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ABSTRACT. Existence of solutions is shown for equa-
tions of the type Av + B(KGv, v) = f , where A, B and G
are possibly nonlinear operators acting on a Banach space V ,
and K is a Volterra operator of convolution type. The proof
relies on the convergence of a suitable time discretization
scheme.

1. Introduction. We are concerned with nonlinear Volterra equa-
tions of the type

Av +B(KGv, v) = f in (0, T ),(1.1a)

with

(KGv)(t) = u0 +

∫ t

0

k(t− s)Gv(s) ds,(1.1b)

where (0, T ) is the time interval under consideration and where u0

and f are given data of the problem. Let V be a real, reflexive,
separable Banach space with its dual V ′. The operator A : V → V ′ is
assumed to be hemicontinuous, monotone and p-coercive, the operator
B : V × V → V ′ is strongly continuous and satisfies a certain growth
condition, and the operator G : V → V is weakly continuous with
linear growth.
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Let us briefly discuss the type of integral kernels k we have in mind.
The simplest case is k ≡ 1. Problem (1.1) can then be written as

AG−1(u− u0)
′ +B(u,G−1(u− u0)

′) = f in (0, T ),

if G is invertible (the prime ′ denotes the time derivative). Problems
of this type have been studied in Bauzet and Vallet [1] as well as in
Emmrich and Vallet [6]. Such problems of Barenblatt type arise in the
description of nonlinear and anomalous diffusion. A typical kernel that
arises in many applications is a kernel of exponential type k(z) ∼ e−λz

(λ > 0). Problem (1.1) then reads as

Av +B(u, v) = f in (0, T )

with

(u− u0)
′ + λ(u− u0) = Gv.

Another typical example is a weakly singular kernel k(z) ∼ z−1+α

with α ∈ (0, 1). This corresponds to the Riemann-Liouville fractional
integral

(Jαw)(t) =
1

Γ(α)

∫ t

0

(t− s)−1+αw(s) ds, t ∈ [0, T ].

The Riemann-Liouville fractional derivative is then defined by Dβu =
D1J1−βu (β ∈ (0, 1); D1 denotes the full time derivative), and one
easily finds that DαJαu = u (α ∈ (0, 1)). For more details and
applications, we refer to Diethelm [5], Hilfer [8], Kilbas, et al., [9],
Podlubny [12]; see also Lubich [10, 11] and the references cited therein
for numerical aspects. Problem (1.1) can then also be written as

Av +B(u, v) = f in (0, T )

with

Dα(u− u0) = Gv.

Later we shall need that k ∈ Lp′
(0, T ), where p is the Lebesgue

exponent determining the coercivity of A and p′ denotes the conjugate
exponent to p.

Abstract nonlinear Volterra equations have been studied by many
authors, we refer to the monographs Gripenberg, et al. [7] and
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Prüß [13] and the references cited therein as well as to Corduneanu [2,
3]. It is worth mentioning that our results do not require any positivity
assumption on the kernel (often, kernels of positive type or completely
monotone kernels are considered), and we may also allow kernels of the
type k(z) ∼ e−λz cos z or k being the difference of two weakly singular
kernels. Moreover, the problem under consideration here differs from
results known on nonlinear Volterra equations insofar as both the op-
erators A and B may be nonlinear and as the operator B describes a
nonlinear coupling.

The method for proving existence of a solution is based on a time
discretization. Let us consider an equidistant time grid with abscissae
tn = nτ (n = 0, 1, . . . , N ∈ N) and constant step size τ = T/N . We
look for approximations vn ≈ v(tn) such that

(1.2a) Avn +B (un, vn) = fn, n = 1, 2, . . . , N,

with

un = u0 + τ

n∑
j=1

γn−j+1Gvj , γi =
1

τ

∫ ti

ti−1

k(s) ds (i = 1, 2, . . . , N),

where u0 ≈ u0 and {fn}Nn=1 ≈ f are given approximations. This
discretization is implicit in the first argument of B.

