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ABSTRACT. The cubic “convolution spline” method for
first kind Volterra convolution integral equations was intro-
duced in P.J. Davies and D.B. Duncan, Convolution spline
approximations of Volterra integral equations, Journal of In-
tegral Equations and Applications 26 (2014), 369–410. Here,
we analyze its stability and convergence for a broad class
of piecewise smooth kernel functions and show it is stable
and fourth order accurate even when the kernel function is
discontinuous. Key tools include a new discrete Gronwall
inequality which provides a stability bound when there are
jumps in the kernel function and a new error bound obtained
from a particular B-spline quasi-interpolant.

1. Introduction. In [5], we derived a new numerical method which
can be used to approximate the solution u(t) of the first kind Volterra
integral equation (VIE)

(1.1)

∫ t

0

K(τ)u(t− τ) dτ = a(t), for t ∈ [0, T ],

where a(0) = 0 and K(0) ̸= 0, with fourth order accuracy when the
convolution kernel K and right-hand side a are sufficiently smooth.
This “convolution spline” approximation shares some properties with
Lubich’s convolution quadrature [11] but is explicitly constructed in
terms of cubic spline basis functions. Although numerical results [5]
indicate that the scheme is also fourth order convergent when K is
only piecewise smooth, the analysis does not extend to this case. We
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now provide a proof when K(t) is piecewise smooth with (finite) jump
discontinuities irrespective of where the jumps occur. In particular,
convergence does not rely on fitting or adapting the stepsize so that
the jumps occur at element boundaries, in contrast to the requirements
of the trapezoidal rule (collocation with continuous piecewise linear
approximation of u) applied to (1.1) with a step function kernel [5,
subsection 4.2.2] and methods for second kind problems in, e.g., [3,
Chapter 4.2] and [13].

The discontinuous kernel convolution first kind VIEs we consider are
also called VIEs with constant non-vanishing delays [3, Chapter 4].
These problems are sometimes written as Volterra functional equations
where initial data specifying u(t) in some initial interval are given.
We do not consider the functional form here since it is equivalent to a
problem in the form (1.1) after a shift in the time variable and absorbing
the initial data into a(t).

Much of the literature on discontinuous kernel problems for VIEs
concentrates on problems of the second kind. In 1911, one of the key
early papers [8] described and analyzed such second kind problems.
Recent numerical analysis for particular types of discontinuous second
kind problems can be found in [12, 13]. Collocation methods for both
first and second kind VIEs with discontinuous kernels are described
by Brunner [3, subsections 4.2, 4.3], and work on the analysis and
numerical analysis of a different type of discontinuous kernel first
kind problems appears in [14, 18]. That work is for problems with
proportionate, vanishing delays and does not apply to our class of
problems.

Convolution quadrature methods [1, 11] can also be used for dis-
continuous kernel problems in the form (1.1). However they rely on
being able to evaluate the Laplace transform of K(t), which is not al-
ways straightforward, and care may be needed to evaluate the contour
integrals for the weights used in the scheme when there are jumps in K.
Our method does not use the Laplace transform of the kernelK and the
calculation of the weights is straightforward, with or without jumps.

Such discontinuous kernel problems arise in a variety of applications.
Some first kind VIEs with a discontinuous kernel are derived in Laplace
transform format in [2, 17]. They arise as part of a separation of
variables solution of a scattering problem from a circle in 2D and a
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sphere in 3D. For example, time-dependent acoustic scattering from
a unit sphere can be decoupled into independent VIEs by expanding
the incident wave into spherical harmonics, and in this case, the nth
order spherical harmonic modes of the surface potential satisfy (1.1)
with kernel

K(t) =
1

2
Pn

(
1− 1

2
t2
)
H(2− t),

where H(t) is the Heaviside function and Pn(t) the degree n Legendre
polynomial, see [7] for details.

Another important application area is in the deconvolution of well
test data from water or oil reservoirs to obtain a constant rate draw-
down response function that is then used to estimate important physical
properties of the reservoir. One form of this problem is given in [10,
equation (4.5)]. In terms of equation (1.1), u(t) is the unknown con-
stant rate drawdown response, K(t) is an actual or measured flow rate,
and a(t) a measured pressure change. An “ideal” well test experiment
flows the well at a constant rate for a finite time and then closes the
flow valve, continuing to measure the pressure change a(t), so again,
K(t) involves a Heaviside function. More realistic tests may involve
switching the flow on and off a few times, or having a generally smooth
flow rate K(t) with a small number of jumps. It is also common for
the measured flow rate data to be interpolated by piecewise constant
or linear functions. More details can be found in, e.g., [4, 9].

In order to illustrate the solution structure of equation (1.1) when the
kernel is discontinuous, we consider the kernelK(t) = 1−H(t−T1), i.e.,
K = 1 for 0 < t < T1 and is 0 otherwise. Taking the Laplace transform
of equation (1.1), whose left-hand side is a Laplace convolution, using
the notation K(s) = L[K(t); s] gives K(s)u(s) = a(s), where K(s) =
(1 − e−T1s)/s. Thus, (1 − e−sT1)u(s) = sa(s), and taking the inverse
transform gives the difference equation u(t)− u(t− T1) = a′(t), which
has solution

(1.2) u(t) =
∞∑
k=0

a′(t− kT1) =

⌊t/T1⌋∑
k=0

a′(t− kT1),

where ⌊b⌋ = floor (b) is the largest integer less than or equal to b. If a(t)
has compact support in an interval t ∈ [tL, tR] of width tR − tL ≤ T1,
then the solution given by equation (1.2) is T1-periodic for all t ≥ tL.
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If a is localized in a region with rapid decay away from that region (but
not compact support), the solution will be close to T1-periodic. Note
that the solution may also be formally obtained by writing the Laplace
transform solution as

u(s) =
1

1− e−sT1
sa(s) =

( ∞∑
j=0

e−sjT1

)
sa(s),

and then inverting term-by-term. The exponentials are transforms of
time shift operators and sa(s) is the transform of a′(t) because a(0) = 0.

The plan for the rest of this article is as follows. In Section 2, we
derive properties of the exact solution of equation (1.1) under various
assumptions on the regularity of a and K and also briefly describe the
convolution spline approximation scheme. Section 3 contains numer-
ical convergence results for representative benchmark problems with
discontinuous kernels. Some tools needed for stability analysis are in-
troduced in Section 4, including a new discrete Gronwall inequality for
dealing with the step changes in the kernel, and we use them to estab-
lish stability of the scheme for a broad class of problems with piecewise
smooth kernels. These stability results are a key step in the conver-
gence analysis of the scheme in Section 5, and we derive a new error
bound using a quasi-interpolant from the space of cubic B-splines.

