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ABSTRACT. Consider a nonlinear operator equation x −
K(x) = f , where K is a Urysohn integral operator with
a kernel of the type of Green’s function and defined on
L∞[0, 1]. For r ≥ 0, we choose the approximating space to
be a space of discontinuous piecewise polynomials of degree
≤ r with respect to a quasi-uniform partition of [0, 1] and
consider an interpolatory projection at r + 1 Gauss points.
Previous authors have proved that the orders of convergence
in the collocation and the iterated collocation methods are
r + 1 and r + 2 + min{r, 1}, respectively. We show that
the order of convergence in the iterated modified projection
method is 4 if r = 0 and is 2r + 3 if r ≥ 1. This improvement
in the order of convergence is achieved while retaining the
size of the system of equations that needs to be solved, the
same as in the case of the collocation method. Numerical
results are given for specific examples.

1. Introduction. We are interested in approximate solutions of the
following nonlinear operator equation

x−K(x) = f,

whereK is a Urysohn integral operator with a continuous kernel defined
as follows:

K(x)(s) =

∫ 1

0

κ(s, t, x(t)) dt, s ∈ [0, 1], x ∈ L∞[0, 1].
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It is assumed that the above equation has a unique solution φ, and we
consider projection methods to approximate it. For r ≥ 0, letXn be the
space of piecewise polynomials of degree ≤ r with respect to a quasi-
uniform partition of [0, 1] with n subintervals. Let Qn from L∞[0, 1] to
Xn be a sequence of interpolatory projections at r + 1 Gauss points.

In the collocation method, the above equation is approximated by

φC
n −QnK(φC

n ) = Qnf.

This method has been studied extensively in research literature, see
Krasnoselskii [9], Krasnoselskii et al. [10] and Krasnoselskii and
Zabreiko [11].

The iterated collocation solution is defined by φS
n = K(φC

n ) + f .
It was introduced by Sloan [15] for linear integral equations, and, for
nonlinear integral equations, see Atkinson and Potra [4].

In Grammont and Kulkarni [7], the following modified projection
method is proposed:

φM
n −KM

n (φM
n ) = f,

where KM
n (x) = QnK(x)+K(Qnx)−QnK(Qnx). It is a generalization

of the modified projection method in the linear case proposed in
Kulkarni [12]. The iterated modified projection solution is defined
as φ̃M

n = K(φM
n ) + f .

If the kernel κ is smooth, then in Grammont et al. [8], it is shown
that {φM

n } converges faster to φ than does the sequence {φS
n}, while the

size of the system of equations that needs to be solved remains the same.
One iteration step used in defining the iterated modified projection
solution is shown to further improve the order of convergence. In
Kulkarni and Nidhin [14], asymptotic series expansions for φS

n and
for φ̃M

n are obtained and Richardson extrapolation is used to improve
the order of convergence.

In this paper, we consider a Urysohn integral operator with a
Green’s function type kernel. In Atkinson and Potra [4], orders of
convergence of the collocation and the iterated collocation solutions for
this type of kernel are obtained. These error bounds generalize the
results of Chatelin and Lebbar [5] in the case of the linear integral
equations. Under appropriate conditions, we show that, if r = 0, then
the orders of convergence of the modified projection and the iterated
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modified projection solutions are, respectively, 3 and 4. These orders
of convergence are to be compared with the order 1 of the collocation
solution and the order 2 of the iterated collocation solution. If r ≥ 1,
then we show that the order of convergence of the iterated modified
projection solution is 2r + 3, which is an improvement over the order
of convergence r + 3 of the iterated collocation solution obtained in
Atkinson and Potra [4].

The paper has been arranged in the following way. In Section 2, we
set the notations, state the assumptions on the kernel of the Urysohn
integral operator and describe the method. In Section 3, we first prove
two important results about the divided difference of K ′(φ)g, where
K ′(φ) denotes the Fréchet derivative of K at φ and g ∈ C[0, 1]. This
section also contains a crucial result based on the relation between the
interpolatory projection at Gauss points and the orthogonal projection.
Using this result, we obtain orders of convergence of certain quantities
which are needed later on. In subsection 4.1, we obtain the order
of convergence of the modified projection solution. Subsection 4.2
contains our main result about the order of convergence of the iterated
modified projection solution. Numerical results are given in Section 5.

2. Method, notation and definitions. In this section, we set the
notations and describe the method. In subsection 2.1, the Urysohn
integral operator with a Green’s function type kernel is defined and its
Fréchet derivatives up to the order 4 are described. In subsection 2.2,
the approximating space of piecewise polynomials is described. The
interpolatory projection at Gauss points is defined in subsection 2.3
and some results from Chatelin and Lebbar [5] are quoted for future
reference. The modified projection method and its iterative version
are given in subsection 2.4, and a theorem about the existence of the
modified projection solution in a neighborhood of the exact solution is
stated.

2.1. Urysohn integral operator. Let X = L∞[0, 1], and consider a
Urysohn integral operator

(2.1) K(x)(s) =

∫ 1

0

κ(s, t, x(t)) dt, s ∈ [0, 1], x ∈ X,
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where the kernel κ(s, t, u) is a real-valued continuous function. The
domain of the kernel κ is denoted by Ψ = [0, 1] × [0, 1] × R. Divide Ψ
into two parts:

Ψ1 = {(s, t, u) : 0 ≤ t ≤ s ≤ 1, u ∈ R},

and

Ψ2 = {(s, t, u) : 0 ≤ s ≤ t ≤ 1, u ∈ R}.

For a function ξ(s, t, u) defined on an open subset S ⊂ R3, and for
non-negative integers i, j and k, we introduce the following notation:(

D(i,j,k)ξ
)
(s, t, u) =

∂i+j+kξ(s, t, u)

∂si∂tj∂uk
, (s, t, u) ∈ S.

Let α ≥ 1 be an integer. We say that ξ ∈ Cα(Ψ1) provided the following
conditions are satisfied.

(1) ξ ∈ C(Ψ1).
(2) For 1 ≤ i+j+k ≤ α, the partial derivatives D(i,j,k)ξ are continuous

on the set {(s, t, u) : 0 < t < s < 1, u ∈ R}.
(3) For 1 ≤ i+ j + k ≤ α, s ∈ (0, 1] and u ∈ R,(

D(i,j,k)ξ
)
(s, 0+, u) and

(
D(i,j,k)ξ

)
(s, s−, u) exist.

(4) For 1 ≤ i+ j + k ≤ α, t ∈ [0, 1) and u ∈ R,(
D(i,j,k)ξ

)
(1−, t, u) and

(
D(i,j,k)ξ

)
(t+, t, u) exist.

The class of functions Cα(Ψ2) is defined in a similar manner.

We assume that the kernel κ of K defined in (2.1) has the following
properties.

(H1) The partial derivative

∂4κ

∂u4

is continuous on Ψ.

(H2) Let

ℓ(s, t, u) :=
∂κ(s, t, u)

∂u
, m(s, t, u) :=

∂2κ(s, t, u)

∂u2
.
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There are functions ℓi, mi ∈ Cα(Ψi), i = 1, 2, with

ℓ(s, t, u) =

{
ℓ1(s, t, u) (s, t, u) ∈ Ψ1,

ℓ2(s, t, u) (s, t, u) ∈ Ψ2

and

m(s, t, u) =

{
m1(s, t, u) (s, t, u) ∈ Ψ1,

m2(s, t, u) (s, t, u) ∈ Ψ2.

(H3) ℓ,m ∈ C(Ψ).

Then it can be shown that:

(H4) There are two functions κi ∈ Cα(Ψi), i = 1, 2, such that

κ(s, t, u) =

{
κ1(s, t, u) (s, t, u) ∈ Ψ1,

κ2(s, t, u) (s, t, u) ∈ Ψ2.

Under the above assumptions, the operator K is Fréchet differen-
tiable, and its Fréchet derivative at x ∈ L∞[0, 1] is given by

(K ′(x)g)(s) =

∫ 1

0

∂κ(s, t, x(t))

∂u
g(t) dt,

s ∈ [0, 1], g ∈ L∞[0, 1].

The operator K ′ is Lipschitz continuous in any bounded neighborhood
V of φ, that is, there exists a constant γ such that

(2.2) ∥K ′(x)−K ′(y)∥ ≤ γ∥x− y∥∞, x, y ∈ V.

Assume that, for f ∈ X,

(2.3) x−K(x) = f

has a unique solution φ. We are interested in approximate solutions of
the above equation.

From now on, we assume that f ∈ Cα[0, 1]. Then, by [4, Corollary
3.2], it follows that

(2.4) φ ∈ Cα[0, 1].
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We have:

(K ′(φ)g) (s) =

∫ 1

0

∂κ(s, t, φ(t))

∂u
g(t) dt

=

∫ 1

0

ℓ(s, t, φ(t)) g(t) dt, s ∈ [0, 1].

Define

Ω1 = {(s, t) : 0 ≤ t ≤ s ≤ 1},
Ω2 = {(s, t) : 0 ≤ s ≤ t ≤ 1},

and

ℓ∗(s, t) := ℓ(s, t, φ(t)) =

{
ℓ1,∗(s, t) = ℓ1(s, t, φ(t)), (s, t) ∈ Ω1,

ℓ2,∗(s, t) = ℓ2(s, t, φ(t)), (s, t) ∈ Ω2.

By assumption (H3),

(2.5) ℓ∗ ∈ C([0, 1]× [0, 1]).

Since φ ∈ Cα[0, 1], it follows that

(2.6) ℓ1,∗ ∈ Cα(Ω1) and ℓ2,∗ ∈ Cα(Ω2).

In the notation of Chatelin and Lebbar [5], a kernel satisfying (2.5)
and (2.6) is said to be of the class G(α, 0).

Note that the linear operator K ′(φ) : L∞[0, 1] → C[0, 1] is compact.