The idea behind the numerical scheme above is a simple product
quadrature. For t ∈ (tn−1, tn], we employ the approximation∫ t

0

k(t− s)w(s) ds ≈
∫ tn

0

k(tn − s)w(s) ds =
n∑

j=1

∫ tj

tj−1

k(tn − s)w(s) ds

≈
n∑

j=1

∫ tj

tj−1

k(tn − s) dsw(tj) =: τ
n∑

j=1

γn−j+1 w(tj),

where

γn−j+1=
1

τ

∫ tj

tj−1

k(tn − s) ds=
1

τ

∫ tn−j+1

tn−j

k(s) ds=

∫ 1

0

k((n− j+ σ)τ) dσ.

Considering a sequence of time discrete problems (1.2) with τ → 0,
we show convergence of (a subsequence of) the sequence of approximate
solutions in a suitable sense. The limit is then identified as a solution
to (1.1).
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In the course of the proof of convergence, it turns out that the unique
solvability of a corresponding auxiliary problem (see Assumption (AB)
below) is crucial. This uniqueness assumption is, of course, a restriction
of the class of possible problems we can deal with. Such a restriction,
however, is expected since (1.1), interpreted as an operator equation
posed on a suitable Banach space of time-dependent abstract functions
with values in V , misses standard assumptions for proving solvability
such as pseudomonotonicity of the governing operator. Let us empha-
size that the strong continuity of B : V ×V → V ′ does not imply strong
continuity of the corresponding Nemytskii operator acting on Bochner
integrable functions with values in V .

The paper is organized as follows. We close this section by intro-
ducing some notation and providing a preliminary result concerning
the integral operator. The main result together with all the structural
assumptions is then provided in Section 2. The time discrete problem
is studied in Section 3. The proof of the main result is finally presented
in Section 4.

1.1. Notation and preliminaries. By Lr(0, T ;V ) (r ∈ [1,∞]), we
denote the usual Bochner-Lebesgue spaces equipped with the standard
norm. Here, (V, ∥ · ∥) is a real, reflexive, separable Banach space
with its dual (V ′, ∥ · ∥V ′) and the duality pairing denoted by ⟨·, ·⟩.
Note that V ′ is reflexive and separable since V is also. Denoting by
r′ = r/(r − 1) the conjugate of r ∈ (1,∞) with r′ = ∞ if r = 1, we

have (Lr(0, T ;V ))′ = Lr′(0, T ;V ′) if r ∈ [1,∞); the duality pairing is
given by

⟨g, v⟩ =
∫ T

0

⟨g(t), v(t)⟩ dt.

Moreover, Lr(0, T ;V ) is reflexive if r ∈ (1,∞), and L1(0, T ;V ′) is
separable, see, e.g., Diestel and Uhl [4] for more details.

The norm in a Banach space X will always be denoted by ∥ · ∥X ,
except for the norm in V , where we omit the subscript V . We make
use of the convention

∑0
j=1 zj = 0 for whatsoever zj . By c, we denote

a generic positive constant (that is always independent of the time step
size).

Without proof, we give the following result, which is classical for
real-valued functions (see, e.g., Gripenberg, et al. [7, Theorem 2.2,
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page 39]) but easily extends to Banach-space-valued functions.

Proposition 1.1. Let p ∈ (1,∞) and u0 ∈ V . If k ∈ L1(0, T ) then K
with

(Kw)(t) = u0 +

∫ t

0

k(t− s)w(s) ds, t ∈ [0, T ],

maps Lp(0, T, V ) into Lp(0, T, V ) and is affine-linear and bounded. If

k ∈ Lp′
(0, T ), then K maps Lp(0, T, V ) into C([0, T ], V ) and is affine-

linear and bounded.

2. Main result: Existence via time discretization. Let us start
by stating the main assumptions on the operators appearing as well as
the integral kernel. Let p ∈ (1,∞) be suitably given, and let (V, ∥ · ∥)
be a real, reflexive, separable Banach space with dual (V ′, ∥ · ∥V ′).