2. Preliminaries.

2.1. Solution properties. We first determine the regularity of the
solution u of equation (1.1) under various assumptions on a and K.
Because K(0) ̸= 0, we rescale the problem and will always assume that
K(0) = 1. We consider two different types of function a: either

(2.1) a ∈ Cd+1[0, T ], a(0) = 0;

or

(2.2) a ∈ Cd+1[0, T ], a(j)(0) = 0 for j = 0 : d+ 1,

for d ≥ 0 to be specified.

Lemma 2.1 ([3, Theorem 2.1.9]). If K(0) = 1, K ∈ Cd+1[0, T ] and
condition (2.1) holds for some d ≥ 0, then the unique solution u of
equation (1.1) satisfies u ∈ Cd[0, T ].
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We now show that the special nature of the convolution kernel allows
the regularity requirement on K to be relaxed, provided condition (2.2)
holds.

Lemma 2.2. If K(0) = 1, K ∈ C1[0, T ] and condition (2.2) holds
for some d ≥ 0, then the unique solution u of equation (1.1) satisfies
u ∈ Cd[0, T ] and u(p)(0) = 0 for p = 0 : d.

Proof. The continuity of u when d = 0 is covered by Lemma 2.1.
Rewriting equation (1.1) as

(2.3)

∫ t

0

K(t− τ)u(τ) dτ = a(t), for t ∈ [0, T ],

and differentiating, gives

u(t) +

∫ t

0

K ′(t− τ)u(τ) dτ = a′(t),

which yields u(0) = a′(0) = 0.

If d = 1, then consider the VIE

(2.4)

∫ ξ

0

K(τ) v(ξ − τ) dτ = a′(ξ).

By the above, the unique solution v of equation (2.4) is continuous with
v(0) = 0. Integrating equation (2.4) over (0, t) using a(0) = 0 gives

a(t) =

∫ t

0

∫ ξ

0

K(τ) v(ξ − τ) dτ dξ =

∫ t

0

K(τ)

∫ t−τ

0

v(ξ) dξ dτ,

and comparison with equation (1.1), whose solution is unique, gives

u(t) =

∫ t

0

v(ξ) dξ.

Hence, u ∈ C1[0, T ] and u′(0) = v(0) = 0. The result for d ≥ 2 follows
from repeating this argument d times. �

Note that the derivative conditions (2.2) guarantee that the exten-
sion of u by 0 to the negative real axis is in Cd(−∞, T ]. If they do not
hold, then any numerical approximation of equation (1.1) needs to be
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‘corrected’ as described for convolution quadrature in [11, Section 3]
in order to attain optimal convergence.

The next result deals with the case that the kernel is piecewise
smooth but discontinuous.

Lemma 2.3. Suppose that

K(t) =

{
K0(t) t < T1,

K1(t) t > T1,

for some T1 ∈ (0, T ), where K0(0) = 1, K0 ∈ Cd+1[0, T1], K1 ∈
Cd+1[T1, T ] and, in general, K0(T1) ̸= K1(T1). Then, if condition (2.2)
holds, the unique solution u of (1.1) satisfies u ∈ Cd[0, T ] and u(p)(0) =
0 for p = 0 : d.

Proof. Applying Lemma 2.2 for t < T1 gives

u ∈ Cd[0, T1] and u(p)(0) = 0

for p = 0 : d. It remains to show that the solution u extends to
[0, T ] with no decrease in regularity, and we do this inductively by
showing that the regularity can successively be extended by intervals
of length T1.

Let K̂0(t) ∈ Cd+1[0, T ] be a smooth extension of the function K0 to
[0, T ], and set

KD(t) = K̂0(t+ T1)−K1(t+ T1),

so KD ∈ Cd+1[0, T − T1]. As an inductive hypothesis, we assume that
u ∈ Cd[0, j T1] for some j ≥ 1, and we need to show that u ∈ Cd[0, TM ],
where

TM = min {(j + 1)T1, T} .

We rewrite equation (2.3) for t ≤ TM as∫ t

0

K̂0(t− τ)u(τ)dτ = a(t) + σ(t− T1),

where

σ(t) =

0 t < 0,∫ t

0

KD(t− τ)u(τ) dτ t ∈ [0, TM − T1].
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By construction,
σ ∈ C(d+1)[0, TM − T1],

σ(0) = 0 and

K̂0(t) ∈ Cd+1[0, T ],

and so we only need to show that σ(p)(0) = 0 for p = 1 : d + 1 in
order to apply Lemma 2.2 and deduce that u ∈ Cd[0, TM ]. The pth
derivative of σ(t) for t ≥ 0 is

σ(p)(t) =

p−1∑
j=0

K
(j)
D (0)u(p−1−j)(t) +

∫ t

0

K
(p)
D (t− τ)u(τ) dτ,

from which the required result follows at t = 0. �

We allow the kernel K to have a finite number of discontinuities, at
Tℓ, ℓ = 1 : Ns where

0 = T0 < T1 < T2 < · · · < TNs < TNs+1 = T,

and set Kℓ(t) = K(t) for t ∈ (Tℓ, Tℓ+1). The arguments of Lemma 2.3
can be extended to this case, yielding the next result.

Corollary 2.4. Suppose that a satisfies condition (2.2) and

(2.5) K0(0) = 1, Kℓ ∈ Cd+1(Tℓ, Tℓ+1) for ℓ = 0 : Ns

for some d ≥ 0. Then, the unique solution u of equation (1.1) with
K(t) = Kℓ(t) for t ∈ (Tℓ, Tℓ+1), satisfies u ∈ Cd[0, T ] and u(p)(0) = 0
for p = 0 : d.

Note that, as illustrated in Figure 1, a discontinuous kernel which
satisfies condition (2.5) can be written as the sum of a continuous
piecewise smooth function KC and Ns constant pulse functions, i.e.,

(2.6) KC(t) := K(t)−
Ns∑
ℓ=1

αℓ [H(t− Tℓ)−H(t− Tℓ+1)] ,

is continuous when

(2.7) α0 = 0 and αℓ − αℓ−1 = Kℓ(Tℓ)−Kℓ−1(Tℓ), ℓ = 1 : Ns.
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Alternatively, equation (2.6) can be written as

K(t) = KC(t) +

Ns∑
ℓ=1

(Kℓ(Tℓ)−Kℓ−1(Tℓ)) H(t− Tℓ).

