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ABSTRACT. We present a novel analysis of the bound-
ary integral operators associated to the wave equation. The
analysis is done entirely in the time-domain by employing
tools from abstract evolution equations in Hilbert spaces
and semi-group theory. We prove a single general theorem
from which well-posedness and regularity of the solutions for
several boundary integral formulations can be deduced as
specific cases. By careful choices of continuous and discrete
spaces, we are able to provide a concise analysis for various
direct and indirect formulations, both for their Galerkin in
space semi-discretizations and at the continuous level. Some
of the results here are improvements on previously known
results, while other results are equivalent to those in the lit-
erature. The methodology presented greatly simplifies anal-
ysis of the operators of the Calderón projector for the wave
equation and can be generalized to other relevant boundary
integral equations.

1. The context and the goals. We present a new technique for
direct in-time analysis of the operators of the Calderón projector
for the acoustic wave equation. The analysis is carried out by first
formulating the wave equation as a first order in time and in space
transmission problem. We then show that this exotic transmission
problem generates a strongly continuous group (C0 group) of isometries
in an appropriately chosen Hilbert space. From this abstract dynamical
system, we are able to derive stability and error estimates for a variety
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of transient scattering problems, both continuous and semi-discrete in
space. This new technique offers a number of improvements over the
Laplace domain analysis that originated in [2, 3], which carries out
inversion using a Plancherel formula in anisotropic Sobolev spaces.
Later work [12] used the Laplace domain method and derived time-
domain estimates by inversion of the Laplace transform. The Laplace
domain analysis was given a systematic treatment [11] for acoustic
waves and has been applied to numerous other problems, such as
electromagnetic scattering [1], electromagnetic transmission [5], and
wave-structure interaction [9]. A detailed outline of the Laplace
domain analysis of transient acoustic scattering can be found in the
first part of [18].

The direct in-time study of the acoustic Calderón projector began
in [17] and was detailed in the second part of [18], employing a
second order (in time and in space) equation approach, namely, the
problems were rewritten as a second order in-time differential equation
associated to an unbounded (second order differential) operator in
space variables. This approach later proved to be inflexible for the
treatment of Maxwell equations, which led to the use of semigroup
theory [16], greatly simplifying the analysis and sidestepping the cut-
off process and reconciliation step described in [4, 15, 18]. Moreover,
the estimates obtained with the direct in-time analysis are sharper than
those obtained through Laplace domain analysis. In particular, the
dependence on time is made explicit, and the temporal regularity for
the input data is lowered. We will remark on such improvements in the
course of this article.

We present here a single theorem that covers all of the possible prob-
lems of interest as special cases. By choosing the appropriate spaces
we are able to systematically derive estimates for the time domain
layer potentials, time domain boundary integral operators, time do-
main DtN/NtD maps, semi-discrete Galerkin solver and error operators
for direct/indirect/symmetric formulations for interior/exterior Dirich-
let/Neumann equations. The theory also covers screens and mixed
boundary conditions with no modifications. We are hopeful that this
is the final “big theorem” which unites all of the previously developed
direct in-time analysis and that a more general framework will not be
needed in the future.
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The paper slowly builds the required material in order to state and
prove the abstract theorem and then proceeds to apply it to specific
cases. It is organized as follows. In Section 2, we introduce the
background material on Sobolev spaces, the potentials and operators
for the acoustic wave equation, and their mapping properties. Section 3
builds the key theorems on abstract evolution equations on a Hilbert
space from which all of the main results will follow. Section 4 applies
the previous result to a particular dynamical system that arises from
our study of the acoustic wave equation in an abstract setting. We
then formulate the various integral representations as a single exotic
transmission problem from which all of the specific formulations follow
via careful choices of spaces and data. Section 5 is a summary of the
estimates that follow from the theorems in Section 4. We conclude by
pointing at some possible extensions.

1.1. Background. Section 2 gives a quick introduction to the PDE
and distribution theory background necessary for this paper. All ideas
on Sobolev spaces and steady-state layer potentials on Lipschitz do-
mains may be found in McLean’s monograph on elliptic systems [13].
For background on vector-valued distributions and their Laplace trans-
forms, we refer to the Dautray-Lions encyclopedia [6]. A compendium
of what is needed in the context of time domain integral equations may
be found in [18]. Finally, some basic results on semigroups of operators
will be used. The most elementary may easily be found in functional
analysis textbooks [10], while results on the behavior of inhomogeneous
systems may be found in Pazy’s well known monograph [14].

2. The materials. This paper is a compendium of new and old
techniques that build on a relatively vast body of knowledge. This
section is devoted to introducing all the necessary tools to present the
time domain integral operators for the wave equation.

The geometric setting of this paper is as follows. The open set
Ω− ⊂ Rd is the union of a finite collection of bounded open sets Ωi,
i = 1, . . . , N , with connected Lipschitz boundaries. We assume that
the closures of the components Ωi do not intersect. We write

Γ := ∂Ω− = ∪N
i=1∂Ωi and Ω+ := Rd \ Ω− .
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Sobolev space notation. Given an open set O (here, O ∈ {Rd,
Rd \ Γ,Ω+,Ω−}), we denote

(u, v)O :=

∫
O
u v, (u,v)O :=

∫
O
u · v.

This is the inner product of L2(O) and L2(O) in the real case. In
the complex case, the bracket will still be linear, and we will need to
conjugate to obtain the inner product. We also denote

∥u∥O :=
√
(u, u)O, ∥u∥O :=

√
(u,u)O.

The space H1(O) is the standard Sobolev space and H(div,O) := {v ∈
L2(O) : ∇ · v ∈ L2(O)}. The H1(O) norm is denoted ∥ · ∥1,O, and
the H(div,O) norm is denoted ∥ · ∥div,O. For Lipschitz boundaries,

we consider the trace space H1/2(Γ) and denote by H−1/2(Γ) the
representation of its dual space obtained when the dual of L2(Γ) is
identified with itself. The duality product H−1/2(Γ)×H1/2(Γ) will be
denoted with angled brackets ⟨·, ·⟩Γ, linear in both components.

Traces. The trace operators

γ± : H1(Rd \ Γ) −→ H1/2(Γ) γ : H1(Rd) −→ H1/2(Γ),

are bounded and surjective. Given u ∈ H1(Rd \ Γ), we will denote

[[γu]] := γ−u− γ+u, {{γu}} := 1
2 (γ

−u+ γ+u).

The normal components for v ∈ H(div,Ω±) are elements γν
±v ∈

H−1/2(Γ) satisfying

⟨γν−v, γ−w⟩Γ = (∇ · v, w)Ω− + (v,∇w)Ω− for all w ∈ H1(Ω−),

⟨γν+v, γ+w⟩Γ = −(∇ · v, w)Ω+ − (v,∇w)Ω+ for all w ∈ H1(Ω+).

We recall that γν
± : H(div,Ω±) → H−1/2(Γ) are surjective. For

v ∈ H(div,Rd \ Γ), we can define

[[γνv]] := γν
−v − γν

+v, {{γνv}} := 1
2 (γν

−v + γν
+v).

When v ∈ H(div,Rd), we will write γνv = γν
±v. Finally, in the space

H1
∆(Ω±) : = {u ∈ H1(Ω±) : ∇u ∈ H(div,Ω±)}

= {u ∈ H1(Ω±) : ∆u ∈ L2(Ω±)},
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we can define ∂ν
±u = γν

±∇u. For u ∈ H1
∆(Rd \ Γ), we denote

[[∂νu]] := ∂ν
−u− ∂ν

+u = [[γν∇u]],
{{∂νu}} := 1

2 (∂ν
−u+ ∂ν

+u) = {{γν∇u}}.