Assumption (A). The operator A : V → V ′ is

(i) hemicontinuous, i.e., the mapping θ 7→ ⟨A(u+θv), w⟩ : [0, 1] → R
is continuous for all u, v, w ∈ V ,

(ii) monotone, i.e., ⟨Av −Aw, v − w⟩ ≥ 0 for all v, w ∈ V , and
(iii) coercive in the sense that there exist µ > 0, λ ≥ 0 such that, for

all v ∈ V ,
⟨Av, v⟩ ≥ µ ∥v∥p − λ.

Assumption (B). The operator B : V × V → V ′ is

(i) strongly continuous, i.e., in V × V weakly convergent sequences
are mapped into in V ′ strongly convergent sequences and

(ii) there exist c > 0, q ∈ [0, p− 1) such that, for all u, v ∈ V ,

(2.1) ∥B(u, v)∥V ′ ≤ c
(
1 + ∥u∥p−1 + ∥v∥q

)
.

Assumption (AB). For each u ∈ V and b ∈ V ′ there exists at
most one solution v ∈ V such that

(2.2) Av +B(u, v) = b in V ′.
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Assumption (G). The operator G : V → V is

(i) weakly continuous, i.e., in V weakly convergent sequences are
mapped into in V weakly convergent sequences and

(ii) there exists c > 0 such that, for all v ∈ V ,

∥Gv∥ ≤ c (1 + ∥v∥) .

Assumption (k). Let k ∈ Lp′
(0, T ).

Remark 2.1. We shall remark that the operators A, B and G can be
extended, as usual, to operators acting on functions defined on [0, T ]
and taking values in V .

Since the operator A : V → V ′ is hemicontinuous and monotone,
it is also demicontinuous (i.e., it maps strongly into weakly convergent
sequences) and thus maps, in view of the separability of V and the
theorem of Pettis (see, e.g., Diestel and Uhl [4, Theorem 2, page 42]), a
Bochner measurable function v : [0, T ] → V into a Bochner measurable
function Av : [0, T ] → V ′.

In view of the continuity of the operator B : V × V → V ′ and (2.1),

it maps Lp(0, T ;V )× Lp(0, T ;V ) into Lp′
(0, T ;V ′).

Since G : V → V is weakly continuous and V is separable, Petti’s
theorem again provides that G maps Bochner measurable functions
into Bochner measurable functions. In view of the linear growth of G,
we find that G maps Lp(0, T ;V ) into itself.

As we have not made an assumption on the growth of the operator
A, it does not need to map Lp(0, T ;V ) into its dual. Note that the
above assumptions do not imply that the operator B : Lp(0, T ;V ) ×
Lp(0, T ;V ) → Lp′

(0, T ;V ′) is strongly continuous. This is one main
difficulty in the course of the proof of the main result.

Further note that the existence of a solution to (2.2) easily follows
from standard results from the theory of monotone operators (see, e.g.,
Roub́ıček [14, Proposition 2.17, page 40]).

Let us now state the main result and start with the definition of a
solution.



ON A NONLINEAR ABSTRACT VOLTERRA EQUATION 81

Definition 2.2 (Solution). Let u0 ∈ V and f ∈ Lp′
(0, T ;V ′) be given.

A function v ∈ Lp(0, T ;V ) is said to be a solution to (1.1) if (1.1a)

holds true in Lp′
(0, T ;V ′).

For the discretization in time, let {Nℓ} be a sequence of integers
such that Nℓ → ∞ as ℓ → ∞. We then consider the sequence of time
discrete problems (1.2) with step size τℓ = T/Nℓ, starting value u0

ℓ ∈ V ,

and right-hand side {fn}Nℓ
n=1 ⊂ V given by

(2.3) fn :=
1

τℓ

∫ tn

tn−1

f(t) dt.

Often we do not call explicitly the dependence of fn and the time
instances tn on ℓ.

Denoting by {vn}Nℓ
n=1 ⊂ V the solution to (1.2) with step size τℓ, let

vℓ be the piecewise constant function with vℓ(t) = vn for t ∈ (tn−1, tn]
(n = 1, 2, . . . , Nℓ).

