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ABSTRACT. In this paper, in the framework of Lebesgue
spaces with variable exponent, we are going to provide con-
ditions for the existence and uniqueness of the solutions of a
class of Volterra integral equations induced by Carathéodory
functions having diverse growth behaviors. To attain our
goals, we will use topological degree theory for condensing
maps and fixed point results for the sum of mappings of
contractive type.

1. Introduction. Existence, uniqueness and stability of solutions,
as well as the numerical aspect of Volterra integral equations have been
widely studied in the literature. Part of this interest arises from the
vast range of applications where this kind of equations appears, for
instance in semiconductors, fluid flow, chemical reactions, elasticity
and population dynamics, among others. More information can be
found in the monographs [1, 2, 3, 15, 22] and in references on the
subject. Typically, these equations have been studied on Lebesgue
spaces and the space of continuous functions (real, complex or Banach
spaces valued), even though, due to its role in applications to spectral
theory, integral and differential equations and embeddings of Sobolev
spaces, they also have been considered on the framework of Sobolev
spaces [12, 21, 23].

However, in recent years, it became clear that the classical function
spaces are not sufficient for solving the contemporary problems of
nonlinear elasticity, in modeling of various fluids flows, current variation

2010 AMS Mathematics subject classification. Primary 45D05, 46E30, 47B38,
47H10.

Keywords and phrases. Volterra integral equation, variable Lebesgue space,
contractive mapping.

Received by the editors on April 12, 2015, and in revised form on August 8,
2015.
DOI:10.1216/JIE-2016-28-1-1 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

1



2 R.E. CASTILLO, J.C. RAMOS-FERNÁNDEZ AND E.M. ROJAS

and problems of mechanics. Nevertheless, the theory of spaces of
functions with nonstandard growth, also known as generalized Lebesgue
spaces with variable exponent, have been extensively studied in recent
years (see, e.g., [4, 5, 10] and references therein). These spaces arise
in applications to continuum mechanics (in particular, in the theory of
electrorheological fluids). They also arise in the theory of differential
equations and variational problems. A lot of the results in this line of
research are condensed in the monographs [10, 32].

Thus, due to the wide range of applications where Lebesgue spaces
with variable exponent can be used to overcome the limitations of
the classical spaces, in this paper we will analyze the existence and
uniqueness of the solutions of a type of Volterra integral equation in
this context (see, equation (3.1) below). More precisely, we are going to
consider integral equations induced by Carathéodory functions having
different growth behaviors. The techniques that we will use here are
the classical topological degree theory and the new setting of sum of
contractive type of mappings. We would like to point out that, in the
most abstract scheme of Banach function spaces, the generalized Hardy
operator, which is a Volterra-type operator, is studied in [14].

The paper is divided into four sections. In Section 2, we will present
the preliminary results on variable exponent Lebesgue spaces, degree
theory for condensing maps and sum of contractive mappings, which
will be useful in the sequel. Section 3 is devoted to studying the
continuity boundedness and compactness of the operators associated
to the equations considered here. Results regarding the existence
and uniqueness of the solutions of equation (3.1) will be presented in
Section 4.

2. Preliminaries. In this section, we are going to give preliminary
results which will be useful in the sequel.

2.1. Variable exponent Lebesgue spaces. We now review some
definitions and properties related to Lebesgue spaces with variable
exponents needed throughout the paper. For a more comprehensive
study of these spaces we recommend the monographs [4, 10].

Let Ω ⊆ Rn be an open set in Rn. By Lp(·)(Ω), we denote the space
of functions on Ω such that
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ρp(·)(f) :=

∫
Ω

|f(x)|p(x) dx <∞

where p(·) is a measurable function on Ω with values in [1,∞) and
define p− := ess inf x∈Ω p(x) and p+ := ess sup x∈Ωp(x). The modular
functional ρp(·) satisfies the following fundamental properties.