When u ∈ H1(Rd \ Γ) but ∇u ∈ H(div,Rd) we will write ∂νu = ∂ν
±u.

Two remarks. We will deal with evolution equations by taking
values in real Sobolev spaces. The complexification of these spaces will
appear when we take Laplace transforms. While Lebesgue integration
over Rd and Rd \ Γ is clearly the same, we will distinguish one set from
the other when there is a differential operator in the integrand. For
instance, ∥∇u∥Rd\Γ will be used for u ∈ H1(Rd \ Γ) and ∥∇u∥Rd will be

used for u ∈ H1(Rd). Unless explicitly stated, all differential operators
in the space variables, and the associated differential equations, will be
assumed to be used in Rd \ Γ.

Vector-valued distributions. Let D(R) be the space of infinitely
differentiable functions with compact support, endowed with its usual
concept of convergence [19]. Given a Banach space X, an X-valued
distribution is a sequentially continuous linear map f : D(R) → X, with
the action of f on v ∈ D(R) denoted ⟨f, v⟩D′×D. A distribution is said
to be causal when ⟨f, v⟩D′×D = 0 whenever supp v ⊂ (−∞, 0). The

derivative of a distribution f is the distribution ḟ given by ⟨ḟ , v⟩D′×D =
−⟨f, v̇⟩D′×D.

Theorem 2.1 ([18, Chapter 3]). Let X be a Banach space, and let f
be an X-valued distribution. The statement on f :

there exists a continuous function g : R → X such that
g(t) = 0 for all t ≤ 0 and such that ∥g(t)∥ ≤ Ctm for
all t ≥ 1 with m ≥ 0, and there exists a non-negative
integer k such that f = g(k)

is equivalent to

f admits a Laplace transform F = L{f} defined in
C+ := {s ∈ C : Re s > 0} and satisfying ∥F(s)∥ ≤
CF(Re s)|s|

µ for all s ∈ C+, where µ ∈ R and
CF : (0,∞) → (0,∞) is non-increasing and such that

CF(σ) ≤ Cσ−ℓ for all σ < 1 for some C > 0 and ℓ ≥ 0.



112 M. HASSELL, T. QIU, T. SÁNCHEZ-VIZUET AND F.J. SAYAS

The parameters µ and k express the relation between the time
regularity of f(t) and the growth of its Laplace transform F(s) as
|s| → ∞. Following [11, Theorems 1,2], it is enough to require that
they satisfy the relation µ− k < −1.

The TD class. Following [18], the set of all causal distributions
characterized by Theorem 2.1 will be denoted TD(X) (TD as in time-
domain). Note that, if X and Y are Hilbert spaces, f ∈ TD(X)
and A ∈ B(X,Y ), then Af ∈ TD(Y ). In particular, if X ⊂ Y
with continuous embedding, f ∈ TD(X) implies that f ∈ TD(Y ).
When f ∈ TD(X), we will define ∂−1f ∈ TD(X) by the equality
L{∂−1f}(s) = s−1F(s). The operator ∂−1 is a weak form of the causal
anti-differentiation operator

(∂−1f)(t) =

∫ t

0

f(τ) dτ.

For f ∈ C(R+;X), we define

Ef(t) :=

{
f(t) t ≥ 0,

0 t < 0.

If ∥f(t)∥ ≤ Ctm for t ≥ 1 and some non-negative integer m, then
Ef ∈ TD(X). Also, if f ∈ C1(R+;X) and f(0) = 0, then

d

dt
(Ef) = Eḟ,

where the derivative on the left-hand-side is in the sense of X-valued
distributions, while the derivative on the right-hand-side is a classical
derivative. We will use the spaces

Ck
+(R;X) := {f ∈ Ck(R;X) : f(t) = 0, t ≤ 0},

and

W k
+(R;X) := {f ∈ Ck−1

+ (R;X) : f (k) ∈ L1(R;X)}.

Note that W k
+(R;X) ⊂ TD(X).
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Laplace domain form of potentials and operators. For s ∈ C+, φ ∈
H1/2(Γ), λ ∈ H−1/2(Γ), the problem

u ∈ H1(Rd \ Γ) ∆u− s2u = 0 in Rd \ Γ,
[[γu]] = φ,

[[∂νu]] = λ,

admits a unique solution. The variational formulation of this problem
is

u ∈ H1(Rd \ Γ) [[γu]] = φ,

(∇u,∇v)Rd\Γ + s2(u, v)Rd = ⟨λ, γv⟩Γ for all v ∈ H1(Rd).

Its solution is denoted using two bounded linear operators u = S(s)λ−
D(s)φ. By definition,

[[γ]] S(s) = 0, [[∂ν ]] S(s) = I,

[[γ]]D(s) = −I, [[∂ν ]]D(s) = 0.

We then define the four boundary integral operators

V(s) = {{γ}}S(s) = γ± S(s), K(s) = {{γ}}D(s),

Kt(s) = {{∂ν}} S(s), W(s) = −{{∂ν}}D(s) = −∂ν±D(s),

and we have the limit relations

∂ν
± S(s) = ∓ 1

2 I + Kt(s), γ±D(s) = ±1
2 I + K(s).

The operators V(s) and W(s) are invertible. We will denote

V−1(s) := (V(s))−1, W−1(s) := (W(s))−1.

Theorem 2.2 ([18, Sections 2.6, 3.4]). The following bounds hold for
all s ∈ C+:

∥S(s)∥H−1/2(Γ)→H1(Rd) ≤ C
|s|
σσ2

,

∥D(s)∥H1/2(Γ)→H1(Rd\Γ) ≤ C
|s|3/2

σσ3/2
,

∥V(s)∥H−1/2(Γ)→H1/2(Γ) + ∥W−1(s)∥H−1/2(Γ)→H1/2(Γ) ≤ C
|s|
σσ2

,
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∥K(s)∥H1/2(Γ)→H1/2(Γ) + ∥Kt(s)∥H−1/2(Γ)→H−1/2(Γ) ≤ C
|s|3/2

σσ3/2
,

∥W(s)∥H1/2(Γ)→H−1/2(Γ) + ∥V−1(s)∥H1/2(Γ)→H−1/2(Γ) ≤ C
|s|2

σσ
.

In each of them we have denoted σ := Re s and σ := min{1, σ}.

Retarded potentials and operators. By Theorems 2.1 and 2.2, we
can take the inverse Laplace transform of the operators and potentials
defined above:

S := L−1{S} ∈ TD(B(H−1/2(Γ),H1
∆(Rd \ Γ))),

D := L−1{D} ∈ TD(B(H1/2(Γ),H1
∆(Rd \ Γ))),

V := L−1{V} ∈ TD(B(H−1/2(Γ),H1/2(Γ))),

K := L−1{K} ∈ TD(B(H1/2(Γ),H1/2(Γ))),

Kt := L−1{Kt} ∈ TD(B(H−1/2(Γ),H−1/2(Γ))),

W := L−1{W} ∈ TD(B(H1/2(Γ),H−1/2(Γ))),

V−1 := L−1{V−1} ∈ TD(B(H1/2(Γ),H−1/2(Γ))),

W−1 := L−1{W−1} ∈ TD(B(H−1/2(Γ),H1/2(Γ))).

