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ABSTRACT. We introduce the boundary integral oper-
ator induced from the fractional Laplace equation on the

boundary of a bounded smooth domain. For % < a<l,

we show the bijectivity of the boundary integral opera-
tor Saq : LP(BQ) — HZ71(8Q) for 1 < p < co. As an
application, we demonstrate the existence of the solution
of the Dirichlet boundary value problem of the fractional
Laplace equation.

1. Introduction. In this paper, we study a boundary integral op-
erator defined on the boundary of a smooth, bounded domain €2 in
R™ for n > 3. Let I'an(z) := c(n,2a)/|z|" 2 be the Riesz kernel of
order 2a in R™, where 0 < 2o < n and ¢(n, 2¢) is the usual normaliza-
tion constant. The single layer potential of a fractional Laplacian for a
function ¢, defined on 012, is defined by

(11)  Swdlx) = /(m Toa(r — Q)4(Q)dQ, = €R".
Note that, if 1 < 2a <n and ¢ € L>(99Q), then Ss,¢ is continuous on
R™, and we define the boundary integral operator

(12)  Soad(P) = / Tao(P - Q)(Q)dQ. P € 09,

Gle)
by restriction of Szn¢ to ON.
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Zahle [22, 23] studied the Riesz potentials in a general metric
space (X, p) with Ahlfors d-regular measure p. She demonstrated that
Soo + L*(X,dp) — L3,(X,du) is invertible for 0 < 2o < n, where
L?(X,du) is decomposed by the null space, N(Sa4), and its orthogonal
compliment, that is, L?(X, du) = N(S2q) ® L3, (X, dp).

The eigenvalue asymptotic behavior for integral operators of po-
tential types on a Lipschitz surface was studied by Agranovich and
Amosov [1], and by Rozenblum and Tashchiyan [17]. Chang [6] showed
that the boundary integral operator Ss, defined in (1.2) extends to a

bijective operator Sa, : H;‘*“/Q(asz) — Hgil/z(aﬂ) for1/2<a<1,
and that Son¢ € HS(R™) for ¢ € HQ_O‘H/Q(@Q); see Section 2 for the
definitions of function spaces.

When 2a = 2, T's is the fundamental solution of the Laplace equation
in R, and (1.1 is the single layer potential of the Laplace equation.
The single layer potential and boundary layer potential of the Laplace
equation have been studied by many mathematicians to demonstrate
the existence of a solution to a boundary value problem of the Laplace
equation in a bounded domain [9, 11, 14, 21].

The first result of this paper is the following theorem. The function
space H,(0€2) is defined in Section 2.

Theorem 1.1. Let Q be a bounded C?-domain in R™ with n > 3. Let
1/2<a<1andl <p<oco. Then, Sy, : LP(0) — HZ*"1(09Q) is
bijective.

The layer potential for ¢ € B, (), for s < 0, and 1 < p < o0 is
defined by

(1.3) S20p(x) = (¢, Tan(z — ), x€R\IQ,

where (-,-) is the duality pairing between B;(9€2) and B,*(99), for
1/p+1/p" = 1. In particular, if ¢ € LP(9N), then Szn¢ is defined
by (1.1). The second result is the following theorem. The function

spaces By, . (R") and B;(R") are defined in Section 2.

Theorem 1.2. Let 1/2<a <1 and 1 <p<oo. For ¢ € B,(09Q), let
u = Saa@ be the layer potential defined in (1.3). Let —2a+1—1/p <
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s<0. Thenu € Blsot?pa71+1/p(R”), and

(1.4) [ull gsza-11/0 .y < Rl B3 (00

where Br denotes the open ball in R™ whose radius s R and whose
center is the origin, and R is chosen sufficiently large that Q0 C Bg.
Moreover, if p>(n—1)/(n+s—1), thenu € B;+2a_1+1/p(R”), and

(15) lull g2 1170 gy < el 300

Boundary integral operators such as the single and double layer
potentials have been studied by many mathematicians. The bijectivity
of these operators has been used to demonstrate the existence of
the solutions to partial differential equations in a bounded domain
or bounded cylinder [4, 5, 8, 10, 13, 16, 18]. Extending this
approach, we apply the bijectivity of the boundary integral operator to
the boundary value problem of the fractional Laplace equation. The
fractional Laplacian of order 0 < @ < 1 of a function v : R®™ — R may
be defined by the formula:

(=) *v(z) :=C(n,«) /n —v(z +y) TyIQ:fQE(z —v(z—y) .

where C(n,a) is a normalization constant. The fractional Laplacian
can also be defined as a pseudo-differential operator,

(ZA) 0 (€) = (2m(¢))>D(E),

where 0(¢) := [g, v(z)e 2™ dx, £ € R", is the Fourier transform of
v in R™. In particular, when 2o = 2, the classical Laplacian is

Do(z) = Z 0% /02?2

1<i<n

Definition 1.3. Let 0 < a < 1. We say that v is a weak solution of
(—=A)*u =0 in R™ \ 99 if v satisfies, for all ¢y € C°(R™ \ 09),

16) [ e@arude= [ (e aene d-o,
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In fact, if u is a weak solution, then w is a continuous function in
R\ 99 and satisfies [3, Theorem 3.9]

(=A)%u(x) =0 for x € R™\ 09.

For the application of Theorem 1.1 and Theorem 1.2, we show the
existence of a solution to the boundary value problem of the fractional
Laplace equation.

Theorem 1.4. Let Q be a bounded C? domain in R", for n > 3, and
let 1/2 <a<1,0<t<2a—1andl < p < oo. Then, for given
g€ B;(@Q), the boundary value problem

) (=) *u =0 inR"\0Q, ulpgn =g on B;((?Q),
' x

u(z)] = O(|=[7"*2%)  as |2] — oo,

has a weak solution u € Bf;?;p(R"). In addition, u € B;H/Z)(R”) if

(n—1)/(n+t—2a) <p < oo, and there exists ¢ € B >*1(09) such
that

(18) u = Sgagb

The rest of this paper is organized as follows. In Section 2, we
introduce several function spaces, and in Section 3, we introduce several
properties of the layer potential. In Sections 4, 5 and 6, we prove
Theorems 1.1, 1.2 and 1.4, respectively.

