measurable.

Definition 2.12 ([16]). Let E be a Banach space, ΩE the bounded
subsets of E and B1 the unit ball of E. The De Blasi measure of weak
noncompactness is the map

β : ΩE −→ [0,∞)

defined by

β(X) = inf{ϵ > 0 : there exists a weakly compact subset Ω

of E : X ⊂ ϵB1 +Ω}.

The De Blasi measure of weak noncompactness satisfies the following
properties:

(a) A ⊂ B ⇒ β(A) ≤ β(B);
(b) β(A) = 0 ⇔ A is weakly relatively compact’
(c) β(A ∪B) = max{β(A), β(B)};
(d) β(A

ω
) = β(A); (A

ω
denotes the weak closure of A);

(e) β(A+B) ≤ β(A) + β(B);
(f) β(λA) = |λ|β(A);
(g) β(conv(A)) = β(A);
(h) β(∪|λ|≤hλA) = hβ(A).

The next result directly follows from the Hahn-Banach theorem.

Proposition 2.13. Let E be a normed space and x0 ∈ E with x0 ̸= 0.
Then, there exists a φ ∈ E∗ with ∥φ∥ = 1 and φ(x0) = ∥x0∥.

For a given set V of functions v : J → E, we denote by

V (x, y) = {v(x, y) : v ∈ V }, (x, y) ∈ J,

and

V (J) = {v(x, y) : v ∈ V, (x, y) ∈ J}.
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Lemma 2.14 ([19]). Let H ⊂ C be bounded and equicontinuous.
Then, the function

(x, y) −→ β(H(x, y))

is continuous on J , and

βC(H) = max(x,y)∈Jβ(H(x, y)),

and

β

(∫ ∫
J

u(s, t) dt ds

)
≤

∫ ∫
J

β(H(s, t)) dt ds,

where H(x, y) = {u(x, y) : u ∈ H}, (x, y) ∈ J , and βC is the De Blasi
measure of weak noncompactness defined on the bounded sets of C.

We need the following fixed point theorems.

Theorem 2.15 ([27]). Let Q be a nonempty, closed, convex and
equicontinuous subset of a metrizable, locally convex vector space
C(J,E) such that 0 ∈ Q. Suppose that

T : Q −→ Q

is weakly-sequentially continuous. If the implication

(2.1) V = conv({0} ∪ T (V )) =⇒ V is relatively weakly compact,

holds for every subset V ⊂ Q, then the operator T has a fixed point.

Theorem 2.16 ([18]). Let

F : Ω −→ 2Y

be measurable with F (w) closed, convex and solid, i.e., intF (w) ̸= ∅,
for all w ∈ Ω. We assume that there exists measurable

y0 : Ω −→ Y

with y0 ∈ intF (w) for all w ∈ Ω. Let T be a continuous, random
operator with stochastic domain F such that, for every w ∈ Ω,

{y ∈ F (ω) : T (w)y = y} ≠ ∅.

Then, T has a stochastic fixed point.
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3. Existence results. We begin by defining what we mean by a
random solution of the integral equation (1.1).

Definition 3.1. A function u ∈ C is said to be a random solution of
(1.1) if u satisfies equation (1.1) on J .

Next, we state the main result.

Theorem 3.2. Assume that the following hypotheses hold :

(H1) the function w 7→ µ(x, y, w) is measurable and bounded for
almost every (x, y) ∈ J ;

(H2) the function f is random Carathéodory on J × E × Ω;
(H3) for almost every (x, y) ∈ J , and all w ∈ Ω, the function

u → f(x, y, u, w) is weakly sequentially continuous;
(H4) for almost every u ∈ E, and all w ∈ Ω, the function (x, y) →

f(x, y, u, w) is Pettis integrable almost everywhere on J ;
(H5) there exists a p ∈ C(J, [0,∞)) such that :

there exists a function

p : J × Ω −→ [0,∞)

with p(w) ∈ L∞(J, [0,∞)) for each w ∈ Ω such that, for all
φ ∈ E∗, we have

|φ(f(x, y, u, w))| ≤ p(x, y, w)∥φ∥
1 + ∥φ∥+ ∥u∥E

,

for almost every (x, y) ∈ J , and each u ∈ E, with
(H6) for each bounded set B ⊂ E and, for each (x, y) ∈ J and w ∈ Ω,

we have

β(f(x, y,B,w) ≤ p(x, y, w)β(B);

(H7) there exists a random function R : Ω → (0,∞) such that

R(w) > µ∗(w) +
p∗(w)(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
;

where

µ∗(w) = sup(x,y)∈J |µ(x, y, w)|, p∗(w) = sup(x,y)∈Jp(x, y, w).
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If

(3.1) ℓ :=
p∗(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
< 1,

where p∗ = sup essw∈Ω p∗(w), then the integral equation (1.1) has at
least one random solution defined on J .