The distributional version of Kirchhoff’s formula can be stated by
solving a transmission problem: given φ ∈ TD(H1/2(Γ)) and λ ∈
TD(H−1/2(Γ)), the unique solution to the problem

u ∈ TD(H1
∆(Rd \ Γ)) ü = ∆u,

[[γu]] = φ,

[[∂νu]] = λ,

is u = S ∗ λ−D ∗ φ. If we define u = S ∗ λ−D ∗ φ, then

γ±u = V ∗ λ−K ∗ φ∓ 1
2φ,

∂ν
±u = ∓ 1

2λ+Kt ∗ λ+W ∗ φ.

3. The framework. Function spaces and operators. Let H, V, M1

and M2 be Hilbert spaces. (They will correspond to the kinetic energy
space, potential energy space, and two spaces of boundary conditions.)
We assume that V is continuously embedded into H. The abstract
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differential operator is a bounded linear operator A⋆ : V → H. Some of
the boundary conditions are encoded in a bounded linear and surjective
operator B : V → M2. We assume the property:

(3.1) C⋆
1∥U∥V ≤ ∥U∥H + ∥A⋆U∥H ≤ C⋆

2∥U∥V for all U ∈ V.

The rightmost inequality is a consequence of the boundedness of A⋆

and of the injection of V into H. We next define the operator

A := A⋆|D(A) : D(A) ⊂ H −→ H, D(A) := Ker B.

This operator will be treated as unbounded. We assume that ±A are
maximal dissipative, i.e.,

(3.2) (AU,U)H = 0, for all U ∈ D(A)

and

(3.3) I± A : D(A) → H are surjective.

The maximal dissipativity of −A guarantees time-reversibility but will
not be used for the estimates. Neither A⋆ nor −A⋆ can be dissipative in
their domain V since, otherwise, they would be dissipative extensions
of a maximal dissipative operator. As a consequence of the above
hypotheses A is the infinitesimal generator of a C0-group of isometries
in H. (This is part of the Lumer-Phillips theorem, cf. [10, Theorem
4.5.1].) In particular, D(A) is dense in H and, therefore, so is V.
Another bounded linear operator G : M1 → H deals with some ‘natural’
boundary conditions that are added as source terms. A final hypothesis
is: given arbitrary

Ξ := (ξ, χ) ∈ M := M1 ×M2,

there exists a unique solution to

(3.4) U ∈ V, U = A⋆U + Gξ, BU = χ

and

(3.5) ∥U∥H + ∥U∥V ≤ Clift∥Ξ∥M.

The operator L : M → V given by the solution of (3.4) will be referred
to as lifting.
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The problem. Given data functions F : [0,∞) → H and Ξ = (ξ, χ) :
[0,∞) → M, we look for U : [0,∞) → V such that

U̇(t) = A⋆U(t) + Gξ(t) + F (t), t ≥ 0,(3.6a)

BU(t) = χ(t), t ≥ 0,(3.6b)

U(0) = 0.(3.6c)

One may wonder why we keep the term Gξ separated from the ‘source
terms’ in F . The reason is that we expect ∥G∥ to be difficult to control,
and we will deal with this term through the lifting operator L . In the
end, the price to pay will be the need for higher regularity in time for
ξ than F , even if they apparently play similar roles in the equation.
Note that, if U is continuous as a V-valued function, then, necessarily,
χ(0) = 0. (The term related to G will not be used in this paper, but it
is added here since this slightly more extended theory is used in other
work [8].)

The main results. We will deal with the spaces

W k(X) := {f ∈ Ck−1([0,∞);X) : f (k) ∈ L1((0,∞);X),

f (ℓ)(0) = 0, 0 ≤ ℓ ≤ k − 1}.

The space W k(X) can be characterized as the set of functions f :
[0,∞) → X such that Ef ∈W k

+(R;X),

Theorem 3.1. If F ∈ W 1(H) and Ξ := (ξ, χ) ∈ W 2(M), then (3.6)
has a unique solution U ∈ C1([0,∞);H)∩C([0,∞);V), and for all t ≥ 0,

∥U(t)∥H ≤ Clift

(∫ t

0

∥Ξ(τ)∥M dτ+2

∫ t

0

∥Ξ̇(τ)∥M dτ

)
+

∫ t

0

∥F (τ)∥H dτ,

(3.7a)

∥U̇(t)∥H ≤ Clift

(∫ t

0

∥Ξ̇(τ)∥M dτ+2

∫ t

0

∥Ξ̈(τ)∥M dτ

)
+

∫ t

0

∥Ḟ (τ)∥H dτ.

(3.7b)

Proof. Let UNH := LΞ ∈W 2(V), and let U0 : [0,∞) → D(A) be the
unique solution of

(3.8) U̇0(t) = AU0(t) + F0(t), t ≥ 0, U0(0) = 0,
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where F0 := F + UNH − U̇NH = F + L (Ξ − Ξ̇) ∈ W 1(H). By
[14, Corollary 2.5], there exists a unique solution of (3.8): U0 ∈
C1([0,∞);H) ∩ C([0,∞);D(A)). Moreover,

∥U0(t)∥H ≤
∫ t

0

∥F0(τ)∥H dτ,

∥U̇0(t)∥H ≤
∫ t

0

∥Ḟ0(τ)∥H dτ for all t ≥ 0.

Adding (3.4) and (3.8), it is clear that U := UNH + U0 is a solution of
(3.6) and U ∈ C1([0,∞);H)∩ C([0,∞);V)). Using (3.5), we can bound

∥U(t)∥H ≤ Clift

(
∥Ξ(t)∥M +

∫ t

0

∥Ξ(τ)− Ξ̇(τ)∥M dτ

)
+

∫ t

0

∥F (τ)∥H dτ

≤ Clift

(∫ t

0

∥Ξ(τ)∥M dτ + 2

∫ t

0

∥Ξ̇(τ)∥M dτ

)
+

∫ t

0

∥F (τ)∥H dτ.

We can prove (3.7b) similarly. Uniqueness of the solution to (3.6)
follows from uniqueness of the solution of

V̇ (t) = AV (t) t ≥ 0, V (0) = 0

and the fact that D(A) = KerB. �

Note that, by (3.1) and (3.7),
(3.9)
C⋆

1∥U(t)∥V ≤ ∥U(t)∥H + ∥A⋆U(t)∥H
≤ ∥U(t)∥H + ∥U̇(t)∥H + ∥F (t)∥H + ∥Gξ(t)∥H

≤ Clift

(∫ t

0

∥Ξ(τ)∥M dτ + 3

∫ t

0

∥Ξ̇(τ)∥M dτ + 2

∫ t

0

∥Ξ̈(τ)∥M dτ

)
+

∫ t

0

∥F (τ)∥H dτ + 2

∫ t

0

∥Ḟ (τ)∥H dτ + ∥G∥ ∥Ξ(t)∥M.

Theorem 3.2 (Distributional extension). Let U be the solution of (3.6)
for data in the hypotheses of Theorem 3.1, and let U := EU , ξ := Eξ,
χ := Eχ and F = EF . Then, U is the unique solution of

(3.10) U ∈ TD(V), U̇ = A⋆U + Gξ + F , BU = χ.
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Proof. Let

CΞ :=

∫ ∞

0

∥Ξ̈(τ)∥M dτ, CF :=

∫ ∞

0

∥Ḟ (τ)∥H dτ.

The bound (3.7a) implies that

∥U(t)∥H ≤ CliftCΞt(2 + t) + CF t,

and, by (3.9),

∥U(t)∥V ≤ CliftCΞ(2 + 3t+ t2) + CF (2 + t) + ∥G∥CΞt.