2. Function spaces.

2.1. Function spaces in R". In this section, we introduce Sobolev
and Besov spaces. For s € R, we consider a distribution G4, whose
Fourier transform in R™ is defined by

Go(€) = (1 +47%g) 2.
For s € R and 1 < p < oo, we define the Sobolev space H,(R") by
HyR™) :={f € S'R") : | flsr) = |G=s * fll Lo (wn) < 00},

where * is the usual Fourier convolution in R™ and S’'(R™) is the dual
space of the Schwartz space S(R™). In particular, when s = k €
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NU{0} and 1 < p < o0,
Hy(R™) ={f: D’f € LP(R") for 8| < k},

where 8 = (81, 82,...,8,) € (NU{0})" and |B] := B1 + B2 + - + Bn.
For k < s <k+1and k € N, we define the seminorm,

\DPf(x) — DPf(y)[P Y
s 1= dy d
o= (3 L R e i)

|B|=k
and note that |f+g¢ B3(Rn) = \f|B§(Rn) if g belongs to the space Py (R"™)
of polynomials of degree k or less on R. Then,

By(R") == {f € S'R") : || f]|
with the norm |75y = £l + |l and 17 + Be(B) 5,50y =
) is an equivalent norm on the quotient space B;(R") =
By (R")/Pr(R™). If s € R is negative, then we define B, and BIS) as

the dual spaces of Bp_,s and BI;S, respectively, where 1/p +1/p’ = 1.
The real and complex interpolation methods [2, Theorem 6.4.5] give

(0 H),, = By [ ], =

B; < 00}7

for s = (1 —0)sg+6s1, sp, s1 ERand 0 < < 1.

2.2. Function spaces in €. Let ) be a bounded C?-domain in R”,
and, for a function f defined on R™, let Rq f denote the restriction of f
to Q. For s > 0, we define the function spaces

H(Q) = {Rof : | € Hi(R")}
and
By(Q) :=={Raf: f € Bi(R")}
with norms
£l s (0 o= inf [|F| s me)

and

) = inf [[F[|ps®n),
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where infimums are taken over all I in Hj(R") and F' € Bj(R"),
respectively, such that RoF = f.

Note that, for a non-negative integer k and for 1 < p < oo,
E _ .
HEQ) ={feLP(Q):D°feLP(Q) for|B| <k}
and, for 0 < 0 < 1,

(Hy (), Hy* (), = By (Q)
and

[HE(Q), HE ()], = Hy (%),

where s = (1 — 0)ko + 0k1; see [14, Chapter 2]. In particular,
for k < s < k+ 1, we have equivalent norms

D f(z) - DPf(y)|” e
~ HfHHk(Q) + (wzk/ 2 — grh) dz dy .

For s > 0, we define spaces Hy,(£2) and By, (2) as the closures of C2°(€2)
in H,(Q2) and B, (£2), respectively. For negative s € R, we define B, (),
Hp(Q), Bpo(Q2) and Hpy(Q2) as the dual spaces of B,(S2), H,;(f),
B () and H,,*(Q2), respectively.

2.3. Function spaces on 0. Let Q be a bounded C?-domain in
R™ and put A(P,r) = B(P,r) N 9N for P € 90. Then, there is
an rg > 0 such that, for each P € 0%, there exists a bijective C?-
function ¥ : B’(0,79) — A(P,rg), where B’(0,79) is the open ball
in R"~! whose radius is rp and whose center is the origin. Since Q
is bounded, there are Py, Ps,..., Py such that 99 C UZQI A(P;, o).
Moreover, there exist bijective C2-functions ¥; : B'(0,7¢) — A(P;,70)-
Now, we say that ¢ is in the function space H,(99), for —2 < s < 2, if
poV; € Hy(B'(0,19)) for all 1 <i < N, and we equip this space with
the norm

N
Il 00) == Y 16 © Uil 135 0.r0)) -
i=1
Similarly, we define the function space B, (99). Clearly, for 0 < s < 2,
H,;#(0) and B,*(012) are dual spaces of Hy, (9€) and B,*(99),
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respectively. Again, for 0 < 6 < 1,

(Hy(09), Hy' (092)), = B3(09),

(2.1) bp P
[Ho(09), HY (09)], = Hy(09),

where s = (1 — 6)ko + 6k [14, Chapter 2].

We introduce the restriction theorem [15].

Proposition 2.1. Consider a bounded, Lipschitz domain ) C Bgr :=
B(0,R). For 0 < s < oo and 1 < p < oo, the operator R :

By VP (BRr) — B3(89) defined by R(F) := Flaq is bounded, that is,
there is a constant ¢ > 0, depending only on n, s, Q and R, such that

||R(F)||B;(aﬂ) < C||F||B;+1/P(BR)-

3. Boundary layer potential. The boundary integral operators
associated with the fractional Laplacian and the classical Laplacian
have the following properties.

Proposition 3.1. Let Q be a bounded C? domain.
(1) For =2 <s<3—-2a and 1 < p < oo,
(3.1) Soa + Hy(0Q) — H;“O‘*l(aﬁ)

is a bounded operator.
(2) For -1 <s<0,

. s 1
Sy 1 H3(0Q) — H,™*(6Q)
is bijective.
Proof. See [19] for the proof of equation (3.1) (1) and [11] for
equation (3.1) (2). O
Let v, ¢ € C?(09), and consider the dual operator of (3.1), namely,

(3.2) St Ho o204 (0Q) — Ho*(09).
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Using (1.1), we have

(S50, 8)) = (1, S2a) = / $(P)Ssad(P) dP
(33) o0

_ / G(P)Ssat(P) dP = (¢, Soat)),
o0

where (-,-) is the duality pairing between the spaces H3™2*~1(99Q)
and H[;s_2a+1(89), and where ((-,-)) is the duality pairing between
H;(0%) and H,,°(0Q). Since C?(89) is a dense subset of H3(9Q),
equation (3.3) implies that, if s < 0, then equation (3.2) is the same

operator as
Soa t H > 72041 (0Q) — H_*(09).