Proposition 2.1. Given Ω and p(·) a measurable function on Ω:

(i) For all f , ρp(·)(f) ≥ 0 and ρp(·)(|f |) = ρp(·)(f).
(ii) ρp(·)(f) = 0 if and only if f(x) = 0 for almost every x ∈ Ω.
(iii) If ρp(·)(f) <∞, then f(x) <∞ for almost every x ∈ Ω.
(iv) ρp(·) is order preserving : if |f(x)| ≥ |g(x)| almost everywhere,

then ρp(·)(f) ≥ ρp(·)(g).

The functional ρp(·) does not satisfy the triangle inequality; however,
if p+ <∞, the modular triangle inequality holds:

ρp(·)(f + g) ≤ 2p+
(
ρp(·)(f) + ρp(·)(g)

)
.

Lp(·)(Ω) becomes a Banach space with the norm (the so-called
Kolmogorov-Minkowski norm)

||f ||p(·) := inf

{
λ > 0 : ρp(·)

(
f

λ

)
≤ 1

}
.

If p(·) satisfies that

(2.1) 1 < p−, p+ <∞

then the function p′(x) := p(x)/(p(x)− 1) is well defined, satisfies (2.1)
and

1

p(x)
+

1

p′(x)
= 1.

Moreover, if p+ < ∞, then the set of all continuous functions whose
support is compact and contained in Ω is dense in Lp(·)(Ω).

The following result shows a relation between the modular functional
ρp(·)(·) and the norm ∥ · ∥p(·). In particular, this shows that in matters
of convergence both notions are equivalent.
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Proposition 2.2. For any function p(·), 1 ≤ p− ≤ p(x) ≤ p+ < ∞
almost everywhere in Ω we have

∥f∥p+p(·) ≤ ρp(·)(f) ≤ ∥f∥p−p(·), if ∥f∥p(·) ≤ 1,

the signs of the inequality being opposite if ∥f∥p(·) ≥ 1.

Lemma 2.3. Let 0 < γ(x) ≤ p(x) ≤ p+ <∞, x ∈ Ω. Then

∥f∥γ+p(·) ≤ ∥fγ∥p(·)/γ(·) ≤ ∥f∥γ−p(·), if ∥f∥p(·) ≤ 1,

where fγ := |f(x)|γ(x), the signs of the inequality being opposite if
∥f∥p(·) ≥ 1.

In this paper, we will deal with sets Ω with finite Lebesgue measure.
Thus, under this condition, the function 1 ∈ Lp(·)(Ω). Also, in this
case, the embedding characterization of variable Lebesgue spaces into
one another is: Given p(·) and q(·), then Lq(·)(Ω) ↩→ Lp(·)(Ω) if and
only if p(x) ≤ q(x) almost everywhere x ∈ Ω (see [4, page 41, Corollary
2.48]).

The Hölder inequality in this space is given in the form: for f ∈
Lp(·)(Ω), g ∈ Lp

′(·)(Ω) with 1 ≤ p(x) ≤ ∞,∫
Ω

|f(x)g(x)| dx ≤ Kp(·)∥f∥p(·)∥g∥p′(x),

where Kp(·) := 1/p− + 1/p′− = sup 1/p(x) + sup 1/p′(x).

The Minkowski integral inequality is given by: for 1 ≤ p(x) ≤ p+ <
∞, let f : Ω × Ω −→ R be a measurable function with respect to
the product measure such that almost everywhere y ∈ Ω, we have
f(·, y) ∈ Lp(·)(Ω). Then∥∥∥∥∫

Ω

f(·, y) dy
∥∥∥∥
p(·)

≤ 2Kp(·)

∫
Ω

∥f(·, y)∥p(·) dy.