2.2. Convolution spline approximation. The convolution spline
scheme [5] is a backwards-in-time approximation of the solution u of
equation (1.1) at time tn = nh with constant stepsize h = T/NT given
by

(2.8) u(tn − τ) ≈ Un(tn − τ) =
n∑

j=0

vn−j ϕj(τ/h), for τ ∈ [0, tn],

where the basis functions are cubic B-splines with a parabolic runout
condition at t = 0, that is, for t ≥ 0,
(2.9)

ϕ0(t) = B3(t) + 3B3(t+ 1), ϕ1(t) = B3(t− 1)− 3B3(t+ 1)
ϕ2(t) = B3(t− 2) +B3(t+ 1), ϕj(t) = B3(t− j), for j ≥ 3

}
,

where B3(t) is the cardinal cubic B-spline (see, e.g., a standard text
such as [6]). All the basis functions ϕj are non-negative on [0,∞),
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Figure 1. A piecewise smooth kernel function with Ns = 5 discontinuities.
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except for ϕ1 which is negative for t ∈ [0, 1 −
√
2/3). The cardinal

B-spline Bm(t) for m ≥ 1 is a positive, even function, globally Cm−1,
has support in (−(m+1)/2, (m+1)/2) and is a polynomial of degree m
on each interval (k, k + 1) for k = −(m+ 1)/2 : (m− 1)/2. It satisfies

B′
m+1(t) = Bm(t+ 1/2)−Bm(t− 1/2),

and integrating, gives

(2.10) Bm+1(x+ 1/2) =

∫ x+1

x

Bm(t) dt

for x > −(m+ 3)/2.

Using the fact that u(t) = 0 for t ≤ 0 (in other words, u is causal),
equation (1.1) can be written as∫ ∞

0

K(τ)u(t− τ) dτ = a(t), t ∈ [0, T ].

Substituting t = tn and the approximation (2.8) into this gives the
discrete convolution equation

(2.11)

∫ ∞

0

K(τ)Un(tn−τ) dτ =

n∑
j=0

qj vn−j = a(tn), for n = 0 : NT

for the unknown coefficients vk, where

(2.12) qj =

∫ ∞

0

K(t)ϕj(t/h) dt = h

∫ j+2

max(0,j−2)

K(th)ϕj(t) dt.

The vk are obtained recursively from equation (2.11) by time marching:

(2.13) v0 = 0, vn =
1

q0

(
a(tn)−

n−1∑
j=0

qn−j vj

)
, n ≥ 1.

The step size h := T/NT is chosen independently of the locations
Tℓ of the jumps in K(t). These locations are associated with mesh
intervals by defining

mℓ := ⌊Tℓ/h⌋ ∈ Z and rℓ := Tℓ/h−mℓ ∈ [0, 1),

so that

(2.14) Tℓ = (mℓ + rℓ)h, for ℓ = 1 : Ns.
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The case rℓ = 0 only happens if the jump location is exactly at a
mesh point, and in general, rℓ > 0. For completeness, we set m0 = 0,
mNs+1 = NT and r0 = rNs+1 = 0. We assume that step size h is
sufficiently small so that successive Tℓ do not occur in intervals which
are near-neighbors; in particular, we assume that

(2.15) mℓ+1 −mℓ ≥ 5, ℓ = 0 : Ns

in the calculations below.

3. Benchmark problems and numerical results. Numerical
results for the convolution spline approximation (2.8) of equation (1.1)
for a unit step, i.e., K(t) = 1 − H(t − T1), are given in [5], and
we now examine the scheme’s performance on some more complicated
benchmark problems. Stability and convergence results for these classes
of kernels are given in Sections 4–5.

3.1. BM1: Discontinuous multiple step-function kernel. Sup-
pose that K satisfying equation (2.5) is a piecewise constant function,
i.e.,

(3.1) K(t) =

Ns∑
ℓ=0

αℓ [H(t− Tℓ)−H(t− Tℓ+1)] , t ∈ [0, T ],

for some αℓ ∈ R. This can be rearranged as

K(t) = 1 +

Ns∑
ℓ=1

(αℓ − αℓ−1) H(t− Tℓ), α0 = 1.

The exact solution of equation (1.1) with this kernel can again be
obtained by Laplace transforms, using K(s) = (1−Q(s))/s, where

Q(s) =

Ns∑
ℓ=1

(αℓ−1 − αℓ) e
−sTℓ .

The Laplace transform of the solution is formally obtained by writing

u(s) = (1−Q(s))−1 sa(s) =
∞∑
j=0

Q
j
(s) sa(s)

in the same way as for the single step kernel example in Section 1. The
function Q(s) is the transform of a linear combination of time shift
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operators, with the property

L−1[Q(s) sa(s); t] = Qa′(t) :=

Ns∑
ℓ=1

(αℓ−1 − αℓ) a
′(t− Tℓ),

giving

u(t) =

⌊t/T1⌋∑
j=0

Qja′(t).

Although messy to evaluate, it is possible to compute the exact solution
up to any finite time, given the causal nature of a(t).

Assumption (2.15) implies that the first few coefficients qj used in
equation (2.13) are

qj/h =


5/8 j = 0

5/6 j = 1

25/24 j = 2.

For j = mℓ−1 + 3 : mℓ − 2, the coefficients are qj = αℓ−1 h, and, in the
vicinity of the jump at Tℓ, they are

qmℓ+k/h = αℓ−1 + (αℓ − αℓ−1)

∫ 2

rℓ−k

B3(t) dt, k = −1 : 2.

3.2. BM2: Piecewise smooth, globally C0 (but not C1) kernel.
We consider the numerical test problem with kernel

K(t) = [1−H(t− T1)] cos t,

where T1 = π/2. This has the Laplace transform

K(s) =
s+ e−T1s

1 + s2

and, working through the formal Laplace transform procedure, eventu-
ally gives the exact solution as

u(t) =

⌊t/T1⌋∑
k=0

(−1)k Ik+1 [a(t− kT1) + a′′(t− kT1)] ,

where Ik[f(t)] is the kth repeated integral of f(t).
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Figure 2. The left hand plot shows the L∞ error for a range of different
kernel functions from the benchmark problem BM1–BM3 in subsections 3.1–
3.3 with fixed a ∈ C5[0, T ]. The dotted line indicates the O(h4) slope. The
right hand plot has discontinuous kernel K given in subsection 3.3 and right
hand side function a ∈ Cp[0, T ] for p = 0 : 5. The asymptotic slopes marked
are O(hp) for p = 0 : 4.

3.3. BM3: Discontinuous kernel, not piecewise constant.
Here, we consider

K(t) = [1−H(t− T1)] e
−t,

with Laplace transform

K(s) =
1− e−T1(1+s)

1 + s
.

The Laplace transformed solution formally satisfies

u(s) =
∞∑
k=0

e−kT1e−skT1 (1 + s) a(s),

giving the exact solution

(3.2) u(t) =

⌊t/T1⌋∑
k=0

e−kT1 (a(t− kT1) + a′(t− kT1)) .

Note that terms with longer delays are more heavily damped.

3.4. Numerical implementation and results. Numerical results
for the benchmark problems in the previous subsections are shown in
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Figure 2. In each case, the coefficients qj defined by equation (2.12) are
evaluated almost exactly, using high order composite Gauss quadrature
over intervals of length h between the nodes. If an interval contains
one of the points of discontinuity Tℓ for ℓ = 1 : Ns, then it is split
at the discontinuity and the same quadrature rule is applied on both
segments. Errors in the solution are measured using the L∞ norm of
the difference between the exact and numerical solutions at the node
points, when the exact solution is available. If not, then the error is
estimated by mesh halving. In all cases, the length of the interval is
T = 10, and the step size h is chosen to avoid special cases in which
the discontinuities occur at an integer multiple of h.