4. Proof of Theorem 1.1. To prove Theorem 1.1, we use the
following proposition.

Proposition 4.1. Let 1/2 < o < 1. Given € > 0, there are bounded
linear operators T' : LP(02) — H)(9Q) with HTlllLP(aQ)*)H}l?(aQ) < €
and T? : H,'(9Q) — H}(9Q) such that

(4.1) So0S3—26 = So + T + T2

Remark 4.2.

(1) Since Sy : LP(92) — H(99) is bijective, for sufficiently small e >
0, it follows that Sy + T : LP(9Q) — H}(99) is also bijective.

(2) Since each of Sa, S54S3_24 and T2 is bounded from H;l(aﬁ) to
LP(09), the operator T : H'(9Q) — LP(09) is also bounded.
Then, from the complex interpolation property (2.1), we obtain
that, for —1 < s <0,

(4.2) ||T1HH;(8Q)—>H;“(BQ) < cel T,

(3) From the arguments of (1) and (2) above, and by Proposition 3.1,
we conclude that Sy + T : H3(0Q) — H)'*(9Q) is bijective
for -1 < s <0.

Proof of Proposition 4.1. Let 0 < 15¢ < rg, where ry > 0 is defined
in subsection 2.3. Let Py, Py, ..., P, € 0N be such that |P; — P;| > €
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and 9Q C J~, B(P;,€). Let {n;}, {x;} and {\;} be partitions of the
unity of {B(P;,2¢)}, {B(P;,7¢)} and {B(FP;,12¢)}, respectively, such
that

supp7; C B(F;, 2¢), n; = 1in B(P,€),
supp k; C B(P;, Te), ki =1 in B(P;,5¢),
supp \; C B(P;, 12¢), n; = 1 in B(P;, 10¢).

Then, for ¢ € LP(9NQ), we have S20S3_200 = [1¢ + I2¢, where

Lig:= Z 11520 Ki93—-200

and
I¢ = niS2a(l = £i)Ss_240.

Note that, since suppn; C B(P;,2¢) and k; = 1 in A(P;, 5¢), it follows
that the kernel of the boundary integral operator 7;52,(1 — k;) has
no singularity in 99, and so 7;S2q(1 — ;) = H, '(0Q) — H, ()
is bounded. Since S5 a4 : H,'(9Q) — H)2*(8Q) is bounded (see
Proposition 3.1), so is I : H, '(0Q) — H}(09Q).

For I ¢, since supp \; C B(P;,12¢) and \; = 1 in B(FP;, 10¢), we
have

ho=Iné+hep,  Iud:=> Iii¢,  Tnp:=> I,
where

Ill(bi(P) = niszaﬁis3—2a)\i¢(P)

— (P /8 Tan(P = Z)mi(2)

/ M (Q)Ts—20(Z — Q)6(Q) dQ dZ
A(P;,12€)
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and
Lo ¢(P) := 1;S20kiS3-24(1 — i) p(P)

= (P) [ Tan(P - 2)i(2)
/ (1 M(@)s-20(Z ~ Q)0(Q) dQZ.
OO\A(P;,10¢)

Since suppk; C B(FP;,7e) and A\; = 1 in B(FP;, 10¢), it follows that
the kernel of k;S3_24(1 — A;) has no singularity in 9Q and so the
operator £;S3_2q(1 — A;) : H,'(9Q) — H}(99Q) is bounded. Hence,
from Proposition 3.1, I : H, '(09) — H,(99) is a bounded operator.

Similarly, we decompose S2¢ into
S2p(P) = J11¢(P) + J129(P) + J26(P),

where Jia, Jo : H, '(0Q) — H}(0R) are bounded operators and where
Jug=>, Ji1¢ for

ThoP)=n(P) [ TP QAQH(@ Q.

A(P;,12¢)

For I11¢ and Jy1¢, we fix i. After translation and rotation, we may
assume that P; = 0, and there is ¥, : B’(0, 15¢) — R with
(4.3) Ui (2))| < 2’| < ce®  and
’ [V, (2')] < c|z'| <ce  for z’ € B'(0,15¢),

such that, for Q € A, := A(P;,15¢), the point @Q is represented by
Q= (v, ¥(y")) for some y' € B'(15¢) := B’(0, 15¢). Let P = (a’, ¥(z'))
for ' € B'(0,2¢). Then, we have

L 6(P) = 1:(P) / M(Q)6(Q)

i
A126

/8Q K,i(Z)Fga(P - Z)F3,2a<Q - Z) az dQ

= n;(P) 2 i (y/,\y(y/)w(y/’ \I/(y’)) 1+ |VI(y)|?

/ k(2 U(2))Daa (2 — 2, U (2) — ¥(2))
B/ (7e)
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L300 (y — 2, U(y 2))V1+ V()2 d2' dy

and

T 6(P) = ni(P) / To(a' — ', W) — B(y)

B’(12¢)
iy W) oy, ¥ (y)) V14 [VE(Y)|2dy'.