Proof. Transform the integral equation (1.1) into a fixed point equa-
tion. Consider the operator

N : Ω× C −→ C

defined by:
(3.2)

(N(w)u)(x, y) = µ(x, y, w) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1

× f(s, t, u(s, t, w), w)

stΓ(r1)Γ(r2)
dt ds.

From hypotheses (H2)–(H4), for each w ∈ Ω and almost all (x, y) ∈
J , the function f(·, ·, u(·, ·, w), w) is Pettis integral on J . From (H5),
we have that, for all (x, y) ∈ J ,(

log
x

s

)r1−1(
log

y

t

)r2−1
f(s, t, u(s, t, w), w)

st

is Pettis integrable for all w ∈ Ω. Again, as the map µ is continuous
for all w ∈ Ω and the indefinite integral is continuous on J , then N(w)
defines a mapping

N : Ω× C −→ C.

Hence, u is a solution for the integral equation (1.1) if and only if
u = (N(w))u. We shall show that the operator N satisfies all of the
assumptions of Theorem 2.16. The proof will be given in several steps.

Step 1. N(w) is a random operator with stochastic domain on C.
Since f(x, y, u, w) is random Carathéodory, the map

w −→ f(x, y, u, w)
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is measurable in view of Definition 2.8. Similarly, the product

(
log

x

s

)r1−1(
log

y

t

)r2−1
f(s, t, u(s, t, w), w)

st

of a continuous and a measurable function is again measurable. Fur-
ther, the integral is a limit of a finite sum of measurable functions’
therefore, the map

w 7−→ µ(x, y, w) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1
f(s, t, u(s, t, w), w)

stΓ(r1)Γ(r2)
dt ds

is measurable. As a result, N is a random operator on Ω× C into C.

Let W : Ω → P(C) be defined by

W (w) =

{
u ∈ C : ∥u∥C ≤ R(w) and ∥u(x1, y1, w)− u(x2, y2, w)∥E

≤ ∥µ(x1, y1, w)− µ(x2, y2, w)∥E

+
p∗(w)

Γ(1 + r1)Γ(1 + r2)
[2(log y2)

r2(log x2 − log x1)
r1

+ 2(log x2)
r1(log y2 − log y1)

r2

+ (log x1)
r1(log y1)

r2 − (log x2)
r1(log y2)

r2

− 2(log x2 − log x1)
r1(log y2 − log y1)

r2 ]

}
.

Clearly, the subset W (w) is closed, convex and equicontinuous for all
w ∈ Ω. Then, W is measurable by [18, Lemma 17]. Therefore, N is a
random operator with stochastic domain W .

Step 2. N(w) is continuous. Let {un} be a sequence such that
un → u in C. Then, there exists a ϕ ∈ E∗ such that

∥(N(w)u)(x, y)∥E = ϕ((N(w)u)(x, y)).
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For each (x, y) ∈ J and w ∈ Ω, we have

∥(N(w)un)(x, y)− (N(w)u)(x, y)∥E
= ϕ((N(w)un)(x, y)− (N(w)u)(x, y))

≤
∫ x

1

∫ y

1

∣∣∣∣ log x

s

∣∣∣∣r1−1∣∣∣∣ log y

t

∣∣∣∣r2−1

× |ϕ(f(s, t, un(s, t, w), w)− f(s, t, u(s, t, w), w))|
Γ(r1)Γ(r2)

dt ds.

Using the Lebesgue dominated convergence theorem, we obtain

∥N(w)un −N(w)u∥C −→ 0 as n → ∞.

As a consequence of Steps 1 and 2, we can conclude that

N(w) : W (w) −→ N(w)

is a continuous, random operator with stochastic domain W .

Step 3. For every w ∈ Ω,

{u ∈ W (w) : N(w)u = u} ̸= ∅.

For this, we apply Theorem 2.15. The proof will be given in several
claims.

Claim 1. N(w) maps W (w) into itself. Let w ∈ Ω be fixed, and let
u ∈ W (w), (x, y) ∈ J . Assume that (N(w)u)(x, y) ̸= 0. Then, there
exists a ϕ ∈ E∗ such that

∥(N(w)u)(x, y)∥E = ϕ((N(w)u)(x, y)).