For x ∈ L∞[0, 1], the second derivative K ′′(x) is a bi-linear operator
and is given by

(K ′′(x)(g1, g2)) (s) =

∫ 1

0

∂2κ(s, t, x(t))

∂u2
g1(t)g2(t) dt,

g1, g2 ∈ L∞[0, 1].

Hence, for s ∈ [0, 1],

(K ′′(φ)(g1, g2)) (s) =

∫ 1

0

∂2κ(s, t, φ(t))

∂u2
g1(t)g2(t) dt

=

∫ 1

0

m(s, t, φ(t))g1(t)g2(t) dt.
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Let

m∗(s, t) := m(s, t, φ(t)) =

{
m1,∗(s, t) = m1(s, t, φ(t)), (s, t) ∈ Ω1,

m2,∗(s, t) = m2(s, t, φ(t)), (s, t) ∈ Ω2.

By assumption (H3), m∗ ∈ C([0, 1] × [0, 1]). Since φ ∈ Cα[0, 1], it
follows that m1,∗ ∈ Cα(Ω1) and m2,∗ ∈ Cα(Ω2). Thus, m∗ ∈ G(α, 0).

The third and the fourth derivatives of K are given by(
K(3)(x)(g1, g2, g3)

)
(s) =

∫ 1

0

∂3κ(s, t, x(t))

∂u3
g1(t)g2(t)g3(t) dt,(2.7)

s ∈ [0, 1],

and

(
K(4)(x)(g1, g2, g3, g4)

)
(s) =

∫ 1

0

∂4κ(s, t, x(t))

∂u4
g1(t)g2(t)g3(t)g4(t) dt,

(2.8)

s ∈ [0, 1],

where x, g1, g2, g3, g4 ∈ L∞[0, 1].

2.2. Approximating space. For any integer n, let ∆(n) : 0 = t
(n)
0 <

t
(n)
1 < · · · < t

(n)
n = 1 be a quasi-uniform partition of [0, 1]. Define

h
(n)
j = t

(n)
j − t

(n)
j−1,

h(n) = max
1≤j≤n

h
(n)
j , q(n) = max

1≤i,j≤n

h
(n)
i

h
(n)
j

.

Since the partition ∆(n) is quasi-uniform, it follows that supn q
(n) <∞.

For simplicity, we drop the index n and write

tj = t
(n)
j , ∆ = ∆(n), ∆j = ∆

(n)
j = [tj−1, tj ], hj = tj − tj−1

and
h = max

1≤j≤n
hj .

Let r ≥ 0 and Pr,∆ denote the space of piecewise polynomials of degree
≤ r on each of the subintervals ∆j , j = 1, 2, . . . , n. Then, Pr,∆ is a
subspace of L∞[0, 1].
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For ν ≥ 0, set

Cν
∆ = {g ∈ L∞[0, 1] : g|∆j ∈ Cν(∆j), j = 1, . . . , n}.

For g ∈ Cν
∆, we write gj = g|∆j and, for g ∈ C∆ = C0

∆, we introduce
the following notation:

∥g∥2,∆j := ∥gj∥2, ∥g∥∞,∆j := ∥gj∥∞, ∥g∥∞ := max
1≤j≤n

∥gj∥∞.

Let g ∈ C∆. Since

(K ′(φ)g)(s) =

∫ s

0

ℓ1,∗(s, t)g(t) dt+

∫ 1

s

ℓ2,∗(s, t)g(t) dt,

we obtain

(K ′(φ)g)′(s) = ℓ1,∗(s, s)g(s−)− ℓ2,∗(s, s)g(s+)

(2.9)

+

∫ s

0

∂ℓ1,∗(s, t)

∂s
g(t) dt+

∫ 1

s

∂ℓ2,∗(s, t)

∂s
g(t) dt, s ∈ [0, 1].

If s /∈ ∆, then g is continuous at s, that is, g(s−) = g(s+). Since
ℓ∗ ∈ C([0, 1]× [0, 1]), we have ℓ1,∗(s, s) = ℓ2,∗(s, s). Hence,

(2.10) (K ′(φ)g)′(s) =

∫ s

0

∂ℓ1,∗(s, t)

∂s
g(t) dt+

∫ 1

s

∂ℓ2,∗(s, t)

∂s
g(t) dt,

and

(K ′(φ)g)′′(s) =

(
∂ℓ1,∗(s, s)

∂s
− ∂ℓ2,∗(s, s)

∂s

)
g(s)

+

∫ s

0

∂2ℓ1,∗(s, t)

∂s2
g(t) dt+

∫ 1

s

∂2ℓ2,∗(s, t)

∂s2
g(t) dt.(2.11)

For s ∈ ∆, using limits, the values of (K ′(φ)g)′′(s+) and (K ′(φ)g)′′(s−)
exist.

Thus, if g ∈ C∆, then K
′(φ)g ∈ C2

∆, and

∥(K ′(φ)g)(j)∥∞ ≤ C1∥g∥∞, j = 0, 1, 2.(2.12)

Since the kernel m∗ of K ′′(φ) is also of the class G(α, 0), it can be seen
that, if g1, g2 ∈ C∆, then K

′′(φ)(g1, g2) ∈ C2
∆ and

(2.13) ∥(K ′′(φ)(g1, g2))
(j)∥∞ ≤ C2∥g1∥∞∥g2∥∞, j = 0, 1, 2.
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Let ℓ∗ ∈ G(α, 0) for α ≥ 4 and g ∈ C2
∆. Then, for s /∈ ∆, we obtain

(K ′(φ)g)(3)(s) = 2

(
∂2ℓ1,∗(s, s)

∂s2
− ∂2ℓ2,∗(s, s)

∂s2

)
g(s)

+

(
∂ℓ1,∗(s, s)

∂s
− ∂ℓ2,∗(s, s)

∂s

)
g′(s)

+

∫ s

0

∂3ℓ1,∗(s, t)

∂s3
g(t) dt+

∫ 1

s

∂3ℓ2,∗(s, t)

∂s3
g(t) dt,

and

(K ′(φ)g)(4)(s) = 3

(
∂3ℓ1,∗(s, s)

∂s3
− ∂3ℓ2,∗(s, s)

∂s3

)
g(s)

+ 3

(
∂2ℓ1,∗(s, s)

∂s2
− ∂2ℓ2,∗(s, s)

∂s2

)
g′(s)

+

(
∂ℓ1,∗(s, s)

∂s
− ∂ℓ2,∗(s, s)

∂s

)
g′′(s)

+

∫ s

0

∂4ℓ1,∗(s, t)

∂s4
g(t) dt+

∫ 1

s

∂4ℓ2,∗(s, t)

∂s4
g(t) dt.

As a consequence, if ℓ∗ ∈ G(α, 0) for α ≥ 4 and g ∈ C2
∆, then

∥(K ′(φ)g)(3)∥∞ ≤ C3(∥g∥∞ + ∥g′∥∞),(2.14)

∥(K ′(φ)g)(4)∥∞ ≤ C3(∥g∥∞ + ∥g′∥∞ + ∥g′′∥∞).

2.3. Interpolatory projection at Gauss points. For j=1, 2, . . . , n,
let τ j1 < τ j2 < · · · < τ jr+1 be the Gauss-Legendre points in [tj−1, tj ]. Let

A = {τ jp , p = 1, 2, . . . , r+1, j = 1, 2, . . . , n} be the set of the collocation
points. The interpolatory projection Qn : C∆ → Pr,∆ is defined as
follows:

Qng ∈ Pr,∆, (Qng)(τ
j
p ) = g(τ jp ),(2.15)

1 ≤ p ≤ r + 1, 1 ≤ j ≤ n.

Then

(2.16) sup
n

∥Qn|C∆∥ <∞.

Also, for g ∈ C[0, 1],

(2.17) ∥(I −Qn)g∥∞ −→ 0 as n→ ∞.
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Let Pn be the restriction to L∞[0, 1] of the orthogonal projection from
L2[0, 1] onto Pr,∆. We define

(2.18) β = min{α, r + 1}.

The following result is quoted from [4, Corollary 4.3].

Lemma 2.1. Let {πn} be a sequence of projections from C∆ onto Pr,∆

such that
sup
n

∥πn∥∞ <∞.

Then there is a constant C4 such that, for any g ∈ Cα
∆,

∥(I − πn)g∥∞ ≤ C4∥g(β)∥∞hβ .

Thus,

(2.19) ∥(I −Qn)g∥∞ ≤ C4∥g(p)∥∞hp, 1 ≤ p ≤ β.

Let Qn,jy = (Qny)|∆j , Pn,jy = (Pny)|∆j , y ∈ C∆. Then

(2.20) sup
n,j

∥Pn,j∥∞ <∞.

The following result is deduced from Lemma 2.1.

Lemma 2.2. Let g ∈ Cα
∆ and gj = g|∆j

. Then there is a constant C5

such that

(2.21) ∥(I−Pn,j)gj∥∞,∆j ≤ C5∥g(p)j ∥∞,∆jh
p
j , 1 ≤ j ≤ n, 1 ≤ p ≤ β.

For g ∈ C(∆j) and for s ∈ ∆j , let δr+1
j g(s) = [τ j1 , . . . , τ

j
r+1, s]g

denote the divided difference of g at {τ j1 , . . . , τ
j
r+1, s}.

We state the following important result from [5] for future reference.
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Lemma 2.3. (Chatelin-Lebbar [5]). For f, g ∈ C(∆j),

⟨(I −Qn,j)g, f⟩j = ⟨(I − Pn,j)fδ
r+1
j g, vj⟩j ,

where

vj(t) =
r+1∏
p=1

(t− τ jp )

and ⟨·, ·⟩j denotes the inner product of L2(∆j).

2.4. Projection methods. Let K be a Urysohn integral operator
with a kernel κ satisfying assumptions (H1), (H2) and (H3). Let Qn be
the interpolatory projection at r + 1 Gauss points defined by (2.15).