In the Appendix, we prove that the quantities

Iiu‘ﬁ(P) = n;i(P) Ai(y’,O)aﬁ(y’,‘If(y’))

B’(12¢)
/ Iii(zl, O)Fga (l’/ — Zl, O)Fg_ga (y/ — Z/, O) dZI dyl
B’/ (7¢)
and

Ji110(P) :=n;(P) o iy, 0)Ta(a’ =y, 0)8(y, T(y')) dy’

satisfy the inequalities

(4.4) 1131 = Liallean,)»macas) < ce

111 = Tl Le(ai, - Ha(as,) < ce.
It is well known [19, Section 5.1] that
/R B Lon(2' —2',0)T3 24 (v — 2',0)dz’ =Ta(2' — 4/, 0).
Hence, we have
La(2’ —y/,0) = /]R » ki(2',0) Do (2" — 2/,0)T3_ 20 (y — 2',0) d2’
—|—/R » (1= ki(2,0))oa(z’ — 2, 0)3_2q(y" — 2",0) dz’
(2/,0)Paa (2’ — 2/, 0)Ts_0a(y' — 2',0) d2" + ki(2',3'),

]Rnl

where

ki(2',y) = / 1 (1= ki(2',0))Taa(z’ — 2/,0)T3_2q(y — 2,0) d2".
Rn—
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Note that, for 2’ € B’(2¢) the kernel k;(2’,y") has no singularity with
respect to x’. Thus,

I 6(P) — Ji 6(P) = m(P)/B ( )Ai(y’, 0oy, ®(y))ki(2',y') dy
/(12¢
is a smooth function of P € 9. Let

T = Z(Ifl —Iiy) + Z(Jlil —Jin)
i

(3

and

Ty :=Ir+ Jo+ Lo+ Jio + Z(Ifu —Ji11)-

Then, S20S3-24 = So + T + T2 is such that T2 has a smooth kernel,
and

1T 6|l 13 002) < e (Il - L1109l o) + 1(J11 = Ji) 0l e on)

12e

< Cﬁz 9l Le(ai, ) < celldllLr(ony,

completing the proof of Proposition 4.1. O
Let pg :=2(n —1)/(n — 2 + 2«), and note that py < 2.

Proof of Theorem 1.1. p > pg. To show the injectivity, suppose
that San¢ = 0 for ¢ € LP(9). From the Holder inequality and

Sobolev imbedding, LP(9Q) C LPo(99) C Hy, *T/2(09). Since Saq :
H;aﬂ/z(@Q) — Hg‘fl/Z(Z?Q) is bijective [6], we have ¢ = 0. Thus,
Soq 1 LP(0Q) — Hga_l(aﬂ) is injective for p > po.

To show that Sa, : LP(0Q) — Hza_l(aQ) is surjective, let f €
H2*71(09). Based on Sobolev imbedding and the Holder inequality,
H2-1(09) € H2~1(99) € Hy ™ /*(99). From the bijectivity of Sa, :
Hy “T2(00) — HYY?(09), there exist ¢ € Hy “T/%(89) such that
Soap = f.

Note that, from Proposition 4.1, we determine that S3_5,52, = S2+
T1+T2, where ||T1||LP(BQ)_>H11)(89) < eand T2 szl(aQ) — H;(@Q) is
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bounded. Since f € Hgo‘_l(aﬂ)7 it follows that S3_94,520¢ = S3_2af €
H;((?Q).

Then, from Proposition 4.1, we obtain that (Se+7T"1)¢ = S3_245200—
T?¢ € H)(09). Considering € > 0 sufficiently small that Sy + T :
LP(0Q)) — H(9Q) is bijective, see Remark 4.2 (1), we obtain that
¢ € LP(9Q). This implies that Sy, : LP(0Q) — HZ*~1(09) is surjec-
tive. Hence, the proof of the bijectivity of Soq : LP(9Q) — H2*~1(99Q)
for p > pg is complete. |

Remark 4.3.
(1) The dual operator

3o+ H2*TH(00) — L' (09)

of Saq : LP(0Q) — HZ* 1(9Q) is the same as the operator Sa, :
H;QO‘H(OQ) — LP'(09), where 1/p+1/p’ = 1, by Section 3. Hence,
from the property of the dual operator, Saq : H, 2*+1(9Q) — LP(09)
is bijective for 1 < p < pj =2(n —1)/(n — 2a).

(2) In Proposition 4.1, S3_9,S52, is the sum of a bijective operator
Sy + T and a compact operator T2, so S3_24524 is a Fredholm oper-
ator with index zero. Since Sy, : LP(092) — Hga—l(ag) and Ss_gq :
H271(0) — H(0) are injective, it follows that S3_qS24 is injec-
tive, and so by the Fredholm operator theorem, S5_24524 : LP(9Q) —
H}(09) is bijective. This implies that S3_ss : H}*1(8Q) — H,(09)
is bijective for p > py = 2(n — 1)/(n — 2 + 2a).

Proof of Theorem 1.1. 1 < p < 2. Now, we will show that Sy, :
H;QO"H(@Q) — LP(99) is surjective. Let f € LP (). Based on
the Holder inequality, L?' (0Q) C L2(99Q) and, from the bijectivity
of Soe : Hy2TH0Q) — L?(99), see Remark 4.3 (1), there exists
¢ € Hy?*T1(0Q) such that Saqé = f. Then, S3_94S20¢ = S3_oaf €
H272%(8Q). Since T?¢ € H](09Q) C H;/_Qo‘((?ﬂ) based on Proposi-
tion 4.1,

(S2+T")¢ = 3205200 — T?¢ € H>*(09).
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Since Sy + T : HI;%‘H(GQ) — Hifzo‘(aQ) is bijective, see Remark

4.2 (3), we obtain that ¢ € HZ;Q("H(@Q). This implies that Sa, :
—2a+1 / . . .

H, =T (0Q) — LP (09) is surjective.

Based on the dual operator property, Sj, : LP(0Q) — H2*~1(9Q)
is injective for 1 < p < 2. Note that S5, = Sa,. Since Sa, : LP(9Q) —
H271(09) is injective, s0 is Sy : HZ*71(0Q) — H(9). Hence,
5205324 : LP(02) — H,(09) is injective for 1 < p < 2.

In Remark 4.2 (3), S24.535-2+ is the sum of a bijective operator and
a compact operator. Hence, by the Fredholm theorem, Ss,S5_ 2, :

LP(08) — H}(09) is bijective.

To show Sao : LP(9Q) — H2*~1(99) is surjective for 1 < p < 2, let
f € Hg“_l((?Q). Therefore, S3_sof € H;(@Q). Since S3_9459q :
LP(0Q)) — HL(9Q) is bijective, there is a ¢ € LP(9Q) such that
S3_90520® = S3_2qf. Since S3_o, is injective, Syn¢ = f, and so
Sy : LP(9Q) — HZ2*1(9Q) is bijective. O

Corollary 4.4. Let 1/2 < a <1 and 1 < p < co. Then the following
operators are bijective:

Saq + H3(0Q0) — HYP27H0Q)  for =1 < s <2 - 2a,
Saq : Bp(0Q) — B;+20‘_1(BQ) for —1 < s <2—-2a.