This implies that U is polynomially bounded for large t as an H- and
V-valued function. Therefore, U := EU ∈ TD(V) and U ∈ TD(H). As
seen in Section 2, since U ∈ C1([0,∞);H) and U(0) = 0, then

d
dtU = EU̇

as H-valued distributions. Since E is a linear operator that commutes
with any operator independent of the time variable, (3.10) is satisfied.

�

4. The general result. Next, we are going to define a particular
(while quite general in purpose) example of a dynamical system such
as those studied in Section 3. We take H := L2(Rd \ Γ) × L2(Rd \ Γ),
V := H1(Rd \ Γ)×H(div,Rd \ Γ) and A⋆U = A⋆(u,v) := (∇ · v,∇u).
We now consider two closed spaces

Xh ⊂ H−1/2(Γ), Yh ⊂ H1/2(Γ),

and their polar sets

X◦
h := {φ ∈ H1/2(Γ) : ⟨µh, φ⟩Γ = 0 for all µh ∈ Xh},

Y ◦
h := {η ∈ H−1/2(Γ) : ⟨η, φh⟩Γ = 0 for all φh ∈ Yh}.

We next consider the spaces with homogeneous abstract transmission
conditions

Uh := {u ∈ H1(Rd \ Γ) : γ+u ∈ X◦
h, [[γu]] ∈ Yh},

Vh := {v ∈ H(div,Rd \ Γ) : [[γνv]] ∈ Xh, γν
−v ∈ Y ◦

h },

as well as the operator A : D(A) ⊂ H → H, where D(A) := Uh ×Vh.
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One remark. We can fit this example in the framework of Section 3
by using the operator B(u,v) := (γ+u|Xh

, γν
−v|Yh

, [[γu]]|Y ◦
h
, [[γνv]]|X◦

h
),

taking values in M2 := X∗
h × Y ∗

h × (Y ◦
h )

∗ × (X◦
h)

∗. Let us clarify this

point. The trace γ+u is in H1/2(Γ) = H−1/2(Γ)
∗
, and we can therefore

understand γ+u|Xh
: Xh → R as an element of the dual space of Xh,

which is denoted X∗
h, defined by Xh ∋ µh 7→ ⟨µh, γ+u⟩Γ. The same

explanation works for the three remaining components of B. Note that
D(A) = KerB; for instance, γ+u|Xh

= 0 is the same as γ+u ∈ X◦
h, and

[[γu]]|Y ◦
h
= 0 is equivalent to [[γu]] ∈ (Y ◦

h )
◦ = Yh because Yh is closed.

A second remark. By choosing the conditions based on γ−u and
γν

+v, we obtain a very similar problem for which everything we
will prove still holds. This second particular problem contains some
additional examples as concrete instances, but all the results that this
new problem would provide can be proved by adequately choosing the
right-hand sides in the problem we will study.

Proposition 4.1 (Infinitesimal generator). The operators ±A : D(A) ⊂
H → H are maximal dissipative.

Proof. Note first that, for all (u,v) ∈ Uh ×Vh,

(A(u,v), (u,v))H = (∇ · v, u)Rd\Γ + (v,∇u)Rd\Γ

= ⟨γν−v, γ−u⟩Γ − ⟨γν+v, γ+u⟩Γ
= ⟨γν−v, [[γu]]⟩Γ + ⟨[[γνv]], γ+u⟩Γ = 0,

which proves that ±A are dissipative. Now let (f,g) ∈ H. We look for
(u,v) ∈ Uh ×Vh satisfying

u±∇ · v = f, v ±∇u = g,

with both equations taking place in Rd \ Γ. To do this, we first solve
the coercive variational problem

u ∈ Uh,

(4.1)

(u,w)Rd\Γ + (∇u,∇w)Rd\Γ = (f, w)Rd\Γ ± (g,∇w)Rd\Γ, ∀w ∈ Uh,

and then define v := ∓∇u + g ∈ L2(Rd \ Γ). Next we substitute
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∇u = ∓(v − g) into (4.1) and simplify to obtain

(4.2) (u,w)Rd\Γ ∓ (v,∇w)Rd\Γ = (f, w)Rd\Γ, for all w ∈ Uh.

Testing (4.2) with a general C∞ function with compact support in
Rd \ Γ, it follows that u±∇ ·v = f , and therefore, v ∈ H(div,Rd \ Γ).
Note that we only need to prove the transmission conditions related to
v to finish the proof (of surjectivity of I± A).

We now substitute f = u±∇ · v into (4.1) to prove that

(v,∇w)Rd\Γ + (∇ · v, w)Rd\Γ = 0 for all w ∈ Uh,

or equivalently,

(4.3) ⟨γν−v, [[γw]]⟩Γ + ⟨[[γνv]], γ+w⟩Γ = 0 for all w ∈ Uh.

Since the operator H1(Rd \ Γ) ∋ w 7→ ([[γw]], γ+w) ∈ H1/2(Γ) ×
H1/2(Γ) is surjective, it is easy to see Uh ∋ w 7→ ([[γw]], γ+w) ∈ Yh×X◦

h

is surjective also. Therefore, (4.3) implies that γν
−v ∈ Y ◦

h and
[[γνv]] ∈ Xh, which finishes the proof. �

For convenience, we introduce the space M(Γ) := H1/2(Γ) ×
H1/2(Γ)×H−1/2(Γ)×H−1/2(Γ), endowed with the product norm, de-
noted ∥ · ∥±1/2,Γ.

Proposition 4.2 (Lifting operator). For all (ρ1, ρ2, ψ1, ψ2) ∈ M(Γ),
there exists a unique (u,v) ∈ V satisfying

u = ∇ · v, v = ∇u,(4.4a)

γ+u− ρ1 ∈ X◦
h, [[γu]]− ρ2 ∈ Yh,(4.4b)

γν
−v − ψ1 ∈ Y ◦

h , [[γνv]]− ψ2 ∈ Xh.(4.4c)

The solution of (4.4) can be bounded as

(4.5) ∥u∥1,Rd\Γ = ∥v∥div,Rd\Γ ≤ CΓ∥(ρ1, ρ2, ψ1, ψ2)∥±1/2,Γ,

where CΓ depends only upon the geometry of the problem through
constants related to the trace operator and its optimal right-inverse.

Proof. Solving problem (4.4) is equivalent to solving

−∆u+ u = 0,(4.6a)

γ+u− ρ1 ∈ X◦
h, [[γu]]− ρ2 ∈ Yh,(4.6b)
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∂ν
−u− ψ1 ∈ Y ◦

h , [[∂νu]]− ψ2 ∈ Xh,(4.6c)

and then defining v = ∇u. However, (4.6) is equivalent to

u ∈ H1(Rd \ Γ),(4.7a)

γ+u−ρ1 ∈ X◦
h, [[γu]]− ρ2 ∈ Yh,

(4.7b)

(u,w)Rd\Γ + (∇u,∇w)Rd\Γ = ⟨ψ1, [[γw]]⟩Γ + ⟨ψ2, γ
+w⟩Γ for all w ∈ Uh.

Problem (4.7) is a coercive variational problem in Uh after decomposing
the solution in the form u = ud+u0, where γ

+ud = ρ1, [[γud]] = ρ2 and
u0 ∈ Uh. Note that, in order to build ud, we merely need to invert the
trace conditions γ+ud = ρ1 and γ−ud = ρ1 + ρ2, which can be done
independently of the spaces Xh and Yh. Note also that the coercivity
and boundedness constants of the bilinear and linear forms in (4.7) are
independent of these spaces as well. �

Propositions 4.1 and 4.2 have verified the conditions on the operator
and boundary conditions given in Section 3. We are now ready to use
Theorems 3.1 and 3.2 to derive results on a wave equation associated
to the operators (A,B). Since we work with the second order wave
equations (given in Section 2), the problem will be translated to a first
order (in space and time) system in the proof of the next result.