The main result reads as follows.

Theorem 2.3 (Existence via convergence of a time discretization). Let
Assumptions (A), (B), (AB), (G) and (k) be satisfied. Let u0 ∈ V and

f ∈ Lp′
(0, T ;V ′) be given. Moreover, let {u0

ℓ} ⊂ V be such that

u0
ℓ −→ u0 in V as ℓ → ∞.

Then there is a subsequence (still denoted by ℓ) such that, as ℓ →
∞, the sequence {vℓ} of piecewise constant interpolations of the time
discrete solutions to (1.2) with (2.3) converges weakly in Lp(0, T ;V );
the limit v is a solution to (1.1) in the sense of Definition 2.2.

If f ∈ L∞(0, T ;V ′) then v ∈ L∞(0, T ;V ) and (1.1a) holds in
L∞(0, T ;V ′).

The proof will be prepared by the following section on properties of
the time discrete solution.

3. The time discrete problem: Solvability and a priori es-
timates. In this section, we study the time discretization (1.2) for a
given time step τ > 0.
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Proposition 3.1 (Time discrete problem). Let Assumptions (A), (B),
(AB) and (k) be fulfilled. Let u0 ∈ V and {fn}Nn=1 ⊂ V ′ be given. Then,
if τ is sufficiently small, there is a solution {vn}Nn=1 ⊂ V to (1.2), and
the following a priori estimates hold true for n = 1, 2, . . . , N :

(3.1a) ∥un∥p + τ
n∑

j=1

∥vj∥p ≤ c

(
1 + ∥u0∥p + τ

n∑
j=1

∥f j∥pV ′

)
,

τ
n∑

j=1

∥Avj∥p
′

V ′ + τ
n∑

j=1

∥B(uj , vj)∥p
′

V ′(3.1b)

≤ c

(
1 + ∥u0∥p + τ

n∑
j=1

∥f j∥pV ′

)
.

Proof. Existence of a solution follows step-by-step. Let {vj}n−1
j=1 ⊂ V

be given if n ≥ 2 (in the case n = 1 only u0 is given). Then vn ∈ V
(n = 1, 2, . . . , N) is the solution of the problem

Avn +B(un−1 + τγ1Gvn, vn) = fn,

where

un−1 = u0 + τ
n−1∑
j=1

γn−j+1Gvj ∈ V

is given. The mapping

Dn : V −→ V ′, Dnv = Av +B(un−1 + τγ1Gv, v) ,

is the sum of a hemicontinuous, monotone and a strongly continuous
mapping and is coercive if τ is sufficiently small. Indeed, we find that

⟨Dnv, v⟩ ≥ µ∥v∥p−λ−∥B(un−1 + τγ1Gv, v)∥V ′∥v∥

≥ µ∥v∥p−λ−c
(
1+

∥∥un−1 + τγ1Gv
∥∥p−1

+ ∥v∥q
)
∥v∥

≥ µ∥v∥p−λ−c
(
1+

∥∥un−1
∥∥p−1

+ |τγ1|p−1∥Gv∥p−1+ ∥v∥q
)
∥v∥

≥ µ∥v∥p−λ−c
(
1+

∥∥un−1
∥∥p−1

+ c |τγ1|p−1(
1+∥v∥p−1

)
+ ∥v∥q

)
∥v∥.
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Since |τγ1| ≤
∫ τ

0
|k(s)| ds, Young’s inequality yields

(3.2) ⟨Dnv, v⟩ ≥
µ

2
∥v∥p − λ− c

(
1 +

∥∥un−1
∥∥p)− c |τγ1|p−1∥v∥p,

which shows coercivity if τ is sufficiently small such that

(3.3) c

(∫ τ

0

|k(s)| ds
)p−1

≤ µ

4
.