Proposition 2.4. (See [11, Remark 2.1]). Suppose the sequence
{fk} ⊂ Lp(·)(Ω) converges in norm to f ∈ Lp(·)(Ω). Then there
exists a subsequence {fkj} and g ∈ Lp(·)(Ω) such that the subsequence
converges pointwise almost everywhere to f , and, for almost every
x ∈ Ω, |fkj (x)| ≤ g(x).
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On the other hand, let g(x, u), (x ∈ Ω, u ∈ R) be a Carathéodory
function. The boundedness of the Nemytsky operator defined by g(x, u)

(Gu)(x) = g(x, u(x))

in the framework of variable exponent Lebesgue spaces is given in the
following result:

Theorem 2.5 ([13]). If G maps Lp(·)(Ω) into Lq(·)(Ω), then G is
continuous and bounded, and there is a constant b ≥ 0 and a non-
negative function a ∈ Lq(·)(Ω) such that, for x ∈ Ω and u ∈ R, the
following inequality holds:

(2.2) |g(x, u)| ≤ a(x) + b|u|p(x)/q(x).

On the other hand, if g(x, u) satisfies (2.2), then G maps Lp(·)(Ω) into
Lq(·)(Ω), and thus G is continuous and bounded.

2.2. Degree theory for condensing maps. In order to prove some
of our results, we will study α-set contractions and condensing maps.
For more information about this we refer the readers to [6].

LetX be a Banach space and B ⊂ P(X) the family of all its bounded
sets.

The (Kuratowski-) measure of noncompactness is defined by the
function α : B → R+ given, for each B ∈ B, as

α(B) = inf{d > 0 : B admits a finite cover by set of diameter ≤ d}.

The function α satisfies the following properties.

Proposition 2.6. The following assertions hold :

(i) α(B) = 0 if and only if B is relatively compact.
(ii) α is a seminorm, i.e., α(λB) = |λ|α(B) and α(B1 + B2) ≤

α(B1) + α(B2).
(iii) B1 ⊂ B2 implies α(B1) ≤ α(B2).
(iv) α(B1 ∪B2) = max{α(B1), α(B2)}.
(v) α(convB) = α(B).
(vi) α(B) = α(B).
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Let Ω ⊂ X and F : Ω → X be a continuous bounded map. F is
called α-Lipschitz if there exists k ≥ 0 such that

α(F (B)) ≤ kα(B), for all B ⊂ Ω bounded.

If, in addition, k < 1, then we say that F is strict α-contraction. The
map F is α-condensing if

α(F (B)) < α(B), for all B ⊂ Ω bounded with α(B) > 0.

Proposition 2.7. The following assertions hold :

(i) If F,G : Ω → X are α-Lipschitz maps with constants k1 and k2,
respectively, then F + G : Ω → X is α-Lipschitz with constant
k1 + k2.

(ii) If F : Ω → X is compact, then F is α-Lipschitz with constant
k = 0.

(iii) If F : Ω → X is a Lipschitz map with constant k, then F is
α-Lipschitz with the same constant k.

Using the basic properties of the topological degree for α-condensing
perturbation of the identity, in [17] the following fixed point result was
proved.

Theorem 2.8. Let F : X → X be α-condensing and

S = {x ∈ X : there exists λ ∈ [0, 1] such that x = λFx}.

If S is a bounded set in X, then there exists an r > 0 such that
S ⊂ BX(r), and F has at least one fixed point. The set of fixed points
of F lies in BX(r), where BX(r) stand the ball on X centered in 0 of
radius r.

2.3. Fixed points for the sum of two contractive type of
mappings. The degree theory for condensing maps allows for analysis
of the existence of fixed points for maps in the form of a contraction
mapping plus a compact map. Recently, in [24], were given conditions
under which the function results from the sum of two maps belonging
to different contractive classes of mappings, satisfies a contraction
inequality. With this, it is possible to establish fixed point results
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for maps resulting from the sum of two contractive types of mappings.
To attain such results, a reverse triangle inequality was given in [9].