Theorem 4.3. Let (α1, α2) ∈ W 2
+(R;H1/2(Γ)

2
) and (β1, β2) ∈

W 1
+(R;H−1/2(Γ)

2
). The unique solution of

u ∈ TD(H1
∆(Rd \ Γ)), ü = ∆u,(4.8a)

γ+u− α1 ∈ X◦
h, [[γu]]− α2 ∈ Yh,(4.8b)

∂ν
−u− β1 ∈ Y ◦

h , [[∂νu]]− β2 ∈ Xh,(4.8c)

satisfies

(4.9) u ∈ C1
+(R;L2(Rd \ Γ)) ∩ C0

+(R;H1(Rd \ Γ)),

and, for all t ≥ 0,
(4.10)

∥u(t)∥1,Rd\Γ ≤ 3CΓ

2∑
ℓ=0

∫ t

0

∥(α(ℓ)
1 , α

(ℓ)
2 , β

(ℓ−1)
1 , β

(ℓ−1)
2 )(τ)∥±1/2,Γ dτ,
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where β(−1) := ∂−1β. If (α1, α2) ∈ W 3
+(R;H1/2(Γ)

2
) and (β1, β2) ∈

W 2
+(R;H−1/2(Γ)

2
), then. for all t ≥ 0,

(4.11)

∥∇u(t)∥div,Rd\Γ ≤ 3CΓ

3∑
ℓ=1

∫ t

0

∥(α(ℓ)
1 , α

(ℓ)
2 , β

(ℓ−1)
1 , β

(ℓ−1)
2 )(τ)∥±1/2,Γ dτ.

The constant CΓ in (4.10) and (4.11) is that of Proposition 4.2 and is,
therefore, independent of the choice of Xh and Yh.

Proof. If u is the solution of (4.8), then (u,v) := (u, ∂−1∇u) is the
solution to

(u,v) ∈ TD(V), u̇ = ∇ · v, v̇ = ∇u,
(4.12a)

γ+u− α1 ∈ X◦
h, [[γu]]− α2 ∈ Yh,(4.12b)

γν
−v − ∂−1β1 ∈ Y ◦

h , [[γνv]]− ∂−1β2 ∈ Xh.(4.12c)

Note that (α1, α2, ∂
−1β1, ∂

−1β2)|(0,∞) ∈ W 2(M(Γ)). We can then ap-
ply Theorems 3.1 and 3.2 noting that ∥u(t)∥1,Rd\Γ = ∥(u, v̇)(t)∥H,
which means that we need part of the bounds (3.7a) and (3.7b) to
prove (4.10). That the bound (4.11) requires additional data regularity
follows from the observations: (a) the operator (α1, α2, β1, β2) 7→ u is
a convolution operator and, therefore, commutes with time differenti-
ation; (b) ∥∇u(t)∥div,Rd\Γ = ∥(ü, v̇)(t)∥H. This means that we can use

the bounds (3.7) for data Ξ̇ to obtain the estimate (4.11). �

As explained in the proof of Theorem 4.3, the operator

(α1, α2, β1, β2) 7−→ u

is a convolution operator in the sense of operator- and vector-valued
distributions. Therefore, it commutes with differentiation, and we can
apply a shifting argument to show that it defines a bounded map from

W k
+(R;H1/2(Γ)

2
)×W k−1

+ (R;H−1/2(Γ)
2
)

to
Ck−1
+ (R;L2(Rd \ Γ)) ∩ Ck−2

+ (R;H1(Rd \ Γ))



TIME DOMAIN BOUNDARY INTEGRAL OPERATORS 123

for all k ≥ 2. Note also that (4.10) can be directly used to provide
bounds for the quantities

∥γ±u(t)∥1/2,Γ, ∥[[γu]](t)∥1/2,Γ, ∥{{γu}}(t)∥1/2,Γ,

while estimate (4.11) can be invoked to bound

∥∂ν±u(t)∥−1/2,Γ, ∥[[∂νu]](t)∥−1/2,Γ, ∥{{∂νu}}(t)∥−1/2,Γ.

In both cases, additional constants that depend only on the geometry
(through bounds for the trace operator and its optimal right-inverse)
will be introduced, the key point here being that all constants are
independent of the choice of Xh and Yh.

Before we move to the next step of this paper (examining particular
cases of Theorem 4.3) let us state a simple but relevant result that
follows from a straightforward uniqueness argument.

Proposition 4.4. Let ΠX
h : H−1/2(Γ) → Xh and ΠY

h : H1/2(Γ) → Yh
be the best approximation operators onto Xh and Yh, respectively. The
solution of problem (4.8) with data (α1, α2, β1, β2) is the same as the
solution with data (α1, α2 − ΠY

h α2, β1, β2 − ΠX
h β2). Therefore, the

bounds (4.10) and (4.11) still hold if we substitute α2 by α2 − ΠY
h α2

and β2 by β2 −ΠX
h β2.

Another remark. Note that, in the context of our abstract framework
of Section 3, the transmission-boundary conditions in (4.4) can be
written as B(u,v) = ξ, where ξ := (ρ1|Xh

, ψ1|Yh
, ρ2|Y ◦

h
, ψ2|X◦

h
) and

∥ξ∥M2 ≤ ∥(ρ1, ρ2, ψ1, ψ2)∥±1/2,Γ.

5. Examples. This section examines different choices of Xh and Yh,
as well as of the data functions (α1, α2, β1, β2) in Theorem 4.3, to de-
scribe: retarded potentials, boundary integral operators, time domain
integral equations for scattering problems, Galerkin semidiscretizations
of the latter, etc. Once we have identified these problems we will be
able to provide estimates using the general theory of Section 4. We
want to emphasize that some of these results had already been proved
in the literature. In all cases, we get improvements with respect to
Laplace domain estimates. In some cases, we get improvements (espe-
cially when we refer to yet non-optimized approaches in [4, 7]) or just
the same estimates proved in a much simpler way (the second order in
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time and space analysis of [18] requires much more additional work in
the reconciliation of the estimates for a strong form of the dynamical
system and its associated distributional version). Finally, we show that
some ‘clever’ choices of Xh and Yh provide estimates for the forward
operators, a detail that had been missed in [18] and the papers that
led to that monograph.

For ease of reference, we next write the interior and exterior Dirichlet
and Neumann problems for the wave equation

u ∈ TD(H1
∆(Rd \ Γ)) ü = ∆u, γ±u = α±,(5.1a)

u ∈ TD(H1
∆(Rd \ Γ)) ü = ∆u, ∂ν

±u = β±.(5.1b)

From here on, cΓ is a generic constant independent of the choice of
spaces Xh and Yh. It typically includes the influence of the constant
CΓ of Proposition 4.2 and of the trace operators γ± : H1(Rd \ Γ) →
H1/2(Γ), γν

± : H(div,Rd \ Γ) → H−1/2(Γ). The exterior Dirichlet-
to-Neumann map is the operator α+ 7→ ∂ν

+u, where u solves (5.1a)
(the value of α− is irrelevant). Definitions for the interior DtN and
exterior-interior NtD operators likewise follow. To shorten notation we
will write, for instance, ( 12 +K) ∗ β := 1

2β +K ∗ β. Properly speaking,
the scalar factor is multiplying δ0 ⊗ I, where I is the associated
identity operator (in this case in H1/2(Γ)), δ0 is the scalar time-domain
Dirac delta distribution and ⊗ denotes the tensor product of a scalar
distribution with an operator that does not depend on time.