Note that the constant c here is the constant that appears in (3.2)
in front of |τγ1|p−1∥v∥p and is independent of τ . We are now in
the position to apply standard results from the theory of monotone
operators (see, e.g., Roub́ıček [14, Proposition 2.17, page 40]) to get
existence of vn ∈ V .

Similarly to the coercivity, we obtain the a priori estimates asserted.
Indeed, we test (1.2a) by vn and obtain, with (3.2) and (3.3)

µ

4
∥vn∥p − λ− c

(
1 +

∥∥un−1
∥∥p) ≤ ⟨Dnv

n, vn⟩ = ⟨fn, vn⟩.

This yields, together with Assumption (G) and with |τγn−j+1| ≤∫ tn−j+1

tn−j
|k(z)| dz,

µ

8
∥vn∥p ≤ c

(
1 + ∥fn∥p

′

V ′ +
∥∥un−1

∥∥p)
≤ c

(
1 + ∥fn∥p

′

V ′ + ∥u0∥p +
( n−1∑

j=1

|τγn−j+1|
(
1 + ∥vj∥

))p)

≤ c

(
1+∥fn∥p

′

V ′+∥u0∥p+∥k∥pL1(0,T ) +

( n−1∑
j=1

|τγn−j+1|∥vj∥
)p)

≤ c

(
1+∥fn∥p

′

V ′+∥u0∥p+∥k∥pL1(0,T ) + ∥k∥p
Lp′ (0,T )

τ

n−1∑
j=1

∥vj∥p
)
.

Applying a discrete Gronwall-type argument shows that

(3.4) ∥vn∥p ≤ c

(
1 + ∥u0∥p + ∥fn∥p

′

V ′ + τ
n−1∑
j=1

∥f j∥p
′

V ′

)
,
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and thus

τ

n∑
j=1

∥vj∥p ≤ c

(
1 + ∥u0∥p + τ

n∑
j=1

∥f j∥p
′

V ′

)
,

which implies the assertion because, similarly as before,

∥un∥p ≤ c

(
1 + ∥u0∥p + ∥k∥pL1(0,T ) + ∥k∥p

Lp′ (0,T )
τ

n∑
j=1

∥vj∥p
)
.

In view of the growth condition for B, we immediately find that, for
all n = 1, 2, . . . , N ,

τ
n∑

j=1

∥B(uj , vj)∥p
′

V ′ ≤ c

(
1 + ∥u0∥p + τ

n∑
j=1

∥f j∥p
′

V ′

)
.

This implies, because of (1.2a),

τ
n∑

j=1

∥Avj∥p
′

V ′ ≤ cτ
n∑

j=1

∥f j∥p
′

V ′ + cτ
n∑

j=1

∥B(uj , vj)∥p
′

V ′ ,

which yields the last a priori estimate. �

We shall remark that the second a priori estimate of the proposition
above will not be needed in the course of the proof of the main result.

4. Proof of the main result: Convergence of the time dis-
cretization. In the sequel, we consider a sequence of time discrete
problems (1.2) with step sizes τℓ = T/Nℓ, where Nℓ ∈ N with Nℓ → ∞
as ℓ → ∞. We recall that vℓ denotes the piecewise constant interpola-
tion of the time discrete solution {vn}Nℓ

n=1 corresponding to the step size
τℓ. Analogously, we denote by uℓ and fℓ the piecewise constant func-
tion with uℓ(t) = un and fℓ(t) = fn if t ∈ (tn−1, tn] (n = 1, 2, . . . , Nℓ),

respectively, where {fn}Nℓ
n=1 is given by (2.3). We set uℓ(0) = u0

ℓ .

Proof of Theorem 2.3. Since the sequence {u0
ℓ} of starting values for

(1.2) is bounded, and since

∥fℓ∥p
′

Lp′ (0,T ;V ′)
= τℓ

Nℓ∑
j=1

∥fn∥p
′

V ′ ≤ ∥f∥p
′

Lp′ (0,T ;V ′)
,
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the right-hand side in (3.1a) is uniformly bounded with respect to ℓ.
Moreover, it is easy to prove that

fℓ −→ f in Lp′
(0, T ;V ′) as ℓ → ∞.