In [4], the collocation and the iterated collocation methods are
investigated and, under slightly weaker assumptions on the kernel κ
as compared to our assumptions, the following orders of convergence
are proved:

(2.22) ∥φC
n − φ∥∞ = O(hβ),

and, if α ≥ r + 1, then

(2.23) ∥φS
n − φ∥∞ = O(hmin{α,2r+2,r+3}).

Consider the following modified projection method from [7]:

(2.24) φM
n −KM

n (φM
n ) = f,

where

(2.25) KM
n (x) = QnK(x) +K(Qnx)−QnK(Qnx), x ∈ X.

The iterated modified projection solution is defined as

(2.26) φ̃M
n = K(φM

n ) + f.

As it is explained in [8, Section 4], the size of the system that needs
to be solved in the modified projection method remains the same as in
the collocation method, even though one needs to generate additional
matrices and the right hand of the system has an extra term. The
iterated modified projection solution is obtained by performing one
step of iteration, and thus there is no additional system to be solved.
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For δ > 0, let B(φ, δ) = {ψ ∈ X : ∥φ− ψ∥∞ < δ}. In order to prove
the existence of φM

n in a neighborhood of φ, we quote the following
result from Grammont [6].

Theorem 2.4. Let K be a completely continuous operator defined on
the closure D of an open subset D of a Banach space X. Let Y be a
closed subspace of X such that K(x) ∈ Y for all x ∈ D. Assume that
x = K(x) has a solution x∗ in D. Further assume that K is Fréchet
differentiable in D, the Fréchet derivative K ′ is Lipschitz continuous
in D and that 1 is not an eigenvalue of K ′(x∗). Let Xn be a sequence
of finite-dimensional subspaces of X and Qn : X → Xn be a sequence
of projections such that ∥Qny − y∥ → 0 as n → ∞ for all y ∈ Y .
Then there exists δ0 > 0 such that KM

n has a unique fixed point xMn in
B(x∗, δ0) and that

2

3
αn ≤ ∥xMn − x∗∥∞ ≤ 2αn,

where αn = ∥[I − (KM
n )′(x∗)]−1[K(x∗) − KM

n (x∗)]∥ is a sequence
converging to zero.

The proof of the above theorem can easily be adapted to prove the
following result.

Theorem 2.5. Let K be a Urysohn integral operator with a continuous
kernel κ satisfying assumptions (H1), (H2) and (H3). Let φ be the
unique solution of (2.3), and assume that 1 is not an eigenvalue of
K ′(φ). Let Qn be the interpolatory projection at r + 1 Gauss points
defined by (2.15). Then there exists a neighbourhood B(φ, δ0) of φ
which contains, for all n large enough, a unique solution φM

n of (2.24).
Further,

2

3
αn ≤ ∥φM

n − φ∥∞ ≤ 2αn,

where αn = ∥[I− (KM
n )′(φ)]−1[K(φ)−KM

n (φ)]∥ is a sequence converg-
ing to zero.

The following result is needed in subsection 4.1 for obtaining the
order of convergence of the modified projection solution.
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Proposition 2.6. Let K be a Urysohn integral operator with a con-
tinuous kernel κ satisfying assumptions (H1), (H2) and (H3). Let φ
be the unique solution of (2.3), and assume that 1 is not an eigen-
value of K ′(φ). Let Qn be the interpolatory projection at r + 1
Gauss points defined by (2.15). Then there exists a positive integer
n1 such that, for n ≥ n1, the operator I − (KM

n )′(φ) is invertible and
∥(I − (KM

n )′(φ))−1∥ ≤ 2∥(I −K ′(φ))−1∥.

Proof. Note that (KM
n )′(φ) = QnK

′(φ) + (I − Qn)K
′(Qnφ)Qn.

Hence,

K ′(φ)− (KM
n )′(φ)

= (I −Qn)K
′(φ)(I −Qn) + (I −Qn)(K

′(φ)−K ′(Qnφ))Qn.

Since K ′(φ) : L∞[0, 1] → C[0, 1] is a compact linear operator and since,
by (2.17), Qn converges to the identity operator pointwise on C[0, 1],
it follows that

∥(I −Qn)K
′(φ)∥ −→ 0 as n→ ∞.

Choose a positive integer n0 such that Qnφ ∈ B(φ, δ0) for n ≥ n0.
Then, by (2.2),

∥K ′(φ)−K ′(Qnφ)∥ ≤ γ∥φ−Qnφ∥∞ −→ 0 as n→ ∞.

Since supn ∥Qn|C∆∥ < ∞, it follows that ∥K ′(φ) − (KM
n )′(φ)∥ → 0

as n → ∞. Choose n1 ≥ n0 such that ∥K ′(φ) − (KM
n )′(φ)∥∥(I −

K ′(φ))−1∥ ≤ 1/2 for n ≥ n1. Since

I−(KM
n )′(φ) =

[
I −

{
(KM

n )′(φ)−K ′(φ)
}
(I −K ′(φ))−1

]
(I−K ′(φ)),

it follows that ∥(I − (KM
n )′(φ))−1∥ ≤ 2∥(I − K ′(φ))−1∥ for n ≥ n1.

This completes the proof. �

For future reference, let

sup
s,t∈[0,1]

|u|≤∥φ∥∞+δ0

∣∣∣∣∂2κ∂u2
(s, t, u)

∣∣∣∣ =M1,(2.27)

sup
s,t∈[0,1]

|u|≤∥φ∥∞+δ0

∣∣∣∣∂3κ∂u3
(s, t, u)

∣∣∣∣ =M2
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and

sup
s,t∈[0,1]

|u|≤∥φ∥∞+δ0

∣∣∣∣∂4κ∂u4
(s, t, u)

∣∣∣∣ =M3.(2.28)

3. Error estimates. In this section, we prove error estimates which
are needed to obtain the orders of convergence of the modified pro-
jection and the iterated modified projection solutions. In subsec-
tion 3.1, we obtain error bounds for the divided difference of K ′(φ)g1
for g1 ∈ C[0, 1] and for similar quantities associated with the second
and the third Fréchet derivatives of K at φ. Based on these bounds,
we prove a crucial lemma in subsection 3.2 which is used in proving
many results which follow. In subsection 3.3, we show that, for the
case piecewise constant polynomials, that is, when r = 0, some orders
of convergence obtained in subsection 3.2 can be improved.

3.1. Divided difference. Let g ∈ C[0, 1], ζ1, . . . , ζr+1 be distinct
points in [0, 1] and s ∈ [0, 1]. The divided difference of g at ζ1, . . . , ζr+1

and s is denoted by [ζ1, . . . , ζr+1, s]g.

We first prove two important results. The crucial idea is that

[ζ1, . . . , ζr+1, s] (K
′(φ)g) =

∫ 1

0

[ζ1, . . . , ζr+1, s]ℓ∗(·, t)g(t) dt,

where [ζ1, . . . , ζr+1, s]ℓ∗(·, t) denotes the divided difference of ℓ∗ with
respect to the first variable.

Lemma 3.1. Let r ≥ 0, ζ1, . . . , ζr+1 be distinct points in (0, 1) and
g1, g2, g3 ∈ C[0, 1]. Then

sup
s∈[0,1]

|[ζ1, . . . , ζr+1, s] (K
′(φ)g1)| ≤ C6∥g1∥∞,(3.1)

sup
s∈[0,1]

|[ζ1, . . . , ζr+1, s] (K
′′(φ)(g1, g2))| ≤ C7∥g1∥∞∥g2∥∞,(3.2)

sup
s∈[0,1]

∣∣∣[ζ1, . . . , ζr+1, s]
(
K(3)(φ)(g1, g2, g3)

)∣∣∣ ≤ C8∥g1∥∞∥g2∥∞∥g3∥∞,
(3.3)

where C6, C7 and C8 are constants.
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Proof. The proof is by induction. If s ̸= ζ1, then it can be easily
verified that

[ζ1, s] (K
′(φ)g1) =

∫ 1

0

[ζ1, s]ℓ∗(·, t)g1(t) dt, s ∈ [0, 1],

where

[ζ1, s]ℓ∗(·, t) =
ℓ∗(s, t)− ℓ∗(ζ1, t)

s− ζ1
.

Let

M4 = sup
{∣∣∣D(1,0)ℓ1,∗(s, t)

∣∣∣ : 0 ≤ t ≤ s ≤ 1
}
,

M5 = sup
{∣∣∣D(1,0)ℓ2,∗(s, t)

∣∣∣ : 0 ≤ s ≤ t ≤ 1
}
.

Fix s ∈ [0, 1].

Case 1. 0 ≤ s < ζ1. Note that

[ζ1, s]ℓ∗(·, t) =
ℓ∗(s, t)− ℓ∗(ζ1, t)

s− ζ1
=


ℓ1,∗(s,t)−ℓ1,∗(ζ1,t)

s−ζ1
0 ≤ t ≤ s,

ℓ2,∗(s,t)−ℓ1,∗(ζ1,t)
s−ζ1

s < t < ζ1,
ℓ2,∗(s,t)−ℓ2,∗(ζ1,t)

s−ζ1
ζ1 ≤ t ≤ 1.

Thus, for a fixed s, 0 ≤ s < ζ1, the function [ζ1, s]ℓ∗(·, t) is continuous
on [0, 1].

By the mean value theorem,

ℓ1,∗(s, t)− ℓ1,∗(ζ1, t)

s− ζ1
= D(1,0)ℓ1,∗(η1, t)

and

ℓ2,∗(s, t)− ℓ2,∗(ζ1, t)

s− ζ1
= D(1,0)ℓ2,∗(ξ1, t),

where η1, ξ1 ∈ (s, ζ1). Hence,

|[ζ1, s]ℓ∗(·, t)| ≤M4 if 0 ≤ t ≤ s

and

|[ζ1, s]ℓ∗(·, t)| ≤M5 if ζ1 ≤ t ≤ 1.
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On the other hand, for s < t < ζ1,

ℓ2,∗(s, t)− ℓ1,∗(ζ1, t)

s− ζ1
=
ℓ2,∗(s, t)− ℓ2,∗(t, t) + ℓ1,∗(t, t)− ℓ1,∗(ζ1, t)

s− ζ1

=
D(1,0)ℓ2,∗(ξ2, t)(s− t)

s− ζ1

+
D(1,0)ℓ1,∗(η2, t)(t− ζ1)

s− ζ1
,

where ξ2 ∈ (s, t) and η2 ∈ (t, ζ1). Hence, if s < t < ζ1, then

(3.4)

∣∣∣∣ℓ2,∗(s, t)− ℓ1,∗(ζ1, t)

s− ζ1

∣∣∣∣ ≤M4 +M5.