Proof. In the proof of Theorem 1.1, S3_o4 : LP(8Q) — H7~2*(9Q)
and Sa, : Hg_%‘(aﬂ) — H;(@Q) are injective, and so S9,53_ 24 :
LP(0Q) — H}(09) is injective. Since SoqS3_2q : L (9Q) — H ) (9Q) is
the Fredholm operator with index 0, S24S3-24 : LP(08) — H; (09) is
bijective. This implies that

. 2—2a 1 R
(4.5) Soa : Hy 2%(0Q) — H,(082) s bijective.
From the dual operator property and the fact that S5, = Sz,
(4.6) Saa : Hy H(0Q) — H,>T2*(09Q) s bijective.

Using (4.5), (4.6) and the properties of real and complex interpolation,
we obtain the corollary. O
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5. Proof of Theorem 1.2. We introduce the Riesz potential I,
defined for 0 < 2a < n, by

f(y)dy

——— fi C(R™
o yza Ty ECTRY),

(@) i= c(n.a) [

Rn

where
(2m)2°T((1/2)n — a).

ﬂ-n/222ar(a)

c(n,a) :==

The results in the next two propositions are well known [19, Chap-
ter 5] and will be useful in subsequent estimates.

Proposition 5.1. The Riesz potential is a bounded linear operator

1 1 2
Iy, : LP(R™) — LY(R") f0r1<p<q<ooandf:f——a.
qg D n

Proposition 5.2. For 1 < p < oo and s € R, the Riesz potential
defines bounded linear operators

e : Hy(R™) — HyP2*(R™)
and

Ire : By(R") — ByT2*(R").

Remark 5.3. Let Br be the open ball in R™ with radius R, centered
at the origin, and put

Faaf(@) = [ Taale = 0)f(0)dy.
Then, based on Proposition 5.2,

Lo By (Br) — B3t**(Bg) is bounded for s € R.

Proof of equation (1.4). Let —2a+1—1/p < s < 0, ¢ € C1(39)
and f € C°(Bg). Then, we have

f(@)Ssad(x)de = |  ¢(P)loaf(P)dP.
R™ o0
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Since C'(9Q2) is a dense subspace of B(92), and since C°(Bg) is a

dense subspace of B,,;~ ZO‘H/p (Br)

2 52a¢> —a2041/8 (g, petaa-11/n (g, (9, I2af>(3;(an),3;5(aﬂ))'

Here, (-, ~>( x,x) denotes the duality pairing between a Banach space X
and its dual space X’. Then, by Propositions 2.1 and 5.2, we have

<.f7 52a¢> —s—2a+1/p’ (Br),BSH22 11 (g < ||(Z5| B (99)

||I2af||3;5(3g) > B;,SH/I)/(BR)

e 1
p

Hence,
HSQQ(éHB;Jr?O‘*lJrl/P(B ) = cll(bHB 5(092) 5

which completes the proof of equation (1.4). O
Proof of equation (1.5). For ¢ € B;(9€) and —2a+1-1/p < s <0,

let u be the layer potential of ¢ defined by equation (1.3). Note that u
is in C*°(R™\ 9Q) and, for large |z|, we have

cllollsso0)
(5.1)  [DPu(@)] < |9l 5300 | D Taa (e — e 00) = WT*W

Let Br be an open ball whose center is the origin and the radius is
R > 2, such that Q C Bg/3. We divide |u|§’95+2a,1+1/p into three parts:
P

|Dk ) Dk ( )‘p
A= /z|<R /y|<R |z — y|rFelst2a—h=1+1/p) e
‘Dk ) Dk ( )|;D
(5'2) o= 2/Iac|<R/ ly|>R |x - y|"+p(s+2a k=1+1/p) o

|D*u(a) — D*u(y)[?
A= /z|>R/y|>R |z — y|ntplst2a—k=141/p) Ay dz

From equation (1.4), A; is dominated by H(b”%;(ag)- For |z| < R and

ly| > 2R, we determine that |z —y| > |y| — |z| > |y| — R > |y|/2.
Note that, from equation (5.1), |D*u(y)| < for
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ly| > 2R. Hence, from equation (1.4),

DF — Dk P
w2 | Duta) = D)
lol<r JR<|y|<2R [T — y|HPsF2a-k=141/p)

Dk )|P DFy P
_|_ 2n+29+2/ / | | 2+ |k - (1 )| dy dx
lz|<R J|y|>2R |y|"+p st +1/p)

< CRHUH s+2a—1+1/p(B(2R

dy dz
+elollgon [ [ et

and thus, Az < cgl/¢[l’;. s (00)° We divide Aj into two parts:

(5.3)
DEu(z) — DFu(y)|P
wef | D) DR
|2 Ry > R Jo—y|<|a] /2 [T — y|nFPlsT2a—h=1H1/p)

DF — Dk p
Jr/ / [D"ulz) B Z(%)‘l dy dz.
jal>R Iy > Rofo—y| > o) /2 [T — | TP(F20mRmIELP)

Applying the mean-value theorem, for |z| > R, |x —y| < |z|/2, there is
a & between x and y such that D¥u(z) — D*u(y) = D**lu(é) - (z —y).
Note that |z — & < |z|/2, and hence [¢| > |z|/2 > R/2. Since
s+2a—k—2+1/p<0andp > (n—1)/(n+s—1), from equation (5.1),
the first term of equation (5.3) is dominated by

/ / | D Lu(€) [P dy dx
|[z|>R J|y|>R,|z—y|<|x]/2 |$—y‘n+p (s+2a—k—1+1/p)—p

p - -
<cllo| 2 (69) /|x|>R |x|pn72pa+(k+l)l7

dy dz
lo—y|<|a| /2 [T — y|nHPls+2a—h=241/p)
dx

P _
< C||¢||B§(GQ) /|x|>R |z[p(n+s—DF1

_ CR—P(n-‘rs—l)—l-‘rn ||¢||%;([‘)Q)