It follows that {uℓ} is bounded in L∞(0, T ;V ) and {vℓ} is bounded in
Lp(0, T ;V ). Hence, there is a subsequence (not relabeled) and elements
u ∈ L∞(0, T ;V ) and v ∈ Lp(0, T ;V ) such that

uℓ
∗
⇀ u in L∞(0, T ;V )

vℓ ⇀ v in Lp(0, T ;V ) as ℓ → ∞,

since, in particular, L1(0, T ;V ′) is separable and Lp(0, T ;V ) is reflexive.

For t ∈ (tn−1, tn] (n = 1, 2, . . . , Nℓ), we observe that

uℓ(t) = u0
ℓ +

∫ tn

0

k(tn − s)Gvℓ(s) ds

and thus,

∥uℓ(t)− (KGvℓ)(t)∥ ≤ ∥u0
ℓ − u0∥

+

∫ tn

t

|k(tn − s)|∥Gvℓ(s)∥ ds

+

∫ t

0

|k(tn − s)− k(t− s)|∥Gvℓ(s)∥ ds

≤ ∥u0
ℓ − u0∥+

(∫ tn

t

|k(tn − s)|p
′
ds

)1/p′

∥Gvℓ∥Lp(0,T ;V )

+

(∫ t

0

|k(tn − s)− k(t− s)|p
′
ds

)1/p′

∥Gvℓ∥Lp(0,T ;V ).

Because of the growth condition for G, the sequence {Gvℓ} is bounded
in Lp(0, T ;V ) since {vℓ} does so. The calculation above shows, since

k ∈ Lp′
(0, T ), that

(4.1) max
t∈[0,T ]

∥uℓ(t)− (KGvℓ)(t)∥ −→ 0 as ℓ → ∞.
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Hence,
uℓ −KGvℓ −→ 0 in L∞(0, T ;V ) as ℓ → ∞,

and thus KGvℓ converges weakly* in L∞(0, T ;V ) to u.

Moreover, since {Gvℓ} is bounded in Lp(0, T ;V ), there is a subse-
quence (still denoted by ℓ) and g ∈ Lp(0, T ;V ) such that

Gvℓ ⇀ g in Lp(0, T ;V ) as ℓ → ∞.

Since K : Lp(0, T ;V ) → C([0, T ];V ) is affine-linear and bounded (see
Proposition 1.1) and thus weakly continuous, we find that

KGvℓ ⇀ Kg in C([0, T ];V ) as ℓ → ∞

as well as
(KGvℓ)(t) ⇀ (Kg)(t) in V as ℓ → ∞

for all t ∈ [0, T ], which implies with (4.1) that

(4.2) uℓ(t) ⇀ (Kg)(t) in V as ℓ → ∞

for all t ∈ [0, T ].

Concerning the convergence of {vℓ}, we observe the following. Es-
timate (3.4), together with the boundedness of {u0

ℓ} in V and (2.3)
implies, for all t ∈ (0, T ],

∥vℓ(t)∥ ≤ c
(
1 + ∥fℓ(t)∥p

′−1
V ′

)
.

We recall that fℓ converges strongly in Lp′
(0, T ;V ′). There is thus a

subsequence (still denoted by ℓ) and a majorant h ∈ Lp′
(0, T ) such

that

fℓ(t) −→ f(t) in V ′,(4.3)

∥fℓ(t)∥V ′ ≤ h(t) for almost all t ∈ (0, T ).

We thus obtain

(4.4) ∥vℓ(t)∥ ≤ c
(
1 + h(t)p

′−1
)
.

For almost all t ∈ (0, T ), we therefore have a subsequence of the
subsequence, which we denote by ℓ′t and which depends on t and an
element vt ∈ V such that

(4.5) vℓ′t(t) ⇀ vt in V as ℓ′t → ∞.
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Later, we shall show that vt = v(t) for almost all t ∈ (0, T ) and that
the subsequence is indeed independent of t.