Thus, sup{|[ζ1, s]ℓ∗(·, t)| : t ∈ [0, 1]} ≤M4 +M5, and hence,

|[ζ1, s] (K ′(φ)g1)| =
∣∣∣∣ ∫ 1

0

[ζ1, s]ℓ∗(·, t) g1(t) dt
∣∣∣∣(3.5)

≤ (M4 +M5) ∥g1∥∞.

Case 2. s = ζ1. In this case,

[ζ1, ζ1]ℓ∗(·, t) =
∂ℓ∗(ζ1, t)

∂s
=

{
∂ℓ1,∗(ζ1,t)

∂s 0 ≤ t < ζ1 < 1,
∂ℓ2,∗(ζ1,t)

∂s 0 < ζ1 < t ≤ 1.

The above function is possibly discontinuous at t = ζ1. We obtain

|[ζ1, ζ1] (K ′(φ)g1)| =
∣∣∣∣ ∫ ζ1

0

∂ℓ1,∗(ζ1, t)

∂s
g1(t) dt+

∫ 1

ζ1

∂ℓ2,∗(ζ1, t)

∂s
g1(t) dt

∣∣∣∣
≤ (M4 +M5) ∥g1∥∞.(3.6)

Case 3. ζ1 < s ≤ 1. As in Case 1, it can be shown that

(3.7) |[ζ1, s] (K ′(φ)g1)| ≤ (M4 +M5) ∥g1∥∞.

From (3.5)–(3.7), we conclude that sups∈[0,1] |[ζ1, s](K ′(φ)g1)| ≤ (M4+

M5) ∥g1∥∞, which proves the estimate (3.1) for the case r = 0.

Assume that, for any distinct ζ1, . . . , ζj , j ≤ r, and for s ∈ [0, 1],

(3.8) |[ζ1, . . . , ζj , s] (K ′(φ)g1)| ≤ C6∥g1∥∞.

Then, since
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[ζ1, . . . , ζj , ζj+1, s] (K
′(φ)g1)

=
[ζ2, . . . , ζj , ζj+1, s] (K

′(φ)g1)− [ζ1, . . . , ζj , s] (K
′(φ)g1)

ζj+1 − ζ1
,

it follows that

|[ζ1, . . . , ζj , ζj+1, s] (K
′(φ)g1)| ≤

2C6

|ζj+1 − ζ1|
∥g1∥∞.

Since s ∈ [0, 1] is arbitrary, the proof of (3.1) is complete. The proofs
of (3.2) and (3.3) are similar. �

Lemma 3.2. Let r ≥ 0 and ζ1, . . . , ζr+1 be distinct points in (0, 1) and
g ∈ C[0, 1]. Then

sup
s∈[0,1]

|[ζ1, . . . , ζr+1, s, s] (K
′(φ)g)| ≤ C9∥g∥∞,

where C9 is a constant.

Proof. The proof is by induction. If s ̸= ζ1, then

[ζ1, s, s] (K
′(φ)g) =

∫ 1

0

[ζ1, s, s]ℓ∗(·, t) g(t) dt, s ∈ [0, 1].

Let

M6 = sup
{∣∣∣D(2,0)ℓ1,∗(s, t)

∣∣∣ : 0 ≤ t ≤ s ≤ 1
}
,

M7 = sup
{∣∣∣D(2,0)ℓ2,∗(s, t)

∣∣∣ : 0 ≤ s ≤ t ≤ 1
}
.

Fix s ∈ [0, 1].

Case 1. 0 ≤ s < ζ1. Note that

[ζ1, s, s]ℓ∗(·, t) =
[s, s]ℓ∗(·, t)− [ζ1, s]ℓ∗(·, t)

s− ζ1

=


∂ℓ1,∗(s,t)/∂s−(ℓ1,∗(s,t)−ℓ1,∗(ζ1,t))/(s−ζ1)

s−ζ1
0 ≤ t ≤ s,

∂ℓ2,∗(s,t)/∂s−(ℓ2,∗(s,t)−ℓ1,∗(ζ1,t))/(s−ζ1)
s−ζ1

s < t < ζ1,
∂ℓ2,∗(s,t)/∂s−(ℓ2,∗(s,t)−ℓ2,∗(ζ1,t))/(s−ζ1)

s−ζ1
ζ1 ≤ t ≤ 1.

The above function is possibly discontinuous at t = s.
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For 0 ≤ t ≤ s,

∂ℓ1,∗(s, t)/∂s− ℓ1,∗(s, t)− ℓ1,∗(ζ1, t)s− ζ1
s− ζ1

=
∂ℓ1,∗(s, t)/∂s− ∂ℓ1,∗(η3, t)∂s

s− ζ1

=
∂2ℓ1,∗(η4, t)/∂s

2(s− η3)

s− ζ1
,

where η3 ∈ (s, ζ1) and η4 ∈ (s, η3) ⊂ (s, ζ1). Hence,

(3.9) |[ζ1, s, s]ℓ∗(·, t)| ≤M6 if 0 ≤ t ≤ s.

In a similar manner, it follows that

(3.10) |[ζ1, s, s]ℓ∗(·, t)| ≤M7 if ζ1 ≤ t ≤ 1.

For s < t < ζ1, using (3.4), we obtain∣∣∣∣∂ℓ2,∗(s, t)∂s
− ℓ2,∗(s, t)− ℓ1,∗(ζ1, t)

s− ζ1

∣∣∣∣ ≤M4 + 2M5.

Hence,

∫ ζ1

s

∣∣∣∣∂ℓ2,∗(s, t)/∂s− ℓ2,∗(s, t)− ℓ1,∗(ζ1, t)/(s− ζ1)

s− ζ1

∣∣∣∣ dt ≤M4 + 2M5.

(3.11)

From (3.9)–(3.11), it follows that

|[ζ1, s, s] (K ′(φ)g)| =
∣∣∣∣ ∫ 1

0

[ζ1, s, s]ℓ∗(·, t) g(t) dt
∣∣∣∣

≤ (M4 + 2M5 +M6 +M7) ∥g∥∞.(3.12)

Case 2. s = ζ1. In this case, since g ∈ C[0, 1], using (2.11), we
obtain

[ζ1, ζ1, ζ1] (K
′(φ)g) =

1

2
(K ′(φ)g)

′′
(ζ1)

=
1

2

(
∂ℓ1,∗(ζ1, ζ1)

∂s
− ∂ℓ2,∗

∂s
(ζ1, ζ1)

)
g(ζ1)
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+
1

2

[ ∫ ζ1

0

∂2ℓ1,∗(ζ1, t)

∂s2
g(t) dt +

∫ 1

ζ1

∂2ℓ2,∗(ζ1, t)

∂s2
g(t) dt

]
.

Hence,

(3.13) |[ζ1, ζ1, ζ1] (K ′(φ)g)| ≤ M4 +M5 +M6 +M7

2
∥g∥∞.

Case 3. ζ1 < s ≤ 1. As in Case 1, it can be seen that

(3.14) |[ζ1, s, s] (K ′(φ)g)| ≤ (2M4 +M5 +M6 +M7) ∥g∥∞.

From (3.12)–(3.14), it follows that

sup
s∈[0,1]

|[ζ1, s, s] (K ′(φ)g)| ≤ (2M4 + 2M5 +M6 +M7) ∥g∥∞,

which proves the required estimate for the case r = 0.

Assume that, for any distinct ζ1, . . . , ζj , j ≤ r, and for s ∈ [0, 1],

|[ζ1, . . . , ζj , s, s] (K ′(φ)g)| ≤ C9∥g∥∞.

Then, since

[ζ1, . . . , ζj , ζj+1, s, s] (K
′(φ)g)

=
[ζ2, . . . , ζj , ζj+1, s, s] (K

′(φ)g)− [ζ1, . . . , ζj , s, s] (K
′(φ)g)

ζj+1 − ζ1
,

it follows that

|[ζ1, . . . , ζj , ζj+1, s, s] (K
′(φ)g)| ≤ 2C9

|ζj+1 − ζ1|
∥g∥∞.

This completes the proof. �

3.2. Interpolation at r + 1 Gauss points. We first prove a result
which will be used in obtaining the order of convergence of the modified
projection solution in subsection 4.1.

Proposition 3.3. Let α ≥ 2 and g ∈ Cα
∆. Then

∥(I −Qn)K
′(φ)(I −Qn)g∥∞ = O

(
hβ+2

)
.

Proof. If r = 0, then β = min{α, r + 1} = 1 and, by (2.19),

∥(I −Qn)K
′(φ)(I −Qn)g∥∞ ≤ C4∥ (K ′(φ)(I −Qn)g)

′ ∥∞h.
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Since the kernel ℓ∗ of the linear integral operator K ′(φ) is of the class
G(α, 0), by [5, Theorem 15],

∥ (K ′(φ)(I −Qn)g)
′ ∥∞ = O(h2).

Combining the above two estimates, we obtain the required estimate
for the case r = 0.

If r ≥ 1, then β ≥ 2. Recall from (2.12) that, if x ∈ C∆, then
K ′(φ)x ∈ C2

∆ and

∥(K ′(φ)x)(2)∥∞ ≤ C1∥x∥∞.

Hence, by (2.19),

∥(I −Qn)K
′(φ)x∥∞ ≤ C4∥ (K ′(φ)x)

(2) ∥∞h2 ≤ C1C4∥x∥∞h2.