Hence, we obtain:

∥(N(w)u)(x, y)∥E

= ϕ

(
µ(x, y, w) +

1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1

× f(s, t, u(s, t, w), w)

st
dt ds

)
= ϕ(µ(x, y, w))

+ ϕ

(
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1
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× f(s, t, u(s, t, w), w)

st
dt ds

)
≤ µ∗(w) +

1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1

× |ϕ(f(s, t, u(s, t, w), w))|
st

dt ds

≤ µ∗(w) +
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

!

(
log

x

s

)r1−1(
log

y

t

)r2−1
p(s, t, w)

st
dt ds

≤ µ∗(w) +
p∗(w)(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)

≤ R(w).

Next, for any fixed w ∈ Ω, let (x1, y1), (x2, y2) ∈ J be such that x1 < x2

and y1 < y2, and let u ∈ W (w), with

(N(w)u)(x1, y1)− (N(w)u)(x2, y2) ̸= 0.

Then, there exists a ϕ ∈ E∗ such that

∥(N(w)u)(x1, y1)− (N(w)u)(x2, y2)∥E
= ϕ((N(w)u)(x1, y1)− (N(w)u)(x2, y2))

and
∥φ∥ = 1.

Thus, we have

∥(N(w)u)(x2, y2)− (N(w)u)(x1, y1)∥E
= ϕ((N(w)u)(x2, y2)− (N(w)u)(x1, y1))

≤ ∥µ(x1, y1, w)− µ(x2, y2, w)∥E

+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y1

1

[∣∣∣∣ log x2

s

∣∣∣∣r1−1

×
∣∣∣∣ log y2

t

∣∣∣∣r2−1

−
∣∣∣∣ log x1

s

∣∣∣∣r1−1∣∣∣∣ log y1
t

∣∣∣∣r2−1]∥f(s, t, u(s, t, w), w)∥E
st

dt ds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1

× |ϕ(f(s, t, u(s, t, w), w))|
st

dt ds
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+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y2

y1

∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1

× |ϕ(f(s, t, u(s, t, w), w))|
st

dt ds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

1

∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1

× |ϕ(f(s, t, u(s, t, w), w))|
st

dt ds.

Then, we obtain

∥(N(w)u)(x2, y2)− (N(w)u)(x1, y1)∥E
≤ ∥µ(x1, y1, w)− µ(x2, y2, w)∥E

+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y1

1

[∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1

−
∣∣∣∣ log x1

s

∣∣∣∣r1−1∣∣∣∣ log y1
t

∣∣∣∣r2−1]
p∗(w)

st
dt ds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1
p∗(w)

st
dt ds

+
1

Γ(r1)Γ(r2)

∫ x1

1

∫ y2

y1

∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1
p∗(w)

st
dt ds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

1

∣∣∣∣ log x2

s

∣∣∣∣r1−1∣∣∣∣ log y2
t

∣∣∣∣r2−1
p∗(w)

st
dt ds

≤ ∥µ(x1, y1, w)− µ(x2, y2, w)∥E +
p∗(w)

Γ(1 + r1)Γ(1 + r2)

× [2(log y2)
r2(log x2 − log x1)

r1 + 2(log x2)
r1(log y2 − log y1)

r2

+ (log x1)
r1(log y1)

r2 − (log x2)
r1(log y2)

r2

+ (log x2 − log x1)
r1(log y2 − log y1)

r2 ].

Hence, N(W (w)) ⊂ W (w). Therefore,

N(w) : W (w) −→ N(w)

maps W (w) into itself.
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Claim 2. N(w) is weakly-sequentially continuous. Let (un) be a
sequence in W (w), and let

(un(x, y, w)) −→ u(x, y, w)

in (E,ω) for any w ∈ Ω and each (x, y) ∈ J . Fix (x, y) ∈ J . Since f sat-
isfies assumption (H3), we have f(x, y, un(x, y, w), w) converges weakly
uniformly to f(x, y, u(x, y, w), w). Hence, the Lebesgue dominated con-
vergence theorem for the Pettis integral implies (Nun)(x, y, w) con-
verges weakly uniformly to (N(w)u)(x, y) in (E,ω). This may be per-
formed for any w ∈ Ω and each (x, y) ∈ J ; thus, N(w)(un) → N(w)(u).
Then,

N : W (w) −→ W (w)

is weakly-sequentially continuous.

Claim 3. The implication (2.1) holds. Let V be a subset of W (w)
such that

V = conv(N(w)(V ) ∪ {0}).