The time discrete problem (1.2) can be written as

Avℓ(t) +B(uℓ(t), vℓ(t)) = fℓ(t) in V ′, t ∈ (0, T ).

The strong continuity of B : V × V → V ′ (see Assumption (B)),
together with (4.2), (4.3) and (4.5), yields for almost all t ∈ (0, T ) the
strong convergence

Avℓ′t(t) = fℓ′t(t)−B(uℓ′t
(t), vℓ′t(t)) → f(t)−B((Kg)(t), vt) := at

in V ′ as ℓ′t → ∞.

With Minty’s trick (remember that A : V → V ′ is monotone and
hemicontinuous), we are able to identify the limit at ∈ V ′. For arbitrary
z ∈ V , we find

⟨Avℓ′t(t), vℓ′t(t)⟩ = ⟨Avℓ′t(t)−Az, vℓ′t(t)− z⟩
+ ⟨Avℓ′t(t), z⟩+ ⟨Az, vℓ′t(t)− z⟩

≥ ⟨Avℓ′t(t), z⟩+ ⟨Az, vℓ′t(t)− z⟩.

Taking the limit, we obtain

⟨at, vt⟩ ≥ ⟨at, z⟩+ ⟨Az, vt − z⟩.

With z = vt ± θ w for arbitrary w ∈ V and θ ∈ (0, 1], we thus have

±⟨A(vt ± θ w), w⟩ ≥ ±⟨at, w⟩,

and the hemicontinuity shows, for θ → 0, that at = Avt in V ′.

In view of Assumption (AB), the element vt ∈ V is the unique
solution to

Avt +B((Kg)(t), vt) = f(t) in V ′

for given (Kg)(t) ∈ V and f(t) ∈ V ′. Therefore, by contradiction, the
convergence (4.5) not only takes place for a subsequence ℓ′t depending
on t but for the whole sequence for which (4.4) holds. This implies that
{vℓ(t)} converges weakly in V towards vt for almost all t ∈ (0, T ). Since
we already know that {vℓ} converges weakly in Lp(0, T ;V ) towards v,
we find that vt = v(t) for almost all t ∈ (0, T ).
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Let us summarize that vℓ(t) ⇀ v(t) in V for almost all t ∈ (0, T )
and thus Gvℓ(t) ⇀ Gv(t) in V for almost all t ∈ (0, T ) since G : V → V
is weakly continuous. Moreover, Gvℓ ⇀ g in Lp(0, T ;V ). This implies
g = Gv, which in our situation can easily be seen as follows. Let
z ∈ Lp′

(0, T ;V ′). Then ⟨z(t), Gvℓ(t)⟩ converges to ⟨z(t), Gv(t)⟩ for
almost all t ∈ (0, T ). Moreover, we have

|⟨z(t), Gvℓ(t)⟩| ≤ ∥z(t)∥V ′∥Gvℓ(t)∥V ≤ c||z(t)∥V ′ (1 + ∥h(t)∥) ,

where h ∈ Lp′
(0, T ). Lebesgue’s theorem on dominated convergence

now yields the convergence of ⟨z,Gvℓ⟩ to ⟨z,Gv⟩ in L1(0, T ), which
means that Gvℓ ⇀ Gv in Lp(0, T ;V ).

This finally shows that v is a solution to (1.1) in the sense of

Definition 2.2. Note that f ∈ Lp′
(0, T ;V ′) and, in view of the growth

condition (2.1), also B(KGv, v) ∈ Lp′
(0, T ;V ′).

Regarding the regularity statement, we observe the following: If
f ∈ L∞(0, T ;V ′), then (3.4) already implies the boundedness and thus
(passing to a subsequence if necessary) the weak*-convergence of {vℓ} in
L∞(0, T ;V ) such that v ∈ L∞(0, T ;V ). Hence, in view of the growth
condition (2.1), it follows B(KGv, v) ∈ L∞(0, T ;V ′). This, finally,
implies Av ∈ L∞(0, T ;V ′). �
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