As a consequence,

∥(I −Qn)K
′(φ)∥ = O(h2).

Since g ∈ Cα
∆, by (2.19),

∥(I −Qn)g∥∞ ≤ C4∥g(β)∥∞hβ .

The required result then follows from the above two estimates. �

The following lemma is crucial, and the proofs of many results which
follow will be based on it.

Lemma 3.4. Let g ∈ C∆. For a fixed s ∈ [0, 1], let ℓs(t) = ℓ∗(s, t),
t ∈ [0, 1]. Then

|K ′(φ)(I −Qn)g(s)| ≤ C10

( n∑
j=1

∥∥(I − Pn,j)
(
ℓsδ

r+1
j g

)∥∥
∞,∆j

)
hr+2,

where C10 is a constant independent of n.

Proof. For a fixed s ∈ [0, 1], we have

K ′(φ)(I −Qn)g(s) =

∫ 1

0

ℓ∗(s, t)(I −Qn)g(t) dt
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=
n∑

j=1

∫ tj

tj−1

ℓs(t)(I −Qn,j) g(t) dt =
n∑

j=1

⟨(I −Qn,j)g, ℓs⟩j .

Hence, by Lemma 2.3,

K ′(φ)(I −Qn)g(s) =
n∑

j=1

⟨(I − Pn,j)
(
ℓsδ

r+1
j g

)
, vj⟩j ,

where

vj(t) =

r+1∏
p=1

(t− τ jp ).

Using the fact that Pn,j is the orthogonal projection, we obtain

|K ′(φ)(I −Qn)g(s)| ≤
n∑

j=1

∣∣⟨(I − Pn,j)
(
ℓsδ

r+1
j g

)
, (I − Pn,j)vj⟩j

∣∣
≤

n∑
j=1

∥∥(I − Pn,j)
(
ℓsδ

r+1
j g

)∥∥
∞,∆j

× ∥(I − Pn,j)vj∥∞,∆j
hj .

From (2.21),

∥(I − Pn,j)vj∥∞,∆j ≤ C5∥(vj)(r+1)∥∞hr+1
j = C5(r + 1)!hr+1

j .

Hence,

|K ′(φ)(I−Qn)g(s)|≤C5(r + 1)!

( n∑
j=1

∥∥(I−Pn,j)
(
ℓsδ

r+1
j g

)∥∥
∞,∆j

)
hr+2,

which completes the proof with C10 = C5(r + 1)! . �

Below we prove two results which will be used in subsection 4.2
to obtain the order of convergence of the iterated modified projection
solution.

Proposition 3.5. Let r ≥ 0. Then

∥K ′(φ)(I −Qn)K
′(φ)∥ = O

(
hr+1

)
,(3.15)

∥K ′(φ)(I −Qn)K
′′(φ)∥ = O

(
hr+1

)
,(3.16)
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∥∥∥K ′(φ)(I −Qn)K
(3)(φ)

∥∥∥ = O
(
hr+1

)
.(3.17)

Proof. Let g ∈ C∆, and fix s ∈ [0, 1]. By Lemma 3.4,

|K ′(φ)(I −Qn)K
′(φ)g(s)|

≤ C10

( n∑
j=1

∥∥(I − Pn,j)
(
ℓsδ

r+1
j K ′(φ)g

)∥∥
∞,∆j

)
hr+2.

Recall that(
δr+1
j K ′(φ)g

)
(t) = [τ j1 , · · · , τ

j
r+1, t]K

′(φ)g, t ∈ ∆j .

Hence, by Lemma 3.1,∥∥δr+1
j K ′(φ)g

∥∥
∞,∆j

= sup
t∈∆j

∣∣(δr+1
j K ′(φ)g

)
(t)

∣∣ ≤ C6∥g∥∞.

Thus,

∥K ′(φ)(I −Qn)K
′(φ)g∥∞ ≤ C6C10(1 + sup

n,j
∥Pn,j∥)∥ℓ∗∥∞∥g∥∞hr+1.

Since, by (2.20), supn,j ∥Pn,j∥ <∞, we obtain

∥K ′(φ)(I−Qn)K
′(φ)∥ = sup

∥g∥∞≤1

∥K ′(φ)(I−Qn)K
′(φ)g∥∞ = O(hr+1).

This completes the proof of (3.15). The proofs of (3.16) and of (3.17)
are similar. �

Proposition 3.6. Let g ∈ Cα
∆ and r ≥ 0. Then

∥K ′(φ)(I −Qn)K
′(φ)(I −Qn)g∥∞ = O

(
hβ+r+2

)
.

Proof. Fix s ∈ [0, 1]. By Lemma 3.4,

|K ′(φ)(I −Qn)K
′(φ)(I −Qn)g(s)|

≤ C10

( n∑
j=1

∥∥(I − Pn,j)
(
ℓsδ

r+1
j K ′(φ)(I −Qn)g

)∥∥
∞,∆j

)
hr+2.
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Let s ∈ ∆i = [ti−1, ti], and let j ̸= i, Then ℓs ∈ Cα(∆j). Hence, by
(2.21), ∥∥(I − Pn,j)

(
ℓsδ

r+1
j K ′(φ)(I −Qn)g

)∥∥
∞,∆j

≤ C5∥(ℓs)′
(
δr+1
j K ′(φ)(I −Qn)g

)
+ ℓs(δ

r+1
j K ′(φ)(I −Qn)g)

′∥∞,∆jhj .

By Lemma 3.1 and estimate (2.19), we obtain

∥δr+1
j K ′(φ)(I −Qn)g∥∞,∆j ≤ C6∥(I −Qn)g∥∞,∆j ≤ C6C4∥g(β)∥∞hβ .

Similarly, by Lemma 3.2 and estimate (2.19), we obtain

∥(δr+1
j K ′(φ)(I −Qn)g)

′∥∞,∆j

= sup
t∈∆j

∣∣∣[τ j1 , . . . , τ jr+1, t, t]K
′(φ)(I −Qn)g

∣∣∣
≤ C9∥(I −Qn)g∥∞,∆j ≤ C9C4∥g(β)∥∞hβ .

Hence, for j ̸= i,∥∥(I − Pn,j)
(
ℓsδ

r+1
j K ′(φ)(I −Qn)g

)∥∥
∞,∆j

≤ C4C5(C6 + C9)∥g(β)∥∞hβ+1 = O(hβ+1).

On the other hand, by Lemma 3.1,∥∥(I − Pn,i)
(
ℓsδ

r+1
i K ′(φ)(I −Qn)g

)∥∥
∞,∆i

≤ (1 + ∥Pn,i∥)∥ℓ∗∥∞∥δr+1
i K ′(φ)(I −Qn)g∥∞,∆i

≤ C6(1 + sup
n

∥Pn,i∥)∥ℓ∗∥∞∥(I −Qn)g∥∞,∆i

≤ C4C6(1 + sup
n

∥Pn,i∥)∥ℓ∗∥∞∥g(β)∥∞hβ = O(hβ).

We thus obtain

|K ′(φ)(I −Qn)K
′(φ)(I −Qn)g(s)|

≤ C10

( n∑
j=1j ̸=i

∥∥(I − Pn,j)
(
ℓsδ

r+1
j K ′(φ)(I −Qn)g

)∥∥
∞,∆j

)
hr+2

+ C10

∥∥(I − Pn,i)
(
ℓsδ

r+1
i K ′(φ)(I −Qn)g

)∥∥
∞,∆i

hr+2 = O(hβ+r+2).

Since s ∈ [0, 1] is arbitrary, this completes the proof. �
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In the case of r = 0, since α ≥ 2, it follows that β = 1. From the
above proposition, we then obtain ∥K ′(φ)(I−Qn)K

′(φ)(I−Qn)g∥∞ =
O(h3). We now show that, if α ≥ 4, then the above order of convergence
can be improved to h4.

3.3. Interpolation at midpoints. Let P0,∆ be the space of piecewise
constant functions with respect to the partition ∆ defined in subsec-
tion 2.2, and let

τ j =
tj−1 + tj

2
, 1 ≤ j ≤ n,

be the collocation points. Let Qn : C∆ → P0,∆ be the interpolatory
projection defined as follows:

(3.18) Qnx ∈ P0,∆, (Qnx)(τ
j) = x(τ j), 1 ≤ j ≤ n.

The proof of the following Proposition consists of writing the Taylor
series expansions for the kernel of the linear integral operator K ′(φ)
and for the function K ′(φ)(I −Qn)g about τ j and using the fact that
τ j is the midpoint of [tj−1, tj ].

Proposition 3.7. Let α ≥ 4 and g ∈ C2
∆. Let Qn be the interpolatory

projection defined in (3.18). Then

∥K ′(φ)(I −Qn)K
′(φ)(I −Qn)g∥∞ = O(h4)(3.19)

and ∥∥K ′(φ)(I −Qn)K
′′(φ)(Qnφ− φ)2

∥∥
∞ = O(h4).(3.20)

Proof. Fix s ∈ [0, 1], and let s ∈ ∆i = [ti−1, ti] for some i. Then

K ′(φ)(I −Qn)K
′(φ)(I −Qn)g(s)(3.21)

=
i−1∑
j=1

∫ tj

tj−1

ℓ∗(s, t)(I −Qn,j)K
′(φ)(I −Qn)g(t) dt

+

∫ ti

ti−1

ℓ∗(s, t)(I −Qn,i)K
′(φ)(I −Qn)g(t) dt

+
n∑

j=i+1

∫ tj

tj−1

ℓ∗(s, t)(I −Qn,j)K
′(φ)(I −Qn)g(t) dt.
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Case 1. j ≤ i− 1. If t ∈ [tj−1, tj ], then t ≤ s, and hence∫ tj

tj−1

ℓ∗(s, t)(I −Qn,j)K
′(φ)(I −Qn)g(t) dt

=

∫ tj

tj−1

ℓ1,∗(s, t)
[
(K ′(φ)(I −Qn)g) (t)− (K ′(φ)(I −Qn)g) (τ

j)
]
dt.