In all the coming bounds we will use the cumulative seminorm

H2(f, t;X) :=

2∑
ℓ=0

∫ t

0

∥f (ℓ)(τ)∥X dτ.

5.1. Continuous operators. Potentials and integral operators. If
we choose Xh = {0} and Yh = {0} and data (α1, α2, β1, β2) =
(×, φ,×, λ) (the components α1 and β1 of the data set are ignored
by void transmission conditions in (4.8), which we denote by writing
the × symbol), then the solution of (4.8) is u = S ∗ λ−D ∗ φ and

{{γu}} = V ∗ λ−K ∗ φ, {{∂νu}} = Kt ∗ λ+W ∗ φ.
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Estimates for the single layer potential and associated integral opera-
tors follow from Theorem 4.3:

λ ∈W 1
+(R;H−1/2(Γ)), S ∗ λ ∈ C(R;H1(Rd)),

∥(S ∗ λ)(t)∥1,Rd ≤ cΓH2(∂
−1λ, t;H−1/2(Γ)),

V ∗ λ ∈ C(R;H1/2(Γ)),(5.2)

∥(V ∗ λ)(t)∥1/2,Γ ≤ cΓH2(∂
−1λ, t;H−1/2(Γ)),

λ ∈W 2
+(R;H−1/2(Γ)), Kt ∗ λ ∈ C(R;H−1/2(Γ)),

∥(Kt ∗ λ)(t)∥−1/2,Γ ≤ cΓH2(λ, t;H
−1/2(Γ)).

Similar results can be found for the double layer potential and associ-
ated integral operators:

φ ∈W 2
+(R;H1/2(Γ)), D ∗ φ ∈ C(R;H1(Rd \ Γ)),

∥(D ∗ φ)(t)∥1,Rd\Γ ≤ cΓH2(φ, t;H
1/2(Γ)),

K ∗ φ ∈ C(R;H1/2(Γ)),(5.3)

∥(K ∗ φ)(t)∥1/2,Γ ≤ cΓH2(φ, t;H
1/2(Γ)),

φ ∈W 3
+(R;H1/2(Γ)), W ∗ φ ∈ C(R;H−1/2(Γ)),

∥(W ∗ φ)(t)∥−1/2,Γ ≤ cΓH2(φ̇, t;H
1/2(Γ)).

Integral formulations for Dirichlet problems. Let Xh = H−1/2(Γ)
and Yh = {0}. The solution for data (α1, α2,×,×) is

u = S ∗ V−1 ∗ α1 + (S ∗ V−1 ∗ ( 12 +K)−D) ∗ α2.

Note that
[[∂νu]] = V−1 ∗ α1 + V−1 ∗ ( 12 +K) ∗ α2

and γ+u = α1, γ
−u = α1 + α2. The data (α, 0,×,×) correspond to

a single layer representation u = S ∗ λ of the solution to the Dirichlet
problem (5.1a) with α± = α and V ∗ λ = α. The data (0, α,×,×)
correspond to a direct representation of the solution of (5.1a) with
α+ = 0, α− = α:

u = S ∗ λ−D ∗ α, V ∗ λ = ( 12 +K) ∗ α, λ = ∂ν
−u.

In particular, we have an estimate of the interior Dirichlet-to-Neumann
map.



126 M. HASSELL, T. QIU, T. SÁNCHEZ-VIZUET AND F.J. SAYAS

We next collect some estimates for both problems.

α ∈W 2
+(R;H1/2(Γ)),

S ∗ V−1 ∗ α ∈ C(R;H1(Rd)),

∥(S ∗ V−1 ∗ α)(t)∥1,Rd ≤ cΓH2(α, t;H
1/2(Γ)),(5.4)

u := (S ∗ V−1 ∗ ( 12 +K)−D) ∗ α ∈ C(R;H1(Ω−)),

∥u(t)∥1,Ω− ≤ cΓH2(α, t;H
1/2(Γ)),

α ∈W 3
+(R;H1/2(Γ)),

V−1 ∗ α ∈ C(R;H−1/2(Γ)),

∥(V−1 ∗ α)(t)∥−1/2,Γ ≤ cΓH2(α̇, t;H
1/2(Γ)),(5.5)

λ := DtN−(α) = V−1 ∗ ( 12 +K) ∗ α ∈ C(R;H−1/2(Γ)),

∥λ(t)∥−1/2,Γ ≤ cΓH2(α̇, t;H
1/2(Γ)).

If we solve (4.8) with the given choice of spaces and data (α,−α,×,×),
we solve the Dirichlet problem (5.1a) with data α+ = α and α− = 0.
Therefore, we also have an estimate for the exterior DtN operator.

Improvements. The estimates in (5.2) and (5.3) improve on the
estimates in [7] by removing the dependence on time of some of the
constants in the energy estimates. In addition to the sharper bounds
found here, these results do not require the detailed cut-off process that
was necessary for that analysis. Estimates for the Dirichlet problem
were previously derived in [4]. The present analysis improves on those
bounds in a number of ways: the derivation is simpler, the bounds
(5.4), (5.5) are sharper, and we require less regularity of the data in
the time variable to prove our results.

Integral formulations for Neumann problems. Now take Xh = {0}
and Yh = H1/2(Γ). The solution of (4.8) with data (×,×, β1, β2) is

u = −D ∗W−1 ∗ β1 + (S +D ∗W−1 ∗ ( 12 +Kt)) ∗ β2,

and, therefore,

[[γu]] = W−1 ∗ β1 +W−1 ∗ ( 12 +Kt) ∗ β2,

while ∂ν
−u = β1 and ∂ν

+u = β1 − β2. The particular case (×,×, β, 0)
corresponds to a double layer representation u = −D∗φ of the solution
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of the Neumann problem (5.1b) with data β± = β, and φ computed
as the solution of W ∗ φ = β. The data (×,×, 0,−β) provide a direct
representation of the solution of the exterior Neumann problem with
vanishing interior data (β+ = β, β− = 0):

u = −S ∗ β +D ∗ φ, W ∗ φ = −( 12 +Kt) ∗ β, φ = γ+u.

Here are some associated estimates:

β ∈W 2
+(R;H1/2(Γ))

D ∗W−1 ∗ β ∈ C(R;H1(Rd \ Γ)),

∥(D ∗W−1 ∗ β)(t)∥1,Rd\Γ ≤ cΓH2(β, t;H
1/2(Γ)),

W−1 ∗ β ∈ C(R;H1/2(Γ)),

∥(W−1 ∗ β)(t)∥1/2,Γ ≤ cΓH2(β, t;H
1/2(Γ)),

u = (S +D ∗W−1 ∗ ( 12 +Kt)) ∗ β) ∈ C(R;H1(Ω+)),

∥u(t)∥1,Ω+ ≤ cΓH2(β, t;H
1/2(Γ)),

φ := NtD+(β) = W−1 ∗ ( 12 +Kt) ∗ β,

∥φ(t)∥1/2,Γ ≤ cΓH2(β, t;H
1/2(Γ)).

For a direct formulation of the interior Neumann problem we use
(×,×, β, β).

5.2. Semidiscretization of integral equations. In this subsection,
we derive results about semidiscretization in space of the equations
in Sections 5.1. From here on, we will not spell out the regularity
requirements on the problem data. They will be assumed to be such
that the right-hand side of the bounds is finite.