Proposition 2.9. If F : X → R is a linear functional of unit norm
defined on the normed linear space X endowed with the norm ∥ · ∥ and
the vectors x1, . . . , xn satisfy the condition:

0 ≤ r∥xi∥ ≤ F(xi), i ∈ {1, . . . , n},

then

r
n∑
i=1

∥xi∥ ≤
∥∥∥∥ n∑
i=1

xi

∥∥∥∥,
where equality holds if and only if both

F
( n∑
i=1

xi

)
= r

n∑
i=1

∥xi∥

and

F
( n∑
i=1

xi

)
=

∥∥∥∥ n∑
i=1

xi

∥∥∥∥.
In that paper (among others) mappings satisfying the next classical

result were considered.

Theorem 2.10. Let (M,d) be a complete metric space and T : M →
M a map. Then T has a unique fixed point in M if it satisfies any of
the following conditions:

BC(α): (Banach, 1922, see [18]). T is an α-contraction or
Banach contraction, that is,

d(Tx, Ty) ≤ αd(x, y) for all x, y ∈M, 0 ≤ α < 1.

KA(α): (Kannan, 1969, 1971, [19, 20]). T satisfies: there is an
α ∈ [0, 1/2) such that

d(Tx, Ty) ≤ α(d(x, Tx) + d(y, Ty)) for all x, y ∈M.

RE(a1,a2,a3): (Reich, 1971, [28, 29, 30]). T satisfies:

d(Tx, Ty) ≤ a1d(x, y) + a2d(x, Tx) + a3d(y, Ty),
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for all x, y ∈M with 0 ≤ a1 + a2 + a3 < 1.
D(a,b): (Nova, 1986, [26] or see [7, 8], for instance). K ⊂ M

is closed and T : K → K is an arbitrary operator that satisfies
the following condition. For a, b ≥ 0, a + 2b < 1, and any
x, y ∈ K:

d(Tx, Ty) ≤ ad(x, y) + b [d(x, Tx) + d(y, Ty)] .

We say that T belongs or is of class BC(α) (respectively, KA(α),
RE(a1, a2, a3) and D(a, b)) when T satisfies the condition BC(α)
(respectively, KA(α), RE(a1, a2, a3) and D(a, b)) where α indicates
the contraction’s constant (the same indicate the parameters in each of
the remainder classes).

The conditions above are, in general, independent of each other.
Examples showing that can be found in [25]. Also, a comparison of
these and other classes of the contractive type of mappings is given in
[31].

Let (X, ∥ · ∥) be a Banach space and T, S : X → X two mappings.
To establish the results mentioned in [24], it was assumed that Propo-
sition 2.9 is satisfied for (I − T )x and (I − S)x, for each x ∈ X which
is not a fixed point of T and for each x which is not a fixed point of S;
i.e.,
(2.3){
0 < r∥x− Tx∥ ≤ F(x− Tx)

0 < r∥x− Sx∥ ≤ F(x− Sx),
for all x ∈ X \ {x = Tx ∧ x = Sx}.

Notice that the case when 0 = r = F(Tx−x) = F(Sx−x) corresponds
to the case when x in the common fixed point for the pair (T, S), which
is unique or does not exist.

Theorem 2.11. Let X be a Banach space, and T, S : BX(r) → BX(r).
Assume the following conditions hold :

(a) T ∈ BC(α).
(b) For each x ∈ X, the condition (2.3) holds for r > 0.

Then:

(i) T + S ∈ D(α, β/r), if S ∈ KA(β).
(ii) T + S ∈ RE(a, a2/r, a3/r), if S ∈ RE(a1, a2, a3), a = α+ a1.
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3. The nonlinear Volterra integral equation and related
operators. In this paper, we are going to analyze the existence of
solutions for the following class of nonlinear Volterra integral equations:

(3.1) u(s) = φ(s, u(s)) + µ

∫ b

a

ψ(s, t, u(t)) dt, s ∈ (a, b), µ ∈ R

on Lp(·)(a, b), (1 ≤ p− ≤ p(x) ≤ p+ < ∞) with φ : (a, b) × R → R
and ψ : (a, b)× (a, b)×R → R as Carathéodory functions. That is, the
functions φ and ψ satisfy the following properties:

• for every x ∈ R, the function φ(·, x) : (a, b) → R is Lebesgue
measurable;

• for almost every s ∈ (a, b), the function φ(s, ·) : R → R is
continuous;

• for every x ∈ R, the function ψ(·, ·, x) : (a, b) × (a, b) → R is
Lebesgue measurable;

• for almost every (s, t) ∈ (a, b) × (a, b), the function ψ(s, t, ·) :
R −→ R is continuous.