The plots on the left of Figure 2 all use the forcing term

a(t) = t6e−50(t−0.5)2 , t ≥ 0,

which satisfies condition (2.2) with d = 4. The BM1 (subsection 3.1)
Ns = 2 case has

T1 = 1/
√
2, T2 =

√
3/2 with α0 = 1, α1 = 0.6, α2 = 0,

while the BM1 Ns = 5 case has

T1 = 1/
√
2, T2 =

√
3/2,

T3 =
√
5/2, T4 =

√
7/2, T5 =

√
11/2

with

α0 = 1, α1 = 0.6, α2 = −0.4,

α2 = −0.1, α4 = 0.5, α5 = 0.

Problem BM2 is as described in subsection 3.2, and problem BM3 from
subsection 3.3 is used with T1 = 1/

√
2. The scheme exhibits very clear

O(h4) convergence in all of these cases.

The results on the right of Figure 2 show what happens when the
regularity of the forcing term a(t) is reduced in problem BM3 with

T1 = 1/
√
2. We use

a(t) = (t6 + (p+ 1)2(t− 0.45)p+1
+ )e−50(t−0.5)2 , for p = 0 : 5,

where the truncated power function is (x)+ := max(x, 0) for x ∈ R.
If p = 0, then a /∈ C1[0, T ], and the explicit solution u given by
equation (3.2) is discontinuous at each integer multiple of T1. Figure 2
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shows that there is no convergence (in the L∞ norm) when p = 0.
If p ≥ 1, then a(t) satisfies condition (2.2) with d = p − 1 and
equation (3.2) gives u ∈ Cp−1[0, T ]. The observed convergence rate
is O(hmin(p,4)), saturating at O(h4), which is better than might be
expected for cubic spline interpolation where u ∈ C4 is a standard
assumption. We note that the function u from equation (3.2) is smooth
everywhere except at integer multiples of T1 where its fourth derivative
is discontinuous, and this special structure might be responsible for the
better than expected convergence behavior.

4. Stability of the convolution spline scheme. We now describe
a new technique for investigating the stability (as defined below) of
approximation schemes for (1.1). The advantage of this approach over
that from [5] is that it enables us to prove convergence for discontinuous
kernel functions.

Definition 4.1. The approximation (2.13) of (1.1) is stable if there
exists a constant C independent of h such that

(4.1) |vn| ≤ C, for n = 1 : NT .

We first state some definitions and results which will be needed for
the subsequent analysis.

4.1. Definitions and auxiliary results. We set ∥f∥ = ∥f∥L∞[0,T ]

and define the broken norm ||| · ||| by

|||f ||| :=
Ns∑
ℓ=0

∥f∥L∞(Tℓ,Tℓ+1)
,

where the points Tℓ for ℓ = 1 : Ns are the allowed points of discontinuity
of the kernel K. Note that (2.5) implies

|||K|||+ |||K ′||| ≤ C

for some constant C.
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Definition 4.2. The Z-transform of a sequence {fn}∞n=0 is the func-
tion F given by

(4.2) F (ξ) = Z{fn}(ξ) =
∞∑

n=0

fn ξ
n

where ξ ∈ C with |ξ| ≤ 1 is such that the sum converges.

The sequence µn defined by

(4.3) 15µn + 5µn−1 + 5µn−2 − µn−3 = 0

for n ≥ 1 with µ0 = 1 and µn = 0 for n < 0, plays a key part in the
analysis, and its relevant properties are stated below.

Lemma 4.3. The Z-transform of the sequence µn satisfies Z{µn}(ξ) =
1/G0(ξ) where

(4.4) G0(ξ) :=
(
15 + 5 ξ + 5 ξ2 − ξ3

)
/15

has roots ξ1 ≈ 6.197, ξ2,3 ≈ −0.5986 ± 1.4359 i. The solution of the
difference equation (4.3) is

(4.5) µn = c1 ξ
−n
1 + c2 ξ

−n
2 + c3 ξ

−n
3 ,

where c1 ≈ 0.050, c3 = c2 ≈ 0.475− 0.0897 i, and

(4.6) Cµ :=
∞∑
j=0

|µj | ≈ 2.051339.

We use the standard discrete Gronwall inequality below for contin-
uous kernel problems.

Lemma 4.4 (Discrete Gronwall inequality [16, Lemma 1.4.2]). If the
sequence xn ≥ 0 satisfies

x0 ≤ a, xn ≤ a+ b
n−1∑
j=0

xj , for n ≥ 1,

for some a, b ≥ 0, then

xn ≤ a (1 + b)n ≤ a ebn for all n ≥ 0.
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Discontinuous kernels whose first discontinuity is at T1 ≈ Mh give
rise to a stability sequence which has a localized contribution coming
from M steps back. The next result extends the standard Gronwall
inequality bound to deal with this case.

Lemma 4.5. If the sequence xn ≥ 0 satisfies

(4.7) xn ≤ a+ b
n−1∑
j=0

xj + c xn−M for n ≥ 1,

with a, b, c ≥ 0, and xn ≡ 0 for n < 0, x0 ≤ a, then

(4.8) xn ≤ a (1 + b)n(1 + c)⌊n/M⌋ for all n ≥ 0,

where ⌊w⌋ is the largest integer less than or equal to w ∈ R.

Proof. We use induction over blocks of length M on the sequence
xn ≥ 0 satisfying inequality (4.7), with inductive hypothesis:

(IH)S: bound (4.8) holds for n = 0 : SM − 1 for some S ≥ 1.

It follows from Lemma 4.4 that (IH)S holds when S = 1; suppose
that it is true for some S ≥ 1. We need to show that bound (4.8) holds
for n = SM + k for k = 0 : M − 1. For such k, it follows from bounds
(4.7) and (4.8) that

xSM+k≤a+a(1+c)S−1

{
c (1+b)(S−1)M+k+b

SM−1∑
j=0

(1+b)j
}
+b

k−1∑
j=0

xSM+j

≤ a (1 + c)S−1
{
c (1 + b)(S−1)M+k+ (1 + b)SM

}
+b

k−1∑
j=0

xSM+j

≤ a (1 + c)S(1 + b)SM + b
k−1∑
j=0

xSM+j .

We have thus shown that the sequence yk = xSM+k satisfies

yk ≤ a (1 + c)S(1 + b)SM + b
k−1∑
j=0

yj ,
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and hence, it follows from Lemma 4.4 that

xSM+k ≤ a (1 + c)S(1 + b)SM (1 + b)k = a (1 + c)S(1 + b)SM+k,

giving (IH)S+1 as required. �

We also need the following weighted integral mean value theorem,
see e.g., [19, Theorem A.6].