Since α ≥ 4, it follows that K ′(φ)(I − Qn)g ∈ C4
∆. On writing the

Taylor series expansions for ℓ1,∗(s, ·) and for K ′(φ)(I − Qn)g about
t = τ j , we obtain∫ tj

tj−1

ℓ∗(s, t)(I −Qn,j)K
′(φ)(I −Qn) g(t) dt

=

∫ tj

tj−1

[
ℓ1,∗(s, τ

j) +
∂ℓ1,∗
∂t

(s, ηj)(t− τ j)

]

×
[ 3∑

p=1

(K ′(φ)(I −Qn)g)
(p)

(τ j)
(t− τ j)p

p!

]
dt

+

∫ tj

tj−1

[
ℓ1,∗(s, τ

j) +
∂ℓ1,∗
∂t

(s, ηj)(t− τ j)

]
×
[
(K ′(φ)(I −Qn)g)

(4)
(ξj)

(t− τ j)4

24

]
dt,

where ηj , ξj ∈ (tj−1, tj).

Since ∫ tj

tj−1

(t− τ j) dt =

∫ tj

tj−1

(t− τ j)3 dt = 0,

we obtain∫ tj

tj−1

ℓ∗(s, t)(I −Qn,j)K
′(φ)(I −Qn) g(t) dt

= ℓ1,∗(s, τ
j) (K ′(φ)(I −Qn)g)

′′
(τ j)

∫ tj

tj−1

(t− τ j)2

2
dt

+

3∑
p=1

(K ′(φ)(I −Qn)g)
(p)

(τ j)

∫ tj

tj−1

∂ℓ1,∗
∂t

(s, ηj)
(t− τ j)p+1

p!
dt



246 REKHA P. KULKARNI AND T.J. NIDHIN

+

∫ tj

tj−1

[
ℓ1,∗(s, τ

j) +
∂ℓ1,∗
∂t

(s, ηj)(t− τ j)

]
×

[
(K ′(φ)(I −Qn)g)

(4)(ξj)
(t− τ j)4

24
] dt.

Thus, ∣∣∣∣ ∫ tj

tj−1

ℓ∗(s, t)(I −Qn,j)K
′(φ)(I −Qn)g(t) dt

∣∣∣∣(3.22)

≤ ∥ℓ1,∗∥∞
∣∣K ′(φ)(I −Qn)g)

′′(τ j)
∣∣ h3j
24

+ ∥D0,1ℓ1,∗∥∞
3∑

p=1

∣∣∣(K ′(φ)(I −Qn)g)
(p)

(τ j)
∣∣∣ hp+2

j

p!

+
(
∥ℓ1,∗∥∞ + ∥D0,1ℓ1,∗∥∞hj

)
× ∥ (K ′(φ)(I −Qn)g)

(4) ∥∞,∆j

h5j
24
,

where

∥ℓ1,∗∥∞ = sup{|ℓ1,∗(s, t)| : (s, t) ∈ Ω1},
∥D0,1ℓ1,∗∥∞ = sup{|D0,1ℓ1,∗(s, t)| : (s, t) ∈ Ω1}.

Since (I −Qn)g ∈ C∆, τ
j /∈ ∆ and (I −Qn)g(τ

j) = 0, using equations
(2.10) and (2.11), we obtain

(K ′(φ)(I −Qn)g)
′
(τ j) =

∫ τj

0

∂ℓ1,∗
∂s

(τ j , t)(I −Qn) g(t) dt

+

∫ 1

τj

∂ℓ2,∗
∂s

(τ j , t)(I −Qn) g(t) dt,

and

(K ′(φ)(I −Qn)g)
′′
(τ j) =

∫ τj

0

∂2ℓ1,∗
∂s2

(τ j , t)(I −Qn) g(t) dt

+

∫ 1

τj

∂2ℓ2,∗
∂s2

(τ j , t)(I −Qn) g(t) dt.
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Since ℓ∗ ∈ G(α, 0) and g ∈ C2
∆, using the technique used in [5, Theorem

15], we obtain the following estimates.∣∣∣(K ′(φ)(I −Qn)g)
′
(τ j)

∣∣∣ = O(h2),(3.23) ∣∣∣(K ′(φ)(I −Qn)g)
′′
(τ j)

∣∣∣ = O(h2).

Using (2.14), we deduce the following estimates:∣∣∣(K ′(φ)(I −Qn)g)
(3)(τ j)

∣∣∣ ≤ C3(∥(I −Qn)g∥∞ + ∥((I −Qn)g)
′∥∞)

≤ C3 (1 + ∥Qn|C∆∥) (∥g∥∞ + ∥g′∥∞)

and

∥(K ′(φ)(I −Qn)u)
(4)∥∞,∆j

≤ C3 (1 + ∥Qn|C∆∥) (∥g∥∞ + ∥g′∥∞ + ∥g′′∥∞) .

Since, by (2.16), supn ∥Qn|C∆∥ < ∞, it follows that the above two
quantities are bounded by a constant independent of n. Thus, using
estimates (3.22) and (3.23), we obtain

(3.24)

∣∣∣∣∣
∫ tj

tj−1

ℓ∗(s, t)(I −Qn)K
′(φ)(I −Qn)u(t) dt

∣∣∣∣∣ = O(h5).

Case 2. j = i. In this case,∫ ti

ti−1

ℓ∗(s, t)(I −Qn,i)K
′(φ)(I −Qn) g(t) dt

=

∫ ti

ti−1

ℓ∗(s, t)
[
K ′(φ)(I −Qn)g(t)−K ′(φ)(I −Qn)g(τ

i)
]
dt

=

∫ ti

ti−1

ℓ∗(s, t) (K
′(φ)(I −Qn)g)

′
(ξi)(t− τ i) dt,

where ξi ∈ (ti−1, ti).

By [5, Theorem 15],

|(K ′(φ)(I −Qn)g)
′(ξi)| ≤ sup

t∈[ti−1,ti]

|K ′(φ)(I −Qn)g)
′(t)| = O(h2).
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Hence,

(3.25)

∣∣∣∣ ∫ ti

ti−1

ℓ∗(µ, t)(I −Qn)K
′(φ)(I −Qn)g(t) dt

∣∣∣∣ = O(h4).

Case 3. j ≥ i+ 1.

Note that, if t ∈ [tj−1, tj ], then t ≥ s. Hence, ℓ∗(s, t) = ℓ2,∗(s, t). As
in Case 1, it follows that

(3.26)

∣∣∣∣ ∫ tj

tj−1

ℓ∗(s, t)(I −Qn)K
′(φ)(I −Qn)u(t) dt

∣∣∣∣ = O(h5).

Estimate (3.19) follows from (3.21), (3.24), (3.25) and (3.26). The proof
of (3.20) is similar. �

4. Orders of convergence. We now obtain the orders of conver-
gence of the modified projection solution φM

n and of the iterated mod-
ified projection solution φ̃M

n .

4.1. Modified projection method. We first prove the following
result that is needed in the proof of the Theorem 4.2, which is the
main theorem in this section.

Lemma 4.1. Let r ≥ 0. Then

∥(I −Qn) [K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)] ∥∞ = O(h2β+1).

Proof. Let n0 be a positive integer such that n ≥ n0 implies that
Qnφ ∈ B(φ, δ0). Then, by Taylor’s theorem,

K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)

=
1

2
K ′′(φ)(Qnφ− φ)2 +R(Qnφ− φ),

where

R(Qnφ− φ)(s)

=

∫ 1

0

[
K(3) (φ+ θ(Qnφ− φ)) (Qnφ− φ)3

]
(s)

(1− θ)2

2
dθ, s ∈ [0, 1].

Recall from (2.7) that
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[
K(3) (φ+ θ(Qnφ− φ)) (Qnφ− φ)3

]
(s)

=

∫ 1

0

∂3κ(s, t, φ(t) + θ(Qnφ− φ)(t))

∂u3
(Qnφ− φ)3(t) dt.

Then∣∣∣[K(3) (φ+ θ(Qnφ− φ)) (Qnφ− φ)3
]
(s)

∣∣∣
≤ sup

s,t∈[0,1]
|u|≤∥φ∥∞+δ0

∣∣∣∣∂3κ∂u3
(s, t, u)

∣∣∣∣∥Qnφ− φ∥3∞.

Hence, using the notation introduced in (2.27),∥∥∥K(3) (φ+ θ(Qnφ− φ)) (Qnφ− φ)3
∥∥∥
∞

≤M2∥Qnφ− φ∥3∞.

As a consequence,

∥R(Qnφ− φ)∥∞ ≤ 1

6
M2∥Qnφ− φ∥3∞.

Note that

(I −Qn) [K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)](4.1)

=
1

2
(I −Qn)K

′′(φ)(Qnφ− φ)2

+ (I −Qn)R(Qnφ− φ).

By (2.4), φ ∈ Cα[0, 1]. Hence, using (2.19), we obtain

(4.2) ∥Qnφ− φ∥∞ ≤ C4∥φ(β)∥∞hβ .

Since Qnφ− φ ∈ C∆, it follows that K
′′(φ)(Qnφ− φ)2 ∈ C2

∆. Hence,

∥(I −Qn)K
′′(φ)(Qnφ− φ)2∥∞ ≤ C4∥

(
K ′′(φ)(Qnφ− φ)2

)′ ∥∞h.
By (2.13),

∥
(
K ′′(φ)(Qnφ− φ)2

)′ ∥∞ ≤ C2∥Qnφ− φ∥2∞.

Hence, using (4.2), we obtain

(4.3) ∥(I −Qn)K
′′(φ)(Qnφ− φ)2∥∞ ≤ C2(C4)

3∥φ(β)∥2∞h2β+1.
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On the other hand,

∥(I −Qn)R(Qnφ− φ)∥∞ ≤ 1

6
(1 + ∥Qn|C∆∥)M2∥Qnφ− φ∥3∞.