Obviously,

V (x, y, w) ⊂ conv(N(w)V )(x, y)) ∪ {0}).

Further, as V is bounded and equicontinuous, by [13, Lemma 3] the
function

(x, y, w) −→ u(x, y, w) = β(V (x, y, w))

is continuous on J × Ω. Since the function µ is continuous on J × Ω,
the set

{µ(x, y, w), (x, y) ∈ J, w ∈ Ω} ⊂ E

is compact. From (H5), Lemma 2.14 and the properties of the measure
β, for any w ∈ Ω and each (x, y) ∈ J , we have

v(x, y, w) ≤ β((N(w)V )(x, y) ∪ {0}) ≤ β((N(w)V )(x, y))

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣∣ logxs
∣∣∣∣r1−1∣∣∣∣ logyt

∣∣∣∣r2−1
p(s, t, w)β(V (s, t, w))

st
dt ds

≤ 1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣∣ log x

s

∣∣∣∣r1−1∣∣∣∣ log y

t

∣∣∣∣r2−1
p(s, t, w)v(s, t, w)

st
dt ds
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≤ ∥v∥C
Γ(r1)Γ(r2)

∫ x

1

∫ y

1

∣∣∣∣ log x

s

∣∣∣∣r1−1∣∣∣∣ log y

t

∣∣∣∣r2−1
p(s, t, w)

st
dt ds

≤ p∗(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
∥v∥C .

Thus,
∥v∥C ≤ ℓ∥v∥C .

From (3.1), we obtain ∥v∥C = 0, that is,

v(x, y, w) = β(V (x, y, w)) = 0,

for any w ∈ Ω and each (x, y) ∈ J . Hence, [26, Theorem 2] shows that
V is weakly relatively compact in C.

As a consequence of Claims 1–3, and from Theorem 2.15, it follows
that, for every w ∈ Ω,

{u ∈ W (w) : N(w)u = u} ̸= ∅.

Now apply Theorem 2.16. Steps 1–3 show that, for each w ∈ Ω, N has
at least one fixed point in W . Since∩

w∈Ω

intW (w) ̸= ∅

and the hypothesis that a measurable selector of intW exists holds,
then N has a stochastic fixed point, i.e., the integral equation (1.1) has
at least one random solution on C. �

4. An example. Let E = R, Ω = (−∞, 0), be equipped with the
usual σ-algebra consisting of Bochner measurable subsets of (−∞, 0).
Given a measurable function

u : Ω −→ C([1, e]× [1, e]),

consider the following partial random Hadamard integral equation of
the form

(4.1)

u(x, y, w) = µ(x, y, w) +

∫ x

1

∫ y

1

(
log

x

s

)r1−1

×
(
log

y

t

)r2−1
f(s, t, u(s, t, w), w)

stΓ(r1)Γ(r2)
dt ds,
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for (x, y) ∈ [1, e]× [1, e], w ∈ Ω, where

r1, r2 > 0, µ(x, y, w) = x sinw + y2 cosw, (x, y) ∈ [1, e]× [1, e],

and

f(x, y, u(x, y)) =
xy2

(1 + w2 + |u(x, y, w)|)ex+y+5
,

(x, y) ∈ [1, e]× [1, e], w ∈ Ω.

The function

w 7−→ µ(x, y, w) = x sinw + y2 cosw

is measurable and bounded with

|µ(x, y, w)| ≤ e+ e2;

hence, the condition (H1) is satisfied.

The map
(x, y, w) 7−→ f(x, y, u, w)

is jointly continuous for all u ∈ R, and hence, jointly measurable, for
all u ∈ R. In addition, the map

u 7−→ f(x, y, u, w)

is continuous for all (x, y) ∈ [1, e] × [1, e] and w ∈ Ω. Therefore, the
function f is Carathéodory on

[1, e]× [1, e]× R× Ω.

For each u ∈ R, (x, y) ∈ [1, e]× [1, e] and w ∈ Ω, we have

|f(x, y, u, w)| ≤ xy2

e5(1 + |u|)
.

Hence, condition (H5) is satisfied with p∗ = e−2.

We show that condition ℓ < 1 holds with a = b = e. Indeed, for each
r1, r2 > 0, we obtain

ℓ =
p∗(log a)r1(log b)r2

Γ(1 + r1)Γ(1 + r2)
≤ 1

e2Γ(1 + r1)Γ(1 + r2)
< 1.
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A simple computation shows that all conditions of Theorem 3.2 are
satisfied. It follows that the random integral equation (4.1) has at least
one random solution on [1, e]× [1, e].
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