Equations for the Dirichlet problem. Let Xh be finite-dimensional
and Yh = {0}. The corresponding transmission conditions are

(5.6) γ+u− α1 ∈ X◦
h, [[γu]] = α2, [[∂νu]]− β2 ∈ Xh,

with an additional void equation associated to the other boundary data:
∂ν

−u− β1 ∈ H−1/2(Γ). The data (α, 0,×, 0) correspond to solving the
semidiscrete equations:

(5.7) λh ∈ Xh, V ∗ λh − α ∈ X◦
h, uh := S ∗ λh.
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We can bound

∥uh(t)∥1,Rd\Γ ≤ cΓH2(α, t;H
1/2(Γ)),(5.8a)

∥λh(t)∥−1/2,Γ ≤ cΓH2(α̇, t;H
1/2(Γ)).(5.8b)

This is a Galerkin semidiscretization of

(5.9) V ∗ λ = α, u = S ∗ λ.

The data (0, α,×, 0) correspond to

(5.10) λh ∈ Xh, V∗λh−( 12+K)∗α ∈ X◦
h, uh = S∗λh−D∗α,

and yields bounds identical to (5.8a). This is a Galerkin semidiscretiza-
tion of

(5.11) V ∗ λ = ( 12 +K) ∗ α, u = S ∗ λ−D ∗ α.

Data (0, 0,×, λ) produces a semidiscretization-in-space bound for both
(5.7) and (5.10). Let ũ be the solution of (4.8) with this choice of space
and data, and let λh := λ− [[∂ν ũ]]. Then

λh ∈ Xh, V ∗ (λh − λ) ∈ X◦
h, ũ = S ∗ (λ− λh).

We have two scenarios covered. In the first one, we are approximating
(5.9) by (5.7). In the second one, we are approximating (5.11) by (5.10).
In both cases, ũ = u−uh, and we can estimate (recall Proposition 4.4)

∥u(t)− uh(t)∥1,Rd\Γ ≤ cΓH2(∂
−1λ−ΠX

h ∂
−1λ, t;H−1/2(Γ)),(5.12a)

∥λ(t)− λh(t)∥−1/2,Γ ≤ cΓH2(λ−ΠX
h λ, t;H

−1/2(Γ)).(5.12b)

The bounds (5.8a) are stability estimates for Galerkin semidiscretiza-
tions of two different equations associated to the convolution opera-
tor λ 7→ V ∗ λ, while inequalities (5.12) are error estimates for those
semidiscretizations.

Equations for the Neumann problem. Let Xh = {0} and Yh be
finite-dimensional. The associated non-void transmission conditions
are

[[γu]]− α2 ∈ Yh, ∂ν
−u− β1 ∈ Y ◦

h , [[∂νu]] = β2.

With data (×, 0, β, 0), we are solving

(5.13) φh ∈ Yh, W ∗ φh − β ∈ Y ◦
h , u = −D ∗ φh,
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as an approximation of the indirect formulation of the interior-exterior
Neumann problem (see subsection 5.1)

(5.14) W ∗ φ = β, u = −D ∗ φ.

With data (×, 0, 0, β), we are instead solving

(5.15) φh ∈ Yh, W∗φh−( 12 +Kt)∗β ∈ Y ◦
h , u = S ∗β+D∗φh

as an approximation to the direct formulation of the exterior Dirichlet
problem (φ = γ+u)

(5.16) W ∗ φ = ( 12 +Kt) ∗ β, u = S ∗ β +D ∗ φ.

In both cases, we derive stability estimates

∥uh(t)∥1,Rd\Γ + ∥φh(t)∥1/2,Γ ≤ cΓH2(∂
−1β, t;H−1/2(Γ)).

If the solution with data (×, φ, 0, 0) is denoted ũ and φh := [[γũ]] + φ,
then ũ = D ∗ (φ − φh), and we are proving error estimates for the
approximations of (5.14) by (5.13) and of (5.16) by (5.15):

∥u(t)−uh(t)∥1,Rd\Γ+∥φ(t)−φh(t)∥1/2,Γ ≤ cΓH2(φ−ΠY
h φ, t;H

1/2(Γ)).

5.3. Symmetric Galerkin solvers. In this subsection, we outline
the type of problems we solve when we take discrete spaces Xh and
Yh or, in the limit, Xh = H−1/2(Γ) and Yh = H1/2(Γ). With data
(α+, 0, β−, 0), we have φh := [[γu]] ∈ Yh, λ

h := [[∂νu]] ∈ Xh and we can
represent u = S ∗ λh −D ∗ φh. Therefore,

γ+u = V ∗ λh − ( 12 +K) ∗ φh,

∂ν
−u = ( 12 +Kt) ∗ λh +W ∗ φh.

We will give an interpretation of (u, φh, λh) later on. At this stage, we
can state the stability estimates

∥φh(t)∥1/2,Γ + ∥u(t)∥1,Rd\Γ ≤ cΓ
(
H2(α

+, t;H1/2(Γ))

+H2(∂
−1β−, t;H−1/2(Γ))

)
,

∥λh(t)∥−1/2,Γ ≤ cΓ
(
H2(α̇

+, t;H1/2(Γ))+H2(β
−, t;H−1/2(Γ))

)
.

Symmetric formulation for the Dirichlet problem. The data (α+, 0, 0, 0)
provide the semidiscrete system

V ∗ λh − ( 12 +K) ∗ φh − α+ ∈ X◦
h,
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( 12 +Kt) ∗ λh +W ∗ φh ∈ Y ◦
h ,

which is the Xh × Yh Galerkin semidiscretization of the symmetric
formulation

(5.17)

[
V − 1

2 −K
1
2 +Kt W

]
∗
[
λ
φ

]
=

[
α+

0

]
.

The system (5.17) is a realization of the symmetric form for the exterior
Dirichlet-to-Neumann (Steklov-Poincaré) operator

(5.18)
(
V + ( 12 +K) ∗W−1 ∗ ( 12 +Kt)

)
∗ λ = α+,

via the introduction of the artificial variable φ = −W−1 ∗ ( 12 +Kt) ∗ λ,
which, in the continuous case, is a copy of −α+. The exact system
(5.17) is recovered when Xh = H−1/2(Γ) and Yh = H1/2(Γ). When Xh

is finite-dimensional and Yh = H1/2(Γ), we obtain a non-practicable
method consisting of using an Xh Galerkin semidiscretization of (5.18)
and then solving exactly for φh

W ∗ φh = −( 12 +Kt) ∗ λh.

The result of this approach is therefore of purely theoretical interest.

Symmetric formulation for the Neumann problem. The data (0, 0,
β−, 0) correspond to a semidiscretization of

(5.19)

[
V − 1

2 −K
1
2 +Kt W

]
∗
[
λ
φ

]
=

[
0
β−

]
,

which, by inverting the first equation, can be reduced to

(5.20)
(
W + ( 12 +Kt) ∗ V−1 ∗ ( 12 +K)

)
∗ φ = β−.

This is the Steklov-Poincaré formula for the Neumann-to-Dirichlet
operator.

Associated error operators. Let u be the solution to (4.8) with data
(α+, 0, β−, 0) for Xh = H−1/2(Γ) and Yh = H1/2(Γ). Let φ := [[γu]]
and λ := [[∂νu]]. We now again solve (4.8) with the same data but
changing the spaces Xh and Yh to be finite-dimensional: we denote
its solution by uh and define φh := [[γuh]], λh := [[∂νu

h]]. The errors
between exact and semidiscrete solutions can be studied by applying
Theorem 4.3 (and Proposition 4.4) to data (0, φ, 0, λ) with the discrete
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spaces Xh and Yh. We then have bounds for the errors

∥u(t)− uh(t)∥1,Rd\Γ + ∥φ(t)− φh(t)∥1/2,Γ

≤ cΓ

(
H2(φ−ΠY

h φ, t;H
1/2(Γ))

+H2(∂
−1λ−ΠX

h ∂
−1λ, t;H−1/2(Γ))

)
,

and

∥λ(t)− λh(t)∥−1/2,Γ ≤ cΓ

(
H2(φ̇−ΠY

h φ̇, tH
1/2(Γ))

+H2(λ−ΠX
h λ, t;H

−1/2(Γ))
)
.