Lemma 4.6. If f is continuous on [a, b], then, for any non-negative
weight function w with positive integral, there exists ξ ∈ [a, b] such that

(4.9) f(ξ)

∫ b

a

w(x) dx =

∫ b

a

f(x)w(x) dx.

4.2. Stability for piecewise smooth kernels. In this subsection,
we begin by taking the backward difference of the approximation (2.11)
and obtain bounds on the sizes of the quantities (qj − qj−1)/q0 that
appear, most of which are O(h). As noted in equation (2.6), the
discontinuous kernel K(t) can be written as the sum of a collection of
Heaviside functions and a continuous piecewise smooth function; thus,
we establish the stability of these two cases separately in subsections
4.2.1 and 4.2.2. These two results are combined to give the general case
in subsection 4.2.3.

We assume that conditions (2.2) and (2.5) hold for some d ≥ 0, and
that h is small enough for equation (2.15) to hold, so that the first
discontinuity of K occurs beyond the support of ϕj(t/h) for j = 0 : 3.
It then follows from Lemma 4.6 that there is ξ0 ∈ (0, 2) with

q0
h

=

∫ 2

0

K(th)ϕ0(t) dt

= K(0)

∫ 2

0

ϕ0(t) dt+ hK ′(hξ0)

∫ 2

0

t ϕ0(t) dt

=
5

8
+

31h

120
K ′(hξ0),
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and hence, q0 > 0 for sufficiently small h. We similarly obtain

qj
h

=


5/6 + (59/60)hK ′(hξ1) j = 1,

25/24 + (241/120)hK ′(hξ2) j = 2,

1 + 3hK ′(hξ3) j = 3,

for some ξj ∈ [max(0, j − 2), j + 2].

Taking the backward difference of equation (2.11) and dividing by
q0 gives

(4.10) v0 = 0,
n∑

j=0

ηj vn−j =
a(tn)− a(tn−1)

q0
, n ≥ 1,

where

(4.11) η0 := 1, ηj :=
qj − qj−1

q0
, j ≥ 1.

It follows from condition (2.2) and the above calculations that

(4.12)
|a(tn)− a(tn−1)|

q0
≤ 8a∆/5

1 + (31/75)hK ′(hξ0)
, n = 1 : NT ,

where

(4.13) a∆ := max
n≤NT

{
|a(tn)− a(tn−1)|

h

}
,

and the leading coefficients in equation (4.10) are

η1 = 1/3 + η∗1 , η2 = 1/3 + η∗2 , η3 = −1/15 + η∗3 ,

where |η∗j | ≤ 2hmax{|K ′(hξ)| : ξ ∈ [0, 5]} for j = 1 : 3 when h is
sufficiently small. It is also straightforward to verify that, if K(t) is
continuous for t ∈ [tj−3, tj+2], j ≥ 4, then

|qj − qj−1| ≤ h2|||K ′|||

(and |ηj | ≤ (h2/q0) |||K ′||| ≤ 2h |||K ′||| for sufficiently small h), but, if K
is discontinuous at t = Tℓ ∈ [tj−3, tj+2], then ηj is an O(1) quantity.

4.2.1. Discontinuous multiple step-function kernel. Stability results
for the case of a single jump step-function kernel were obtained in
[5], but the modified Gronwall lemma (Lemma 4.5) introduced above
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allows us to obtain a sharper result, as well as treating the more difficult
case of multiple jumps.

If the kernel K is given by equation (3.1) with α0 = 1, then the
coefficients ηj are

η1 = η2 = 1/3,

η3 = −1/15,

and

ηj = 0,

for j = mℓ−1 + 4 : mℓ − 2 for each ℓ. The values around the jump
discontinuity at Tℓ are

ηmℓ+k =
8

5
(αℓ − αℓ−1)

∫ rℓ−k+1

rℓ−k

B3(t) dt

=
8

5
(αℓ − αℓ−1) βk(r),

for k = −1 : 3, using equation (2.10), where βk(r) = B4(rℓ−k+1/2) ≥
0. Substituting the values of ηj into equation (4.10) gives

15 vn + 5 vn−1 + 5 vn−2 − vn−3

15

=
8

5

{
a(tn)− a(tn−1)

h
+

Ns∑
ℓ=1

(αℓ−1 − αℓ)

3∑
k=−1

βk vn−mℓ−k

}
with v0 = 0 for k ≤ 0. The Z-transform of this difference scheme is

G0(ξ)V (ξ) =
8

5

{
(1− ξ)A(ξ)

h
+

Ns∑
ℓ=1

(αℓ−1 − αℓ)
3∑

k=−1

βk ξ
mℓ+k V (ξ)

}
,

where G0 is defined in equation (4.4). Using Lemma 4.3 and taking the
inverse transform gives

vn =
8

5

n∑
j=0

µn−j

{
a(tj)− a(tj−1)

h
+

Ns∑
ℓ=1

(αℓ−1 − αℓ)
3∑

k=−1

βk vj−mℓ−k

}
,
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and it follows from equation (4.6) and bound (4.12) that
(4.14)

|vn| ≤
8

5
Cµa∆ +

8

5

n∑
j=0

|µn−j |
Ns∑
ℓ=1

|αℓ−1 − αℓ|
3∑

k=−1

βk(r)|vj−mℓ−k|,

for n ≥ 1. To make further progress with this inequality we introduce
the cumulative maximum modulus:

(4.15) zn := max
0≤j≤n

|vj |, n > 0,

with zn = 0 for all n ≤ 0. Then, the second term on the right-hand
side of the term (4.14) can be bounded by:

8

5

n∑
j=0

|µn−j |zn−m1+1

Ns∑
ℓ=1

|αℓ−1 − αℓ|
3∑

k=−1

βk(r)

=
8

5
zn−m1+1

n∑
j=0

|µn−j |
Ns∑
ℓ=1

|αℓ−1 − αℓ|

since
∑3

k=−1 βk(r) = 1 for all r ∈ [0, 1) from the properties of quartic
splines. Hence,

|vn| ≤ C1 + C2 zn−m1+1

for each n ≥ 0, where C1 = 8Cµ a∆/5, a∆ is defined in equation (4.13)
and

C2 = 8Cµ

Ns∑
ℓ=1

|αℓ−1 − αℓ| /5.

If 0 ≤ k ≤ n, then

|vk| ≤ C1 + C2 zk−m1+1 ≤ C1 + C2 zn−m1+1,

and so,
zn ≤ C1 + C2 zn−m1+1.

Finally, applying the modified Gronwall inequality, Lemma 4.5 gives
the stability bound

|vn| ≤ zn ≤ C1 (1 + C2)
⌊n/(m1−1)⌋,
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for n = 1 : NT . Note that

⌊n/(m1 − 1)⌋ ≤ T/(T1 − 2h),

and so, |vn| is bounded independently of h.