Since |z|, |y| > R, by equation (5.1), the second term of equation (5.3)
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is dominated by

Dk P Dk p
/ / | uELer) ‘(SIQL—kl—LE?-{-)J/ y dy dx
(o> R Jy|> Ry Jo—y|> |22 [T — Y|P i

1
p -
< 191500 /|I>R |z |P(n—2ath)
/ dy dx
9> Rija—y| 2|zl /2 [T — y|HPOF20k=141/p)

/|r>R
dy dx

/y|>R lo—y| <zl 2 [T — y|rTPle+2ak=131/p) |y p(n=2atk)"

Since p > (n—1)/(n+s— 1), the second term on the right-hand side of
equation (5.4) is dominated by R_p("+s_1)_1+"||¢||1;35(89). Note that

(5.4)

dy dx
l2|> R J R<|y|<2|z| @[ P F2amk=141/p) |y |pn—2patkp
d
Roprtpatn fz\>R \w\n+p(s+2ax E—1+1/p) (pn — 2pa + kp > n)
In |z| dz B
<ec flz\ZR [e[nTp(s+2a—F—1T1/p) (pn —2pa+ kp = n)
d
Lx\ZRWifkfl)ﬂ (pn — 2pa + kp < n)

< ¢RTP(n—k=lts)—l4nyy B

Then, since p > (n — 1)/(n + s — 1), the first term on the right-hand
side of equation (5.4) is dominated by

dy dx

o], |
H ||BP(BQ) lw1>R Jy|> Ry jo— y|>‘x‘/2lx_y|n+p(s+2o¢7kfl+1/p)‘y|pnf2pa+kp
< dy dx
= 21> R JR<|y|<2|a| [X|PFPF2ak=141/p) |y |pn—2patkp

I )
l2|> R JJy|>2)2| Y|P TPHsT DAL

<CR p(n—1+s) 1+n1nR

Therefore, A; + Ay + A3 < CR||¢H%S(BQ)7 and hence equation (1.5)
follows. g
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6. Proof of Theorem 1.4.

Theorem 6.1. Let 1 —2a —1/p < s < 0. For ¢ € B;(99), let
u = Saq¢ be the layer potential defined in equation (1.3). Then the
Fourier transform of u is

(6.1) u(§) = |§‘72a<¢762”i§.>(3;(89),3;5(89))a
and u is a weak solution of

(6.2) (=A)*u=0 nR"™\ 0N

Proof. For the proof of equation (6.1), let ¢ € C?(9) and ¢ €
C(R™). Then,

[ s —in oo [ S

- / Q) / €722 (€) de dQ
o0 R

= [ Bl [ o@eme? aqug,
R?L BQ

and hence,

ae) = ¢ /@ @m0 dQ.

Since C?(9Q) is dense in Bj(9€), we obtain equation (6.1) for all
¢ € B, (09).

To prove equation (6.2), suppose that ¢ € C2(9Q) and 1p € C°°(R™\
0f?). Then, from equation (6.1),
| w@ oyt da = [ e d

= [ 0@ [ emelsq)aqu

- [ o / emeQg() deq

/ H(QV(Q)dQ = 0.
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Since (—A)*: Bs(R”) Bé 2H(R™) is an isomorphism,

‘/ () da

/ (_A)(s+2a 1+1/p)/2 ( )(_A)(78+171/p)/2¢(x)dm

< ”(_ )(s+2a 1+1/p)/2

ull BO(R™)

I(=2)*t= 1/”)/2¢HBO R")
= ORI 17 PR,
P
< C||¢HB§(DQ)”w”B*/S*l*l/P(Rn)'

Let ¢ € C%(092) be such that ¢ — ¢ in B;(09), and put ux = S¢y.
Then,

[ (un() @) (-2 0(2) ] <cl 0

n

B3 (09) HwnB;SJrl*l/p(Rn),

which tends to 0 as k tends to infinity. Hence, since C?(99) is a dense
subspace of B, (02), equation (6.3) holds for ¢ € B;(99), and so we
get equation (6.2) for all ¢ € B(99). O

Proof of Theorem 1.4. Based on Corollary 4.4, Saq : Bh2%T1(0) —
B! (09) is bijective for 0 <t <1 and 1 < p < oo.

To demonstrate the existence of a solution, let g € B! (99). Based
on the bijectivity of Sy : BL2*T1(0Q) — BL(9Q), there is a ¢ €
Bl72ot1(99Q) such that Saa¢ = g. Let u = Szq¢, defined by equa-
tion (1.3). Then, from Theorem 6.1, u is a weak solution of equa-
tion (6.2), and from Theorem 1.2, u satisfies equation (1.7). Hence, the
proof of Theorem 1.4 is now complete. g

7. Appendix.

7.1. Proof of equation (4.4). Because the proofs of the two inequal-
ities in equation (4.4) are similar, we only prove the first. Let

Hf@) = [ L))y k=123



THE FRACTIONAL LAPLACIAN 363

Here, Li(2',y") :=ni(a’, O (2" )N\ (v, O (y')) Ki (2’ y'), where

Ki(2,y) := / A(Z g (2" = 2/, U (2") — ¥(2))
B/(7¢)
D3 0a(y — 2/, 0(y) — ¥(2)) d?,

Ky (2, y) := / ki(2,0)C3 20 (v — 2/, U(y) — ¥(2"))
B/(7¢)
<F2a (' =2/, ¥ (a) — U(2)) — Tanla’ — 2, O)) dz,
Ks(2',y) := / ki(2',0) Do (2" — 2, 0)
B(7¢)
(Psza (v =2, ¥(y) —¥(z)) —Ts-2q(y — 2, 0)) dz’,

with A(2') == ri(2/, U(2"))/1 + |VT(2')]2 — ki(2/,0). We also define

Hif(o N ) [ sBw)

mi(2,
/ (2/,0)Tan(z’ — 2/, 0)T'3_ 2, (3 — 2',0) d2’ dy,
76)

where B(z') = MN(2/,9(2)/1+ |[V¥(2)|? — X\i(2/,0). From the
definitions of x;, A; and ¥, we have
|A(Z")] < ce, |B(2")| < ce,

7.1
(7.1) |D. A(Z)] < ¢, |D.B(2")| < e

Note that Ii,¢ — Ii1,¢ = Hi¢ + Hap + Hzp + Hy.