Since, by (2.16), supn ∥Qn|C∆
∥ <∞, it follows that

(4.4) ∥(I −Qn)R(Qnφ− φ)∥∞ = O(h3β).

As β ≥ 1, the required estimate follows from (4.1), (4.3) and (4.4). �

Theorem 4.2. Let α ≥ 2, and let the kernel κ of the Urysohn integral
operator K defined by (2.1) satisfy the assumptions (H1), (H2) and (H3)
in subsection 2.1. Let f ∈ Cα[0, 1] and φ be the unique solution of (2.3).
Assume that 1 is not an eigenvalue of K ′(φ). Let r ≥ 0 and Pr,∆ be
the space of piecewise polynomials of degree ≤ r with respect to a quasi-
uniform partition defined in subsection 2.2. Let Qn : C∆ → Pr,∆ be
the interpolatory projection defined by (2.15). Let φM

n be the unique
solution of (2.24) in a neighborhood B(φ, δ0) of φ. Then

∥φM
n − φ∥∞ = O(hβ+2).

Proof. Using Theorem 2.5 and Proposition 2.6 we get

∥φM
n − φ∥∞ ≤ 2∥

(
I −

(
KM

n

)′
(φ)

)−1 [
K(φ)−KM

n (φ)
]
∥∞

≤ 4∥ (I −K ′(φ))
−1 ∥∥

[
K(φ)−KM

n (φ)
]
∥∞.

Consider

K(φ)−KM
n (φ) = (I −Qn)(K(φ)−K(Qnφ))

(4.5)

= −(I −Qn) [K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)]

+ (I −Qn)K
′(φ)(I −Qn)φ.

Note that φ ∈ Cα[0, 1]. By Lemma 4.1,

∥(I −Qn) [K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)] ∥∞ = O(h2β+1)

and, by Proposition 3.3,

∥(I −Qn)K
′(φ)(I −Qn)φ∥∞ = O(hβ+2).

Since β = min{α, r + 1} ≥ 1, the desired estimate follows. �
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4.2. Iterated modified projection method. In this section, we
prove our main result. We show that the order of convergence in the
iterated modified method is higher than those in the collocation and in
the iterated collocation/modified projection methods. We prove below
a series of results which are needed in the proof of our main theorem.
From now on, we assume that n0 is a positive integer such that n ≥ n0
implies that Qnφ ∈ B(φ, δ0).

Lemma 4.3. If α ≥ 4 and r = 0, then

∥K ′(φ)(I−Qn)[K(Qnφ)−K(φ)−K ′(φ)(Qnφ−φ)]∥∞ = O(h4).

If α ≥ 2 and r ≥ 1, then

∥K ′(φ)(I−Qn)[K(Qnφ)−K(φ)−K ′(φ)(Qnφ−φ)]∥∞ = O(h3β).

Proof. By Taylor’s theorem,

K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)

=
1

2
K ′′(φ)(Qnφ− φ)2 +

1

6
K(3)(φ)(Qnφ− φ)3 +R(Qnφ− φ),

where

R(Qnφ− φ)(s)

=

∫ 1

0

[
K(4) (φ+ θ(Qnφ− φ)) (Qnφ− φ)4

]
(s)

(1− θ)3

6
dθ, s ∈ [0, 1].

Recall from (2.8) that[
K(4) (φ+ θ(Qnφ− φ)) (Qnφ− φ)4

]
(s)

=

∫ 1

0

∂4κ(s, t, φ(t) + θ(Qnφ− φ)(t))

∂u4
(Qnφ− φ)4(t) dt.

Then∣∣∣[K(4) (φ+ θ(Qnφ− φ)) (Qnφ− φ)4
]
(s)

∣∣∣
≤ sup

s,t∈[0,1]
|u|≤∥φ∥∞+δ0

∣∣∣∣∂4κ∂u4
(s, t, u)

∣∣∣∣∥Qnφ− φ∥4∞.
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Hence, using the notation introduced in (2.28),∥∥∥K(4) (φ+ θ(Qnφ− φ)) (Qnφ− φ)4
∥∥∥
∞

≤M3∥Qnφ− φ∥4∞.

As a consequence,

∥R(Qnφ− φ)∥∞ ≤ 1

24
M3∥Qnφ− φ∥4∞.

Note that

K ′(φ)(I −Qn) [K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)](4.6)

=
1

2
K ′(φ)(I −Qn)K

′′(φ)(Qnφ− φ)2

+
1

6
K ′(φ)(I −Qn)K

(3)(φ)(Qnφ− φ)3

+K ′(φ)(I −Qn)R(Qnφ− φ).

Recall from (4.2) that ∥Qnφ − φ∥∞ = O(hβ). If r = 0, then, by
Proposition 3.7,

(4.7) ∥K ′(φ)(I −Qn)K
′′(φ)(Qnφ− φ)2∥∞ = O(h4),

whereas if r ≥ 1, then, by Proposition 3.5,

(4.8) ∥K ′(φ)(I −Qn)K
′′(φ)(Qnφ− φ)2∥∞

≤ ∥K ′(φ)(I −Qn)K
′′(φ)∥∥Qnφ− φ∥2∞ = O(h2β+r+1)

and

(4.9) ∥K ′(φ)(I −Qn)K
(3)(φ)(Qnφ− φ)3∥∞ = O(h3β+r+1).

Since, by (2.16), supn ∥Qn|C∆∥ <∞, we get

∥K ′(φ)(I −Qn)R(Qnφ− φ)∥∞(4.10)

≤ ∥K ′(φ)∥(1 + sup
n

∥Qn|C∆)∥R(Qnφ− φ)∥∞ = O(h4β).

The required estimates follow from (4.6)–(4.10). �

Lemma 4.4. If α ≥ 4 and r = 0, then

∥K ′(φ)
[
K(φ)−KM

n (φ)
]
∥∞ = O(h4),
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and, if α ≥ 2 and r ≥ 1, then

∥K ′(φ)
[
K(φ)−KM

n (φ)
]
∥∞ = O(h2β+1).

Proof. Using the expression (4.5) forK(φ)−KM
n (φ), we deduce that

∥K ′(φ)
[
K(φ)−KM

n (φ)
]
∥∞

≤ ∥K ′(φ)(I −Qn) [K(Qnφ)−K(φ)−K ′(φ)(Qnφ− φ)] ∥∞
+ ∥K ′(φ)(I −Qn)K

′(φ)(I −Qn)φ∥∞.

The desired estimates follow from Proposition 3.6, Proposition 3.7 and
Lemma 4.3. �

Lemma 4.5. Let α ≥ 2 and r ≥ 0. Then

∥K ′(φ)((KM
n )′(φ)−K ′(φ))(φ− φM

n )∥∞ = O(h2β+2).

Proof. Note that

K ′(φ)((KM
n )′(φ)−K ′(φ))

= −K ′(φ)(I −Qn)K
′(φ) +K ′(φ)(I −Qn)K

′(Qnφ)Qn.

By Proposition 3.5,

(4.11) ∥K ′(φ)(I −Qn)K
′(φ)∥ = O(hr+1).

On the other hand,

K ′(φ)(I −Qn)K
′(Qnφ)Qn

= K ′(φ)(I −Qn)(K
′(Qnφ)−K ′(φ))Qn +K ′(φ)(I −Qn)K

′(φ)Qn.

Since K ′ is Lipschitz in B(φ, δ0), by (2.2),

∥K ′(Qnφ)−K ′(φ)∥ ≤ γ∥Qnφ− φ∥∞.

Hence, by (2.16) and (4.2),

(4.12) ∥K ′(φ)(I −Qn)(K
′(Qnφ)−K ′(φ))Qn∥

≤ ∥K ′(φ)∥
(
∥Qn|C∆∥+ ∥Qn|C∆∥2

)
γ∥Qnφ− φ∥∞ = O(hβ).

Using (4.11) and (4.12), we deduce that

∥K ′(φ)((KM
n )′(φ)−K ′(φ))∥ = O(hβ).
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Since, by Theorem 4.2, ∥φM
n − φ∥∞ = O(hβ+2), the desired estimate

follows. �

We now prove our main result.

Theorem 4.6. Let α ≥ 2, and let the kernel κ of the Urysohn integral
operator K defined by (2.1) satisfy assumptions (H1), (H2) and (H3) in
subsection 2.1. Let f ∈ Cα[0, 1] and φ be the unique solution of (2.3).
Assume that 1 is not an eigenvalue of K ′(φ). Let r ≥ 0 and Pr,∆

be the space of piecewise polynomials of degree ≤ r with respect to a
quasi-uniform partition defined in subsection 2.2. Let Qn : C∆ → Pr,∆

be the interpolatory projection defined by (2.15). Let φM
n be the unique

solution of (2.24) in a neighborhood B(φ, δ0) of φ and φ̃M
n be defined

by (2.26).

If α ≥ 4 and r = 0, then

(4.13) ∥φ̃M
n − φ∥∞ = O(h4).

If α ≥ 2 and r ≥ 1, then

(4.14) ∥φ̃M
n − φ∥∞ = O(h2β+1).

Proof. Since φ = K(φ) + f and φ̃M
n = K(φM

n ) + f , we obtain

(4.15) φ̃M
n − φ = K(φM

n )−K(φ).

By Taylor’s theorem,

(4.16) K(φM
n )−K(φ) = K ′(φ)(φM

n − φ) +R(φM
n − φ)

with

(R(φM
n − φ))(s)

=

∫ 1

0

(1− θ)
[
K ′′(φ+ θ(φM

n − φ))(φM
n − φ)2

]
(s) dθ, s ∈ [0, 1].