4.2.2. Continuous piecewise C1 kernels. The convergence proof of [5]
(which implies stability) needs a,K ∈ C7[0, T ], but, as shown below,
far less regularity is needed. We assume that K is globally continuous
on [0, T ] and that a and K, respectively, satisfy conditions (2.2) and
(2.5) with d = 0.

The scheme (4.10) can be rewritten as

15 vn + 5 vn−1 + 5 vn−2 − vn−3

15
=

a(tn)− a(tn−1)

q0
−

n−1∑
j=0

η∗n−jvj ,

where η∗0 = 0, η∗j for j = 1 : 3 are as defined in Section 4.2 and η∗j = ηj
for j ≥ 4. The bounds from subsection 4.2 give

|η∗j | ≤ 2h |||K ′||| ,

for each j. As in the previous subsection, taking the Z-transform of
the above difference scheme gives

G0(ξ)V (ξ) =
(1− ξ)A(ξ)

q0
−Z{η∗n}(ξ)V (ξ),

and we again use Lemma 4.3 and take the inverse transform to obtain

V (ξ) = Z{µn}(ξ)
{
(1− ξ)A(ξ)

q0
−Z{η∗n}(ξ)V (ξ)

}
and

vn =
n∑

j=0

µn−j

(
a(tj)− a(tj−1)

q0

)
−

n∑
j=0

µn−j

j−1∑
k=0

η∗j−kvk, n ≥ 1.

It then follows from Lemma 4.3 and the bounds of subsection 4.2 that

|vn| ≤ 2Cµa∆ + 9Cµ|||K ′|||h
n−1∑
j=0

|vj |,
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for n = 1 : NT . The standard Gronwall inequality in Lemma 4.4 then
gives the stability result

|vn| ≤ 2Cµa∆ exp (2Cµ|||K ′|||nh) ≤ 2Cµa∆ exp (2Cµ|||K ′|||T ) ,

for n = 1 : NT where a∆ is defined in equation (4.13).

4.2.3. General piecewise C1 kernel. The results of the previous two
subsections are now combined to prove the next result.

Theorem 4.7. Suppose that conditions (2.2) and (2.5) hold for d = 0.
Then, for sufficiently small h, the solution vn of equation (4.10) satisfies

(4.16) |vn| ≤ C1 e
C2T (1 + C3)

⌊n/(m1−1)⌋,

for n = 1 : NT , where

(4.17)

C1 := 2Cµa∆,

C2 := 2Cµ|||K ′|||,

C3 := 2Cµ

Ns∑
ℓ=1

|Kℓ−1(Tℓ)−Kℓ(Tℓ)| ,

Cµ given by equation (4.6) and a∆ ≤ ∥a′∥ is defined in equation (4.13).

Proof. As in equation (2.6), we write K as the sum of a continuous
piecewise C1 function KC and piecewise constant functions:

K(t) = KC(t) +

Ns∑
ℓ=1

αℓ [H(t− Tℓ)−H(t− Tℓ+1)]

where the αℓ are as defined in equation (2.7). We use the results of the
previous two subsections to split the coefficients ηj into two parts:

ηj = η†j + η∗j ,

where the η†j terms correspond to the piecewise constant parts (see

subsection 4.2.1) and are given by

η†0 = 1,

η†1 = η†2 =
1

3
,
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η†3 = − 1

15
,

and

η†j = 0 for j = mℓ−1 + 4 : mℓ − 2,

for each ℓ. The values around the jump discontinuity at Tℓ are

η†mℓ+k =
h (αℓ − αℓ−1)

q0
βk(r), for k = −1 : 3.

As in the previous subsection, the remainder terms η∗j satisfy

η∗0 = 0, |η∗j | ≤ 2h |||K ′||| .

Scheme (4.10) can be thus be written as

15 vn+5(vn−1+vn−2)−vn−3

15
=

a(tn)−a(tn−1)

q0
−

n−1∑
j=0

η∗n−jvj

+
h

q0

Ns∑
ℓ=1

(αℓ−1 − αℓ)

3∑
k=−1

βk vn−mℓ−k.

We again take the Z-transform, using Lemma 4.3 and the inverse
transform to obtain

vn =
n∑

j=0

µn−j

(
a(tj)− a(tj−1)

q0

)
−

n∑
j=0

µn−j

j−1∑
k=0

η∗j−kvk

+
h

q0

Ns∑
ℓ=1

(αℓ−1−αℓ)
3∑

k=−1

βk vj−mℓ−k,

which gives the bound

|vn| ≤ C1 + C2 h
n−1∑
j=0

|vj |+ C3 zn−m1+1,

for n ≥ 1, where zn is the cumulative maximum defined in equa-
tion (4.15) and the constants Ci are given by equation (4.17). Note
that C3 is obtained because

|αℓ − αℓ−1| = |Kℓ(Tℓ)−Kℓ−1(Tℓ)|.
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If k ≤ n, then

|vk| ≤ C1 + C2 h

n−1∑
j=0

zj + C3 zn−m1+1

giving

zn ≤ C1 + C2 h

n−1∑
j=0

zj + C3 zn−m1+1.

Finally, we use the modified Gronwall Lemma 4.5 to obtain

zn ≤ C1 (1 + C2h)
n (1 + C3)

⌊n/(m1−1)⌋,

giving equation (4.16) as required. �

5. Convergence. We show next that, under reasonable hypotheses
and for a wide range of kernel functions, the difference between the
exact solution u of (1.1) and its convolution spline approximation Un(t)
satisfies

|Un(t)− u(t)| ≤

{
Ch4 0 ≤ t ≤ tn−1

Ch3 tn−1 < t ≤ tn

for n = 1 : NT . This is achieved by introducing a quasi-interpolant

Û(t) from the cubic B-spline space and showing that it is within O(h4)
of the exact solution, and within O(h4) of the approximate solution
over most of the range.

For technical reasons, we need u(t) ∈ C4[−2h, T + 2h], and so we
extend the definition of K(t) and a(t) for t up to T+2h. The maximum
norm taken over the range [0, T + 2h] is denoted by an asterisk, i.e.,

∥·∥∗ = ∥ · ∥L∞[0,T+2h].

5.1. A quasi-interpolant of u(t). We assume that u ∈ C4[0, T +2h]
with u(p)(0) = 0 for p = 0 : 4 (Lemmas 2.2 and 2.3 give sufficient
conditions on a and K for this). The extension of u by 0 to the negative
real axis is in C4[−2h, T + 2h], and

∥u(p)∥L∞[−2h,T+2h] = ∥u(p)∥∗ for p = 0 : 4.
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Following Powell [15, Chapter 20.4], we define the quasi-interpolant

Û of u by

(5.1) Û(t) :=

NT+1∑
j=0

ûj B3(t/h− j), t ∈ R,

with coefficients

(5.2) ûj =
4

3
u(tj)−

1

6
(u(tj−1) + u(tj+1)), j = 0 : NT + 1.