To attain our goal, in the sequel we will assume diverse growth behav-
iors on the functions φ and ψ.

First, we rewrite this equation in the operator theory scheme by
using the operators

u 7−→ Fu, (Fu)(s) := φ(s, u(s)), s ∈ (a, b)

u 7−→ Gu, (Gu)(s) :=

∫ b

a

ψ(s, t, u(t)) dt, s ∈ (a, b)

u 7−→ Tu, Tu := Fu+ µGu.

3.1. On the bounded continuity of the operators F and G.
Here, by adapting the techniques used in [17] to the case of variable
exponent Lebesgue spaces, we will show that the operators F and G
defined above are bounded and continuous on the space Lp(·)(a, b). To
prove that, we will assume that the following conditions are valid:

There exists a constant b1 ≥ 0 and a non-negative function
f ∈ Lq(·)(a, b) such that, for almost every t ∈ (a, b) and all
x ∈ R

(3.2) |φ(t, x)| ≤ f(t) + b1|x|p(t)/q(t).
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There exists a constant b2 ≥ 0 and a non-negative function
g ∈ Lr(·,·)((a, b)× (a, b)), where r(s, t) = p(t)q(s), such that for
almost every (s, t) ∈ (a, b)× (a, b) and all x ∈ R

(3.3) |ψ(s, t, x)| ≤ g(s, t) + b2|x|p(t)/q(t).

Here q(·) is a measurable function such that p(t) ≤ q(t) for almost every
t ∈ (a, b).

Proposition 3.1. The operator F : Lp(·)(a, b) → Lp(·)(a, b) is well
defined, bounded and continuous.

Proof. Since φ(s, u) is a Carathéodory function, then the operator
F is actually the Nemytsky operator generated by φ(s, u); hence,
from Theorem 2.5, F : Lp(·)(a, b) → Lq(·)(a, b) is well defined. Since
p(s) ≤ q(s) for almost every s ∈ (a, b), Lq(·)(a, b) ↩→ Lp(·)(a, b). Thus,
we have that F : Lp(·)(a, b) → Lp(·)(a, b) is well defined, bounded and
continuous. �

Proposition 3.2. The operator G : Lp(·)(a, b) −→ Lp(·)(a, b) is well
defined, bounded and continuous.

Proof. LetNψ be the Nemytsky operator generated by the Carathéo-
dory function ψ(s, t, x). Set

M1 := {u : (a, b) −→ R : u is Lebesgue measurable}
M2 := {v : (a, b)× (a, b) −→ R : v is Lebesgue measurable}.

It is well known that, for every v ∈ M2, the function Nψv : (a, b) ×
(a, b) → R defined by

(Nψv)(s, t) := ψ(s, t, v(s, t)), (s, t) ∈ (a, b)× (a, b)

is Lebesgue measurable. We associate to each function u ∈ M1 the
function vu ∈ M2 defined by

vu(s, t) := u(t), (s, t) ∈ (a, b)× (a, b).

Then, the function

(s, t) ∈ (a, b)× (a, b) 7−→ ψ(s, t, u(t)) ∈ R
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coincides with the function Nψvu(s, t) which is Lebesgue measurable.
From the growth condition (3.3) and the Hölder inequality, we have
that every u ∈ Lp(·)(a, b), the function

(s, t) ∈ (a, b)× (a, b) 7−→ ψ(s, t, u(t)) ∈ R

satisfies ∫ b

a

∫ b

a

|ψ(s, t, u(t))|dt ds ≤
∫ b

a

∫ b

a

g(s, t) dt ds(3.4)

+ b2

∫ b

a

∫ b

a

|u(t)|p(t)/q(t) dtds

≤ Kr(·,·)∥g∥r(·,·)∥1∥r′(·,·)

+ b2|b− a|
∫ b

a

|u(t)|p(t)/q(t) dt.