Since(
K ′′(φ+ θ(φM

n − φ))(φM
n − φ)2

)
(s)∫ 1

0

∂2κ

∂u2
(
s, t, φ(t) + θ(φM

n (t)− φ(t)
) (
φM
n − φ

)2
dt,
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we obtain∣∣(K ′′(φ+ θ(φM
n − φ))(φM

n − φ)2
)
(s)

∣∣
≤ sup

s,t∈[0,1]
|u|≤∥φ∥∞+δ0

∣∣∣∣∂2κ∂u2
(s, t, u)

∣∣∣∣∥φM
n − φ∥2.

Hence, using the notation introduced in (2.27),∥∥(K ′′(φ+ θ(φM
n − φ))(φM

n − φ)2
)∥∥

∞ ≤M1∥φM
n − φ∥2.

Since, by Theorem 4.2, ∥φM
n − φ∥∞ = O(hβ+2), it follows that

(4.17) ∥R(φM
n − φ)∥∞ = O(h2β+4).

From [8, Theorem 3.5],

K ′(φ)(φM
n − φ)

= −(I−K ′(φ))−1K ′(φ)
[
K(φ)−K ′(φ)φ−KM

n (φM
n ) +K ′(φ)φM

n

]
.

We write

K ′(φ)(φM
n − φ)

= −(I −K ′(φ))−1K ′(φ)
[
K(φ)−KM

n (φ)
]
+ (I −K ′(φ))−1K ′(φ)[

KM
n (φM

n )−KM
n (φ)− (KM

n )′(φ)(φM
n − φ)

]
+ (I −K ′(φ))−1K ′(φ)

[
((KM

n )′(φ)−K ′(φ))(φM
n − φ)

]
.

By Lemma 4.4, if r = 0, then the first term in the above expression is
of the order of h4 and, if r ≥ 1, then it is of the order of h2β+1. From
[8, Lemma 3.3],

∥KM
n (φM

n )−KM
n (φ)− (KM

n )′(φ)(φM
n − φ)∥∞ = O(∥φM

n − φ∥2∞).

Hence, the second term is of the order of h2β+4. Lastly, by Lemma 4.5,
the third term is of the order of h2β+2. Thus, if r = 0, then

(4.18) ∥K ′(φ)(φM
n − φ)∥∞ = O(h4)

and if r ≥ 1, then

(4.19) ∥K ′(φ)(φM
n − φ)∥∞ = O(h2β+1).
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It follows from (4.15)–(4.19) that, if r = 0, then

∥φ̃M
n − φ∥∞ = ∥K(φM

n )−K(φ)∥∞ = O(h4),

and, if r ≥ 1, then

∥φ̃M
n − φ∥∞ = O(h2β+1),

which completes the proof. �

Remark 4.7. First consider the case when r = 0. If α ≥ 2, then recall
from (2.22) and (2.23) that

(4.20) ∥φC
n − φ∥∞ = O(h), ∥φS

n − φ∥∞ = O(h2).

On the other hand, if α ≥ 4, then, from Theorem 4.2 and Theorem 4.6,
we obtain

(4.21) ∥φM
n − φ∥∞ = O(h3), ∥φ̃M

n − φ∥∞ = O(h4).

Thus, the sequence {φM
n } converges faster to the exact solution φ than

does the sequence {φS
n}, and the sequence {φ̃M

n } converges faster than
does the sequence {φM

n }. The above orders of convergence are validated
by numerical results in Table 1.

Next let r ≥ 1. If α ≥ r + 3, then from (2.22) and (2.23), we obtain

(4.22) ∥φC
n − φ∥∞ = O(hr+1), ∥φS

n − φ∥∞ = O(hr+3).

On the other hand, if α ≥ r + 1, then from Theorems 4.2 and 4.6, we
obtain

(4.23) ∥φM
n − φ∥∞ = O(hr+3), ∥φ̃M

n − φ∥∞ = O(h2r+3).

The above orders of convergence are validated for the case r = 1 in
Table 1.

Note that the improvement in the order of convergence in the
iterated collocation method as compared to the collocation method is
at most 2, irrespective of the value of r. On the other hand, the order
of convergence r+ 3 in the modified projection method is improved to
2r + 3 by one step of iteration.

5. Numerical results. We validate the convergence results that
were obtained in Theorems 4.2 and 4.6 by the following numerical
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example from [4]. For comparison, the corresponding results for the
collocation and the iterated collocation methods are also given.

Consider

(5.1) x(s)−
∫ 1

0

κ(s, t) [f(t, x(t)] dt =

∫ 1

0

κ(s, t)z(t) dt, 0 ≤ s ≤ 1,

where

κ(s, t) =

{
(1− s)t 0 ≤ t ≤ s ≤ 1,

s(1− t) 0 ≤ s ≤ t ≤ 1,

and

f(t, u) =
1

1 + t+ u

with z(t) so chosen that

φ(t) =
t(1− t)

t+ 1

is the solution of (5.1).

In this example, α can be chosen as large as we want, and hence,
β = r + 1. Consider the following uniform partition of [0, 1]:

(5.2) ∆ : 0 <
1

n
<

2

n
< · · · < n

n
= 1.

5.1. Interpolation at mid-points: r = 0. Let P0,∆ be the space of
piecewise constant polynomials with respect to the partition (5.2). Let

τ j =
2j − 1

2n
, 1 ≤ j ≤ n,

and
Qn : C∆ −→ P0,∆

be the interpolatory projection defined by (Qnx)(τ
j) = x(τ j), 1 ≤ j ≤

n. Recall from (4.20) that the expected orders of convergence in the
collocation and the iterated collocation methods are, respectively, 1
and 2. From (4.21), we see that the expected orders of convergence in
the modified projection and the iterated modified projection methods
are, respectively, 3 and 4.
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Table 1

n ∥φ− φC
n ∥∞ δC ∥φ− φS

n∥∞ δS
2 1.50× 10−1 1.30× 10−3

4 9.54× 10−2 0.65 2.31× 10−4 2.49
6 6.87× 10−2 0.81 1.02× 10−4 2.01
8 5.34× 10−2 0.88 5.81× 10−5 1.95
10 4.35× 10−2 0.92 3.67× 10−5 2.07
12 3.66× 10−2 0.95 2.59× 10−5 1.90

n ∥φ− φM
n ∥∞ δM ∥φ− φ̃M

n ∥∞ δIM
2 1.31× 10−3 1.31× 10−3

4 1.68× 10−4 2.97 7.77× 10−5 4.07
6 5.71× 10−5 2.66 1.47× 10−5 4.10
8 2.62× 10−5 2.71 4.76× 10−6 3.92
10 1.37× 10−5 2.90 1.87× 10−6 4.19
12 8.22× 10−6 2.80 9.52× 10−7 3.69

Table 2

n ∥φ− φG
n ∥∞ δG ∥φ− φS

n∥∞ δS
2 5.49× 10−2 1.25× 10−3

4 1.58× 10−2 1.80 8.80× 10−5 3.82
6 7.39× 10−3 1.87 1.79× 10−5 3.92
8 4.23× 10−3 1.94 6.24× 10−6 3.66
10 2.71× 10−3 2.00 2.27× 10−6 4.54

n ∥φ− φM
n ∥∞ δM ∥φ− φ̃M

n ∥∞ δIM
2 3.53× 10−4 3.33× 10−4

4 1.36× 10−5 4.70 4.76× 10−6 6.12
6 2.87× 10−6 3.83 4.22× 10−7 5.97
8 1.00× 10−6 3.64 7.38× 10−8 6.06
10 4.31× 10−7 3.79 1.87× 10−8 6.16

The numerical quadrature in the computations needs to be so chosen
as to preserve the above orders of convergence. As the kernel is only
continuous, the order of convergence in the composite Gauss 2 point
rule with respect to the partition (5.2) gets reduced from h4 to h2.
Hence, in order to retain the order of convergence h4, we choose
the Gauss 2 point rule with respect to a uniform partition with n2

subintervals.
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In Table 1, δC , δS , δM and δIM denote the computed orders of
convergence in the collocation, the iterated collocation, the modified
projection and the iterated modified projection methods, respectively.
It can be seen that the computed values of order of convergence match
well with the theoretically predicted values.

5.2. Interpolation at Gauss 2 points: r = 1. Let P1,∆ be the space
of piecewise linear polynomials with respect to the partition (5.2). The
Gauss 2 points in [(j − 1)/n, j/n] are given by

τ j1 =
2j − 1

2n
− 1

2n

1√
3

and

τ j2 =
2j − 1

2n
+

1

2n

1√
3
, 1 ≤ j ≤ n.

Let Qn : C∆ → P1,∆ be the interpolatory projection defined by

(Qnx)(τ
j
1 ) = x(τ j1 ), (Qnx)(τ

j
2 ) = x(τ j2 ), 1 ≤ j ≤ n.

Recall from equation (4.22) that the expected orders of convergence in
the collocation and the iterated collocation methods are, respectively,
2 and 4. From (4.23), we see that the expected orders of convergence in
the modified projection and the iterated modified projection methods
are, respectively, 4 and 5.

In the collocation and the iterated collocation methods, the Gauss 2
point rule with n2 subintervals is chosen, whereas in the modified
projection and the iterated modified projection methods, the Gauss 2
point rule with n3 subintervals, which has the order of convergence h6,
is chosen.

It can be seen from Table 2 that computed orders of convergence
in the collocation, the iterated collocation and the modified projection
methods match with the theoretically predicted values. However, in the
case of the iterated modified projection method, the computed order of
convergence seems to be better than the theoretically predicted value.

6. Conclusion. We consider modified projection and iterated modi-
fied projection methods for approximate solutions of a Urysohn integral
equation. The kernel of the integral operator is of the type of Green’s
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function, and the projection is chosen to be an interpolatory projec-
tion at r + 1 Gauss points. The main contribution of this paper is
Theorem 4.6, in which the order of convergence of the iterated mod-
ified projection solution φ̃M

n is obtained. This result shows that the
sequence {φ̃M

n } converges faster to the exact solution φ than does the
sequence {φS

n} obtained in the iterated collocation method. It is to be
noted that the size of the system of equations that must be solved in
implementing the iterated modified projection remains the same as for
the iterated collocation method.
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