The function Û(t) has compact support with

Û(t) = 0, t /∈ (−2h, T + 3h),

and its approximation error is given in the next lemma.

Lemma 5.1. Given u ∈ C4[−2h, T +2h] with u(t) ≡ 0 for t ≤ 0, then

Û , defined by equation (5.1), satisfies

∥Û − u∥L∞[−2h,T ] ≤
35h4

1152
∥u(4)∥∗.

Proof. This follows results in [15, Chapters 20.4, 22.4] by rewriting

Û(t) in each interval tj ≤ t ≤ tj+1, for j = −2 : NT − 1, as

Û(tj + sh) =

3∑
k=−2

u(tj+k) b(s− k), s ∈ [0, 1]

where

(5.3) b(s) :=
(8B3(s)−B3(s+ 1)−B3(s− 1))

6
.

Standard B-spline properties show that b(s) has compact support in
(−3, 3) and

(5.4)
∞∑

k=−∞

km b(s− k) = sm for m = 0 : 3.
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Fix j ≤ NT−1 and t = tj+sh ∈ [tj , tj+1], and let Lj : C[−2h, T+2h] →
R be the linear functional defined by

Lj [f ] = f(tj + sh)−
3∑

k=−2

f(tj+k) b(s− k).

Using identity (5.4) to verify that Lj annihilates cubic polynomials is
straightforward, and it follows from the Peano kernel theorem that

u(tj + sh)− Û(tj + sh) =

∫ tj+3

tj−2

PK(θ, s)u(4)(θ) dθ,

where

PK(θ, s) :=
1

3!

(
(tj + sh− θ)3+ −

3∑
k=−2

b(s− k) (tj+k − θ)3+

)
,

and (x)+ is the truncated power term from subsection 3.4. By def-
inition, PK(θ, s) = 0 for θ /∈ (tj−2, tj+3), and it can be shown that
PK(θ, s) ≥ 0 for θ ∈ (tj−2, tj+3), e.g., by considering each of the inter-
vals (tj , tj + sh), (tj + sh, tj+1) and (tj+k, tj+k+1) for k = −2,−1, 1, 2
separately. Hence, the integral mean value theorem (Lemma 4.6) can
be applied and

u(tj + sh)− Û(tj + sh) = u(4)(ζj)

∫ tj+3

tj−2

PK(θ, s) dθ

= u(4)(ζj)
h4

72
(2 + 3s2 − 6s3 + 3s4),

for some ζj ∈ (tj−2, tj+3). The polynomial in s is positive with
maximum value 35/1152, and so,

|u(tj + sh)− Û(tj + sh)| ≤ 35h4

1152
|u(4)(ζj)| ≤

35h4

1152
∥u(4)∥∗,

and the result follows. �

5.2. The difference between the approximate solution and the
quasi-interpolant. Because the exact solution u(t) of equation (1.1)
is 0 for t ≤ 0, equation (2.11) gives∫ ∞

0

K(t)u(tn − t) dt = a(tn) =

∫ ∞

0

K(t)Un(tn − t) dt,
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for n = 1 : NT , and so,

R2
n :=

∫ ∞

0

K(t) (u(tn − t)− Û(tn − t)) dt(5.5)

=

∫ ∞

0

K(t) (Un(tn − t)− Û(tn − t)) dt,

for n = 1 : NT . It follows from approximation (2.8) and equation (5.1)
that, if t ∈ [0, tn], then

Un(tn − t)− Û(tn − t) =
n∑

j=0

vn−j ϕj(t/h)−
n∑

j=−1

ûn−j B3(t/h− j)

=
n∑

j=0

εn−j ϕj(t/h)(5.6)

− (ûn+1 − 3ûn + 3ûn−1 − ûn−2)B3

(
t

h
+ 1

)
where εj := vj − ûj are the nodal errors. Substituting this into
equation (5.5) then gives

(5.7)
n∑

j=0

qj εn−j = R1
n +R2

n, n = 1 : NT ,

where R2
n is defined above and

(5.8) R1
n := (ûn+1 − 3ûn + 3ûn−1 − ûn−2)

∫ ∞

0

K(t)B3

(
t

h
+ 1

)
dt.

The nodal error equation (5.7) has the same coefficients as the
approximation scheme (2.11),

n∑
j=0

qjvn−j = a(tn),

and thus, we can apply Theorem 4.7 with R1
n +R2

n in place of a(tn)
to obtain the following result.
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Lemma 5.2. Suppose that (2.5) holds for d ≥ 0. Then, if h is
sufficiently small,

max
0≤j≤NT

|εj | ≤ CA max
1≤n≤NT

|R1
n −R1

n−1 +R2
n −R2

n−1|
h

.

where CA := 2Cµ e
C2T (1 + C3)

(1+T/T1) for constants Cµ, C2 and C3

as defined in Theorem 4.7.

We now show that if the exact solution u of equation (1.1) is
sufficiently smooth, then the difference of the residuals is O(h5).

Lemma 5.3. Suppose that the kernel K(t) and right-hand side a(t)
of equation (1.1) satisfy conditions (2.5) and (2.2), respectively, with
d = 4 for t ∈ [0, T + 2h]. Then, if h is sufficiently small, the residuals
R1

n and R2
n defined by equations (5.8) and (5.5) satisfy

|R1
n −R1

n−1| ≤
h5

12
∥u(4)∥∗(5.9)

|R2
n −R2

n−1| ≤ CB h5 ∥u(4)∥∗(5.10)

where

CB =
35

1152

(
T |||K ′|||+

Ns∑
ℓ=0

|K(T−
ℓ )−K(T+

ℓ )|+ 2h∥K ′∥L∞[T,T+2h]

)
.

Proof. It follows from the integral mean value theorem equation (4.9)
that∫ ∞

0

K(t)B3

(
t

h
+ 1

)
dt =

h

6

∫ 1

0

(1− s)3K(sh) ds =
h

24
K(hξ),

for some ξ ∈ (0, 1), and taking the difference of R1
n defined in

equation (5.8) then gives

R1
n −R1

n−1 =
hK(hξ)

24
(ûn+1 − 4ûn + 6ûn−1 − 4ûn−2 + ûn−3) .

It was shown in Corollary 2.4 that the given hypotheses on K and a
give u ∈ C4[−2h, T + 2h], and any C4 function f satisfies the identity

f(tn+2)−4f(tn+1)+6f(tn)−4f(tn−1)+f(tn−2)=h4

∫ 2

−2

B3(s)f
(4)(tn+sh)ds,
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see, e.g., [15, Theorem 22.3]). Rearranging the definition (5.2) of ûn

thus gives

ûn+1 − 4ûn + 6ûn−1 − 4ûn−2 + ûn−3 = h4

∫ 3

−3

b(s)u(4)(tn−1 + sh) ds,

for b(s) defined in (5.3), and so

R1
n −R1

n−1 =
h5K(hξ)

24

∫ 3

−3

b(s)u(4)(tn−1 + sh) ds.