On the other hand, we are going to prove that the function |u|p(·)/q(·) ∈
Lq(·)(a, b). In fact, since 0 < p(t)/q(t) ≤ p(t) ≤ p+ < ∞, then from
Lemma 2.3, we have

∥up/q∥p(·)/(p(·)/q(·)) = ∥up/q∥q(·) ≤ ∥u∥(p/q)±p(·) ,

where the + sign occurs when ∥u∥p(·) ≥ 1 and the − sign occurs in
the case ∥u∥p(·) ≤ 1. In both cases, the last inequality is finite because

u ∈ Lp(·)(a, b); therefore, |u|p(·)/q(·) ∈ Lq(·)(a, b). Now, from the Hölder
inequality, we get∫ b

a

|u(t)|p(t)/q(t) dt ≤ Kq(·)∥up/q∥q(·)∥1∥q′(·) <∞;

thus, the inequality (3.4) is finite and then the function ψ(s, t, u(t)) lies
in L1((a, b)× (a, b)). Hence, by using Fubini’s theorem, it follows that,
for almost every s ∈ (a, b), the function

t ∈ (a, b) 7−→ ψ(s, t, u(t)) ∈ R

lies in L1(a, b), and the function

s ∈ (a, b) 7−→
∫ b

a

ψ(s, t, u(t)) dt ∈ R

lies in L1(a, b). So, we have proved that G(Lp(·)(a, b)) ⊂ L1(a, b).
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Now, we will show that G(Lp(·)(a, b)) ⊂ Lp(·)(a, b).∫ b

a

|(Gu)(s)|p(s) ds =
∫ b

a

∣∣∣∣ ∫ b

a

ψ(s, t, u(t)) dt

∣∣∣∣p(s) ds
≤

∫ b

a

∣∣∣∣ ∫ b

a

g(s, t) dt+ b2

∫ b

a

|u(t)|p(t)/q(t) dt
∣∣∣∣p(s) ds

≤ 2p+
[ ∫ b

a

∣∣∣∣ ∫ b

a

g(s, t) dt

∣∣∣∣p(s) ds
+ b2

∫ b

a

∣∣∣∣ ∫ b

a

|u(t)|p(t)/q(t) dt
∣∣∣∣p(s) ds].

Since g ∈ Lr(·,·)((a, b)× (a, b)), then∫ b

a

∫ b

a

g(s, t)p(t)q(s) dtds <∞.

Thus, for almost every t ∈ (a, b), we have∫ b

a

g(s, t)αq(s) ds <∞, α := p(t) ≥ 1.

This means that the function s ∈ (a, b) 7→ g(s, t) ∈ R lies in Lαq(·)(a, b)
and, due to the fact that Lαq(·)(a, b) ↩→ Lp(·)(a, b), then g(·, t) ∈
Lp(·)(a, b). Now, from Proposition 2.2 and the integral Minkowski
inequality, we obtain∫ b

a

∣∣∣∣ ∫ b

a

g(s, t) dt

∣∣∣∣p(s) ds ≤ (∥∥∥∥∫ b

a

g(·, t) dt
∥∥∥∥
p(·)

)p±
≤

(
2Kp(·)

∫ b

a

∥g(·, t)∥p(·) dt
)p±

<∞.

On the other hand, since the function up(·)/q(·) ∈ Lq(·)(a, b), from the
Hölder inequality, we have
(3.5)∫ b

a

∣∣∣∣b2∫ b

a

|u(t)|p(t)/q(t) dt
∣∣∣∣p(s)ds ≤ ∫ b

a

|b2Kq(·)∥up/q∥q(·)∥1∥q′(·)|p(s) ds.