First, we estimate || Hy f||1»(B/(2¢)) based on the direct calculation

|Li(z', )] < ce/ ( )Fga(l'/ — 2,03 24(y —2',0)d2’
B'(7e

(7.2) X5 (20) (¥ )X B (126 (Y)

XB/(QE)( )XB’(lZe)(y/)
o/ —y' |2

< ce

)
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where yg denotes the characteristic function of the set S. Let

2n — 3 1 1 1
< n and - =1+ - ——.

1 1
q p n-—1 r p q

Then,

LA ) )] = 1@y DL )7
OIS0/,

Using the Holder inequality, from equation (7.2), for ' € B’(0, 2¢),

1-1/q
< ( / |L1<x/,y’)|’"dy’)
B/(0,12¢)
1/p
( / ILl(a:’,y/)l’"lf(y/)lqdy’>
B/(0,12€)

1/q—1/p
( / If(y’)quy’)
B/(0,12¢)

—1)—(n=3)r — 1-
< cel(rD==InQ-t/9) g1l

1/p
( / Ll(x’,y’)’"f(y’)"dy’) .
B/(0,12¢)

‘ / Li(«", ') f(y) dy’
Rnfl

Hence,

(7.3) [ HifllLr (B @r-1y)

= (/ / Li(2",y') f(y') dy'
B'(0,2¢) | JB(0,12¢)

< cel(n=D=(n=3)r)(1-1/q)
n—1)—(n—-3)r 1—q/
((n=1)=(n—=3) )/pr”L‘lEZBI’)(O,me))

P 1/p
d:c')

1/p
(/ If(y’)l"dy’> = ce D= £l r0,120))
B/(0,12€)

_ _ _ _ -1_ -1
gce((" 1=(n=3)r)/r (n=1)(¢" "' ~p )||f||LP(B’(O,12e))

= C€2||f||LP(B’(0,12e))-
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Next, we estimate || DHy f||p»®n-1y. Note that

Dy Toq (2" — 2/, ¥(2') = W(2)) = =D, Tan (2" — 2/, ¥(2") — ¥(2'))
+ Dyploo (2’ — 2,0 (a’) — U(2')) (DY (") — DY(2)),

and
DyT3 90y =2, 0(y) = V(") = =D T304 (y =2 \Il( ) \I/(z )

+ Dpls_aa(y — 2/, 0(y') — (")) (DY (y ).

Hence, using the integration by parts, we have
Do Ln(2',y') = =Dy L1 (2", y) + G1 (2, y/),

where
Gi(2',y") = Dami(@")Ni(y' ) K1 (2", y/)

—ni(z') Dy Ny ) K1 (2, 3))

FREN) [ DA -2 ) ()

D3 o0 (y — 2/, 0(y) — U(2")) d
PN [ AEID (e - B - B(E)
B/(7€)
(DYU(z") — D¥(2")) T304 (z' — 2/, ¥(z') — ¥(2')) d2’
+ m(x'))\i(y’)/ A(ZTaa (2" — 2/, ¥(2") — U(2))
B/(7€)
DpTs_aq (2" — 2/, 0(2") — U(z")) (D¥(a') — D¥(2')) dz'.

Note that

|Dnlaq (2 — 2/, ¥(2') — () (DV¥(z') — D¥(2"))]
S

and

|Dnls_2a(y' — 2/, 0(y) — ¥(2)) (DY(y) — DU(Z))|
C
< |y/ _ Z/‘n73+2oc :
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Hence, using equation (7.1),
|G1(z',y))| < c(/ Pog(2' —2',0)T3 04 (y' — 2/,0) d2’
B’ (7€)

+ e/ Ton (2’ — 2/,0)T3_ o4 (2" — 2/,0) dz’)
B/(7¢)

XB'(2E)($')XB'(126)(Z//)
<z’ =y |7 X 20 (@) xBr120) V),

and, with the same calculation to equation (7.3),

(7.4) | Hizf e (Br(2e)) < cell fllLe(mr(126))5
where Hipf(2') = [pu_y G1(2/, /) f(y) dy'.
Let
Hizf(2') = - Dy Ly (2, y') f(y') dy'.

To show the L?-boundedness of Hiz, we use the following proposi-
tion [20, Theorem 7.3].

Proposition 7.1. Let T be a singular integral with kernel L, that is,

Tra) = [ LI, o s

for f € S. Suppose that, for 0 < v <1, the kernel L satisfies
(7.5)
LG, y)] < Ala! —y/ |7,

2" — xp|” , 2" =yl
|L($/7yl) - L(Ié)a y/)| < Alx/ _ y/|n0_1+»y Zf ‘x, - ;E0| < ) )
ro o |y,_y6|7 ey / |x,_yl|
|L(xay)_L(x7y0)|§A|m/_y/|n_1+fy Zf|y _y0| < 9 .

Then, T extends to a bounded linear operator from L*(R"~1) to itself
if and only if both T and T* are restrictedly bounded, in the sense that

(7.6) |T¢™%0| 2 gn-1) < ARMD/2
and

||T*¢R7$6||L2(Rn—l) < AR(n—l)/2
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for all zo € R*™' and R > 0, where ™% (2') := ¢((«/ — })/R) and ¢
is a bump function, that is, ¢ € C°(B’(1)) such that |Dp(a’)| < 1. In
this case,

1T 212 < cA.

Now we will show that D, Lq(2',y) satisfies the conditions of
Proposition 7.1. From equation (7.1), we have

|Dy Ly (z',y")| < cexprioe) (@) xBr 20 (Y)

/ dz’'
B/(7e) |.’,E, _ Z/|n_2o‘|l‘/ _ Z/|n—2+2a

< celr’ — ' |7 2o (@)X B (120 (Y).