5.4. Further applications. Mixed boundary conditions. Let Γ be
divided into two relatively open sets ΓD and ΓN such that ΓD∩ΓN = ∅
and ΓD ∪ ΓN = Γ. We consider the space

H1/2(ΓD) := {φ|ΓD : φ ∈ H1/2(Γ)}.

This space can be endowed with the image norm of the restriction
operator R : H1/2(Γ) → H1/2(ΓD) or with any other equivalent norm.
We define

H̃1/2(ΓN ) := KerR = {φ ∈ H1/2(Γ) : φ|ΓD = 0}.

Since R is bounded and surjective, the adjoint operator

R∗ : (H1/2(ΓD))∗ −→ H−1/2(Γ)

is injective and has closed range. We then define

H̃−1/2(ΓD) := RangeR∗ = (KerR)◦ = H̃1/2(ΓN )◦.

This set is isomorphic to H1/2(ΓD)∗. Formally speaking, elements of

H̃−1/2(ΓD) vanish on ΓN . We now consider that we have an extension
of the Dirichlet and Neumann data, so that we have at our disposal
elements (α, β) ∈ TD(H1/2(Γ)×H−1/2(Γ)).

We consider an exterior solution of the wave equation, extended by
zero to the interior domain; we can then write the mixed boundary
conditions as

γ+u− α ∈ H̃1/2(ΓN ), ∂ν
+u− β ∈ H̃−1/2(ΓD),



132 M. HASSELL, T. QIU, T. SÁNCHEZ-VIZUET AND F.J. SAYAS

or, taking into account the vanishing value of u in the interior domain,

(5.21a) [[γu]] + α ∈ H̃1/2(ΓN ), [[∂νu]] + β ∈ H̃−1/2(ΓD).

Defining φ := γ+u− α ∈ H̃1/2(ΓN ) and λ := ∂ν
+u− β ∈ H̃−1/2(ΓD),

we can represent the solution using Kirchhoff’s formula

u = −S ∗ (β + λ) +D ∗ (α+ φ)

and note that[
−γ+u+ α
−∂ν−u

]
=

[
V − 1

2 −K
1
2 +Kt W

]
∗
[
β + λ
α+ φ

]
+

[
α
0

]
=

[
−φ
0

]
,

which implies

(5.21b) γ+u−α ∈ H̃1/2(ΓN ) = H̃−1/2(ΓD)◦, ∂ν
−u ∈ H̃1/2(ΓN )◦.

This means that the choice of spaces Xh = H̃−1/2(ΓD) and Yh =

H̃1/2(ΓN ) allows us to recover the transmission conditions of problem
(4.8) with data (α,−α, 0,−β). Note that, in this case, the spaces Xh

and Yh are related by X◦
h = Yh and Y ◦

h = Xh.

If we take finite-dimensional subspaces Xh ⊂ H̃−1/2(ΓD) and Yh ⊂
H̃1/2(ΓN ), the theory covers the semidiscrete Galerkin scheme

(λh, φh) ∈ Xh × Yh,[
V − 1

2 −K
1
2 +Kt W

]
∗
[
β + λh

α+ φh

]
+

[
α
0

]
∈ X◦

h × Y ◦
h ,

followed by the potential reconstruction

uh := −S ∗ (β + λh) +D ∗ (α+ φh).

The stability and semidiscretization error estimates of subsection 5.3
still hold.

Dirichlet and Neumann screens. We can understand a screen Γscr

as any geometric set in Rd that can be completed to a closed boundary
Γ of a Lipschitz domain Ω−. Let us go back to the notation of the
above paragraph with ΓD = Γscr (ΓN is the part we have added to Γscr

to create Γ). If we take Xh = H̃−1/2(Γscr) and Yh = {0}, the data
(0, 0,×, λ) correspond to studying the single layer potential u = S ∗ λ
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for λ ∈ H̃−1/2(Γscr) and its trace V ∗ λ. Properly speaking, the kind of
bounds we obtain for u are given in H1(Rd \ Γ). However, since [[γu]] =
0 and [[∂νu]] ∈ H̃−1/2(Γscr), these bounds are automatically extended
to H1(Rd \ Γscr). Similarly, we can understand that the actual single
layer operator on the screen is defined by R(V ∗ λ) ∈ TD(H1/2(Γscr)),
so that it is valued on a space of functions defined only on Γscr.

The data (α, 0,×, 0) correspond to solving the Dirichlet problem on
the screen using a single layer potential representation

(5.22) λ ∈ TD(H̃−1/2(Γscr)), R(V ∗ λ− α) = 0, u = S ∗ λ.

The choice of a finite-dimensional space Xh provides Galerkin semidis-
cretizations of (5.22) and the associated semidiscretization error anal-
ysis. We emphasize that the general bounds given in subsection 5.3
cover all of these new situations.

The Neumann case can be studied by letting Xh = {0} and Yh be

either H̃1/2(Γscr) or its finite-dimensional subspace. With this choice
of spaces we are dealing with a screen on which we define a double
layer potential, and two-sided Neumann boundary conditions can be
imposed.

6. Conclusion. Let us finally point out some simple extensions and
applications of the techniques developed in this paper:

• The joint treatment of many problems (forward operators, so-
lution operators, semidiscrete solution operators, screen prob-
lems) can also be used in the Laplace domain analysis, thus
collecting many existing results as particular choices of spaces
in a general transmission problem (‘parameterized’ in the two
spaces Xh and Yh).

• The application of these techniques to BEM-FEM coupled
modeling of scattering by non-homogeneous obstacles is ex-
plored in [8].

• The results on scattering by penetrable homogeneous obstacles
proved in [15] can be reproved with the techniques of this
paper. The techniques are equivalent to those used in [15],
and no improvement in the bounds is obtained. The proofs
with this first order equation approach are simpler though.
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• All of the results in this paper can be extended verbatim to the
elastic wave equation.

• The application of these ideas to Maxwell equations actually
precedes this paper [16], given the fact that the second order
equation ideas [17, 18] seem not to apply to the functional
space setting of the layer potentials for electromagnetism.

• Verifying the sharpness of these estimates seems to be a diffi-
cult task. To begin with, these techniques (similarly to Laplace
domain techniques) do not differentiate between the two- and
three-dimensional settings, even if it is clear that the wave phe-
nomena are quite different. On a related note, semigroup tech-
niques do not show finite speed of propagation, which can be
easily seen from integral formulas. In that way, semigroup tech-
niques can be related to separation of variables. Similarly, con-
vexity, smoothness of the domain, or even the possibility of the
domain trapping waves, do not play any role in the theory. This
seems to be a clear warning for any claim of sharpness of the
estimates which are likely to be improvable in some situations.
The use of numerical experimentation to test sharpness is a
future goal of our research, but it would involve understanding
regularity of the solutions to the retarded integral equations in
the space variables.

The global transmission problem of Section 4 makes an effort in col-
lecting all problems under one roof (one ring to rule them all, of sorts),
emphasizing that the analytical tools of many apparently different situ-
ations follow a clear pattern. In this way, we hope this paper will guide
and simplify future endeavors in the analysis of time domain integral
equations.
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