The right side of inequality (3.5) is finite, by virtue of Proposition 2.2,
the fact 1 ∈ Lp(·)(a, b) and the homogeneity of the norm ∥ · ∥p(·). Thus,
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G is well defined and bounded on Lp(·)(a, b) into Lp(·)(a, b).

We will now prove that the operator G is continuous. Let (un)n ⊂
Lp(·)(a, b) be such that

lim
n→∞

∥un − u∥p(·) = 0.

We have to show that Gun → Gu in Lp(·)(a, b) as n→ ∞. To do this, it
is enough to show that any subsequence (unk

)k has a subsequence, still
denoted by (unk

)k, such that Gunk
→ Gu in Lp(·)(a, b) as k → ∞. Take

(unk
) ⊂ (un). It follows by Proposition 2.4 that there is a subsequence

of (unk
), still denoted by (unk

), such that

(3.6) unk
→ u almost everywhere in (a, b),

and there exists h ∈ Lp(·)(a, b) satisfying

(3.7) |unk
(x)| ≤ h(x), for almost every x ∈ (a, b) for all k ∈ N.

Since the function ψ(s, t, ·) : R → R is continuous, from (3.6), we
deduce that

ψ(s, t, unk
(t)) −→ ψ(s, t, u(t)) for almost every (s, t) ∈ (a, b)× (a, b).

Now, by assumption (3.3) and inequality (3.7), we have, for almost
every (s, t) ∈ (a, b)× (a, b),

|ψ(s, t, unk
(t))| ≤ g(s, t) + b2|h(t)|p(t)/q(t).

As before, we can show that for almost every s ∈ (a, b) the function

t ∈ (a, b) 7−→ g(s, t) + b2|h(t)|p(t)/q(t) ∈ R

lies in L1(a, b). Consequently, using the Lebesgue dominated theorem,
we obtain ∫ b

a

ψ(s, t, unk
(t)) dt −→

∫ b

a

ψ(s, t, u(t)) dt,

for almost every s ∈ (a, b). Using again (3.3) and (3.7), we derive that,
for almost every s ∈ (a, b),∣∣∣∣∫ b

a

ψ(s, t, unk
(t)) dt

∣∣∣∣p(s)≤ 2p+
[∣∣∣∣ ∫ b

a

g(s, t) dt

∣∣∣∣p(s)+∣∣∣∣b2∫ b

a

|h(t)|p(t)/q(t)dt
∣∣∣∣p(s)]
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and, as above, we have ∫ b

a

∣∣∣∣ ∫ b

a

g(s, t) dt

∣∣∣∣p(s) ds <∞,∫ b

a

∣∣∣∣b2 ∫ b

a

|h(t)|p(t)/q(t) dt
∣∣∣∣p(s) ds <∞.

Consequently, the Lebesgue dominated theorem implies that∫ b

a

∣∣∣∣ ∫ b

a

ψ(s, t, unk
(t)) dt−

∫ b

a

ψ(s, t, u(t)) dt

∣∣∣∣p(s) ds −→ 0,

that is, ρp(·)(Gunk
−Gu) → 0. Thus, the continuity of G is proved. �

3.2. On the compactness of the operator G. Now, we are going
to show that the operator G is compact under some additional assump-
tions on the Carathéodory function ψ and the measurable function p(·).
More precisely, we will assume that ψ satisfies the following condition:

The function ψ is a Hölder continuous function on the first
variable, that is,

(3.8) |ψ(s1, t, x)− ψ(s2, t, x)| ≤ K|s1 − s2|λ, K, λ > 0.

Also, we will assume a standard condition in the framework of vari-
able exponent Lebesgue spaces, the so-called log-Hölder continuity of
an exponent p(·), where the function p(·) is called locally log-Hölder
continuous if there exists a constant C > 0 such that, for all x, y ∈ Ω,
|x− y| < 1/2

|p(x)− p(y)| ≤ C

− log(|x− y|)
.