For |z' — x| < |2’ — ¢'|/2, based on the mean-value theorem, there
exists a & between ' and x{, such that

|Dy/L1(z6,y’) - Dy’Ll(xavy/)‘
= |Dz’Dy’L1(€/a y/) ! (SC/ - x6)’
< | Du Dy Ka(a'y) - (2 — )|

A
<C€|x |

/ /
2/ — y/[" XB(2¢) (") XBr(12¢) (¥'),

and, for |y — yj| > |2’ — ¥'|/2, we have

|Dy/L1(m/,y6) - Dy’Ll (:B/a y(/))}
- ‘Dy’Dy’Ll(x/aé-/) ' (y/ - yé)‘
S C‘Dw’Dy’Ll(x/ay/) . (yl - yé)’

Iy — yol
< CGWXB/(%)@/)XB'(HG) &)

Hence, D,/ L, satisfies the conditions of equation (7.5).

Next, we show that Hio satisfies equation (7.6). If |2’ — x| > 2R,
then

Dy/L1(I/,y’)¢R’x6(y’) dy/ < CE|$6 _ x/|7n+1Rn71.
Rn—1
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For |2’ — (| < 2R, we have

Dy Li (2, y" )¢ (y) dy’

B ‘ / Ly(2/,y") D0 (y') dy’
]Rn—l

Rn—1
d /
S CCR_l lef—y' <R |£lez/|n72'
o/ —y’ <1
If R > 1, then the right-hand side is bounded by
dy’ dy’
o [ [ W
“mo/iy//‘éf |$/ - y/|n— |z’ —y’|<1 |ZIJ/ - y/‘n—
z/—y’|< =

1
=ceR7! / dt < ce,
0

and, if R <1, by
d /
CGR_l % S Ce.
|z’ —y’|<2R |£C -y |
Thus,

2 _
/ ‘H13¢z6,R(x/)‘ dz' < ce2R2™ 2/ :
|y —a'|>2R |y —a'|>2R |z —

dx’
/|2n72

S 062Rn_17

and

’ 2 _
/ |Hizp"of (2")|"da’ < 662/ dx’ < ce?R™L
|zh—a'|<2R g —a'[<2R

Hence,

HH13¢I67R||L2(R1171) S <‘/|

z(—x'|<2R

) , 1/2
“(/ a0 ) '
|z —x'|>2R

< ceR1/2,

wé,R n|2 / Yz
‘H13¢ (95)‘ dx

Since the kernel of Hi5 is D,/ L1 (y’, z’), by the same estimate, we obtain

HHikg(ﬁI/“’RHLQ(RMI) < ceRM—1)/2
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Hence,
||H13||L2~>L2 < ce and ||H1*3HL2~>L2 < ce.

Let a be an atom, that is, suppa C B'(z{,r), |a(z")| < r~"*! and
fRn,l a(z')dx’ = 0. Then,

1/2
/ |Hysa(z')| da! < (2r)(n=D/2 ( / |H13a(x')|2dz’>
B’ (x(,2r) B'(x(,2r)

1/2
< cer("l)/2</ la(z")]? d:c’) < ce.
B’ (xz(,r)

Since [p.-, a(z’)dz’ =0, for |zg — 2’| > 2r,
Hiaw) = [ (L) = Ll y)aly) dy
B'(z(,2r)

I
< cer_"'H/ |33/ 37/07[ dy'
B/ (x},2r) 2" — o]
Ccer

=l

and hence,

da!
/ |Hiza(z")| dx' < cer/ % < ce.
|z’ =z | >2r |z’ —x(|>27 ‘.73 —330‘

Therefore,
/ |Hiza(z")| dx’ < ce,
Rn—1

implying that ||His|| g1 < ce, where H! is a Hardy space. For the
same reason, ||His||g—r1 < ce, so

(7.7) |HisllLr—pr < ce for 1< p < oc.

Since DH; f = Hiof + Hi3f, based on equations (7.4) and (7.7),
(7.8) | DH; || Lo n—1)— Lr@n—1) < Ce.

Hence, ||Hy|po@n—1)— w1 ®n-1) < ce.

Next, we estimate ||Hy f[|z»— 1. Note that

|L2(x’,y')| < C€2|1’/ - y/|7n+2XB’(2€)(z/)XB’(12e) (y’)
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and Dy Ks(2',y") = =Dy La(2',y') + Go(2',y'), where
Ga(z',y) == / D ki(2',0) g, (:17/ -2 U(2') — \I/(z’))
B/ (7¢)
(F3_2a (' =2, 0(2") = ¥(2')) = T3_2q(y — z’,O)) dz'
+/ ki(2',0)Dylag (2 — 2/, W (a') — U (2))
B/(7¢)
(DV(z") — DU(2))T3_24 (2" — 2/, U(2") — ¥(2')) d’
+/ ki(2',0)aq (2 — 2, U (2") — ¥(2"))
B/(7¢)
DpTs_oq (2" — 2/, 0(2") — ¥(2")) (D¥(2') — DU(2')) d2’
satisfies
|Ga(z", )| < cla’ — /" xpr2e) (") X B (120 (¥)-
Hence, using the same argument as in the case of Hy, we can show that
[ Hz|| e (B (12¢)— H1 (B (26)) < CE.
Similarly, we have

[ H3| e (B (126)— 11 (B (2¢)) < CE.

Based on the above arguments,
Hy : LP(B'(12¢)) — H, (B'(2¢))
is a bounded operator. Then, from equation (7.1), we have
[ Had| 1157 20)) < el BO| Lo (5 (12¢)) < celldllLr(r(12¢))-

Hence,
[ Hallr (B (126)— 11 (B (2¢)) < CE,

and finally,

111 = Tl e (B (12e)) L (B (2€))
< (I1H Nl o my + 1 Hall oy + (| Hall Lo ms + | Hall o m1) < ce.
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