Because b(s) takes both positive and negative values, the integral mean
value theorem cannot be used directly, but it can be used after taking
the modulus. We have∫ 3

−3

|b(s)| ds = 4222 + 84× 181/3 + 25× 182/3

3993
= 1.15548 . . . ,

which gives the bound (5.9) for sufficiently small h (because K(0) = 1).

In order to bound R2
n −R2

n−1, note that

R2
n =

∫ tn

−2h

K(tn − t)
(
u(t)− Û(t)

)
dt,

taking into account the causality of the exact solution, u(t) = 0 for

t ≤ 0, and the compact support of Û(t). Then

R2
n −R2

n−1 =

∫ tn

−2h

(K(tn − t)−K(tn−1 − t)) (u(t)− Û(t)) dt,

where, for convenience, we extend K(t) by zero for t < 0. Hence,∣∣R2
n −R2

n−1

∣∣ ≤ ∥Û − u∥L∞[−2h,T ]

∫ tn

−2h

|K(tn − t)−K(tn−1 − t)| dt

≤ 35h4

1152
∥u(4)∥

∫ tn+2

0

|K(t)−K(t− h)| dt,

using Lemma 5.1. The bound (5.10) then follows from∫ Tℓ+1

Tℓ

|K(t)−K(t− h)| dt =
∫ Tℓ+h

Tℓ

|K(t)−K(t− h)| dt

+

∫ Tℓ+1

Tℓ+h

|K(t)−K(t− h)| dt
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≤ h |K(T−
ℓ )−K(T+

ℓ )|+ h2 |||K ′|||+ (Tℓ+1 − Tℓ − h) h |||K ′|||. �

Combining these lemmas yields our final convergence result.

Theorem 5.4. Suppose that K and a satisfy the hypotheses of Lemma 5.3.
Then, for sufficiently small h, for each n = 1 : NT , the approximate
solution Un(t) for t ∈ [0, tn] given by equation (2.11) satisfies

(5.11) |Un(t)− u(t)| ≤ CE ∥u(4)∥∗ h4 +CF ∥u(3)∥∗ B3(t/h−n− 1)h3,

where

CE :=
5

3
CA

{
1

12
+ CB

}
+

35

1152
,

CF :=
516 + 11

√
11

450

for CA and CB as defined in Lemmas 5.2–5.3, that is,

|Un(t)− u(t)| ≤

{
CE ∥u(4)∥∗ h4 0 ≤ t ≤ tn−1

CF ∥u(3)∥∗ h3/6 +O(h4) tn−1 < t ≤ tn.

Proof. We prove the result by adding and subtracting the quasi-

interpolant Û . For t ∈ [0, tn],

|Un(tn−t)−u(tn−t)| ≤ |Un(tn−t)−Û(tn−t)|+|Û(tn−t)−u(tn−t)|

=

∣∣∣∣ n∑
j=0

εn−j ϕj(t/h)−Rn B3(t/h+ 1)

∣∣∣∣
+ |Û(tn − t)− u(tn − t)|

≤
n∑

j=0

|εn−j | |ϕj(t/h)|+ |Rn|B3(t/h+ 1)

+ |Û(tn − t)− u(tn − t)|

using equation (5.6), where

Rn = ûn+1 − 3ûn + 3ûn−1 − ûn−2.
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It remains to bound the three terms on the right hand side of this
inequality. The bound for the third term is given by Lemma 5.1:

|Û(tn − t)− u(tn − t)| ≤ 35h4

1152
∥u(4)∥∗,

and the term |εn−j | can be bounded using Lemmas 5.2 and 5.3:

max
0≤j≤NT

|εj | ≤ CA

{
1

12
+ CB

}
∥u(4)∥∗ h4.

All of the basis functions ϕj are non-negative apart from ϕ1(t), whose
minimum value is ϕ1(0) = −1/3. Hence,

n∑
j=0

|εn−j | |ϕj(t/h)| = (|ϕ1(t/h)| − ϕ1(t/h)) |εn−1|+
n∑

j=0

|εn−j |ϕj(t/h)

≤
(
2

3
+

n∑
j=0

ϕj(t/h)

)
max

0≤j≤NT

|εj |

≤ 5h4

3
CA

{
1

12
+ CB

}
∥u(4)∥∗.

The term Rn can be bounded in a similar way to R1
n − R1

n−1 in
Lemma 5.3. The divided difference identity

f(tn+1)−3f(tn)+3f(tn−1)−f(tn−2)=h3

∫ 3/2

−3/2

B2(s) f
(3)(tn−1/2+sh) ds,

in terms of the quadratic B-spline B2(s) gives

ûn+1 − 3ûn + 3ûn−1 − ûn−2 = h3

∫ 5/2

−5/2

b2(s)u
(3)(tn−1/2 + sh) ds,

where b2(s) = (8B2(s)−B2(s− 1)−B2(s+ 1))/6, and so,

|ûn+1 − 3ûn + 3ûn−1 − ûn−2| ≤ h3

∫ 5/2

−5/2

|b2(s)| |u(3)(tn−1/2 + sh)| ds

= h3 |u(3)(ζn)|
∫ 5/2

−5/2

|b2(s)| ds = h3 |u(3)(ζn)|
516 + 11

√
11

450
,
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for some ζn ∈ (tn−3, tn+2). Combining these three terms gives the
bound

|Un(tn − t)− u(tn − t)| ≤ CE ∥u(4)∥∗ h4 + CF ∥u(3)∥∗B3(t/h+ 1)h3

which yields the bound (5.11). The final bound follows from noting
that B3(t/h − n − 1) = 0 for t ≤ tn−1, and its maximum value for
t ∈ (tn−1, tn] is 1/6. �

Note that, in order to obtain an O(h4) approximation over the whole
range t ∈ [0, T ] where T = NT h involves running the scheme for one
extra step to n = NT + 1.

6. Conclusions. The convolution spline scheme (2.11)–(2.12) is a
fourth order accurate approximation of the VIE (1.1) for general piece-
wise smooth (continuous or discontinuous) kernels which is efficient and
straightforward to implement. The weights qj involve integrals of the
kernel function multiplied by B-splines (or combinations of B-splines
when near t = 0); these can be evaluated to high accuracy by stan-
dard quadrature, and discontinuities in the kernel do not present any
extra difficulties. This is not the case for methods such as convolution
quadrature which rely on calculations in the Laplace domain.

Although much improved from [5], the regularity assumptions
needed for the proof of Theorem 5.4 may not be optimal; the method
appears stable and fourth order accurate for an even broader range of
discontinuous kernels and forcing terms a(t) than discussed here.

The numerical experiments in [5] indicate that the convolution spline
method performs well for time domain boundary integral equations,
and we are investigating whether the present analysis can be extended
to these problems.
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