The class of the all (locally) log-Hölder continuous exponents p(·)
(p+ <∞) is denoted by LH0(Ω).

In order to prove the compactness of the operator G under as-
sumption (3.8), we will use the Kolmogorov compactness criterion in
Lp(·)(a, b).

For an integrable function f on (a, b), we denote by fh the Steklov
function

fh(t) :=
1

h

∫ t+h/2

t−h/2
f(u) du =

1

h

∫ h/2

−h/2
f(t+ v) dv.



VIES ON Lp(·)(a, b) 15

Lemma 3.3 (Kolmogorov-Tulajkov compactness criterion [27]). Let
F be a subset of Lp(·)(a, b), and let p(·) ∈ LH0(a, b). The set F is
relatively compact if and only if

lim
h→0

∥fh − f∥p(·) = 0, uniformly for f ∈ F.

Proposition 3.4. For p(·) ∈ LH0(a, b), under the additional assump-
tion (3.8), the operator G : Lp(·)(a, b) → Lp(·)(a, b) is compact.

Proof. Let F be a bounded subset of Lp(·)(a, b), and let f ∈ G(F).
From the Kolmogorov-Tulajkov compactness criterion we must show
that limh→0 ∥fh − f∥p(·) = 0 uniformly for f ∈ G(F).

|fh(v)− f(v)| ≤ 1

h

∫ h/2

−h/2

∫ b

a

|ψ(v + w, t, u(t))− ψ(v, t, u(t))| dt dw

≤ K

h

∫ h/2

−h/2

∫ b

a

|v + w − v|λ dt dw

=
K(b− a)

h

∫ h/2

−h/2
|w|λ dw =

K(b− a)hλ

2λ(λ+ 1)
.

Since the norm in Lp(·)(a, b) is order preserving, we conclude that

∥fh − f∥p(·) ≤
K(b− a)hλ

2λ(λ+ 1)
∥1∥p(·).

Therefore, the uniform convergence follows, so the operator G is com-
pact. �

4. Existence of solutions of the Volterra integral equation
(3.1). In this section, we will provide conditions under which the
nonlinear integral Volterra equation (3.1) has at least one solution.
First, we will use topological degree theory for condensing maps.
Afterward, fixed points results for the sum of contractive type of
mappings will be used.

4.1. On the solutions of equation (3.1) by means of condensing
maps. In Section 3, we proved that, under some conditions on the
Carathéodory functions φ and ψ, the operators F and G are bounded
and continuous in Lp(·)(a, b); even more, G is a compact operator. This
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allows us to use topological degree theory for condensing maps and the
corresponding fixed point Theorem 2.8.

Theorem 4.1. If the functions φ : (a, b) × R → R and ψ : (a, b) ×
(a, b)×R → R satisfy conditions (3.2) and (3.3), if the function φ is a
strict contraction on the second variable, i.e.,

|φ(t, x)− φ(t, y)| ≤ L|x− y|, 0 ≤ L < 1,

and the function ψ satisfies assumption (3.8), then the nonlinear inte-
gral equation (3.1)

u(s) = φ(s, u(s)) + µ

∫ b

a

ψ(s, t, u(t)) dt,

s ∈ (a, b), µ ∈ R

has at least one solution u ∈ Lp(·)(a, b), for p(·) ∈ LH0(a, b), satisfying
(p/q)+ < 1 and the set of the solutions of equation (3.1) is bounded in
Lp(·)(a, b).

Proof. Let F,G, T : Lp(·)(a, b) → Lp(·)(a, b) be the operators defined
in Section 3 which are continuous, bounded and, moreover, G is
compact. From Proposition 2.7 (ii), the operator µG is µα-Lipschitz
with zero constant. Since the function φ is a strictly contraction, it
follows that, for every u, v ∈ Lp(·)(a, b),

∥Fu− Fv∥p(·) ≤ L∥u− v∥p(·),

which means that F is a Lipschitz map with constant L and so, Propo-
sition 2.7(iii) and (i) guarantee that F is α-Lipschitz with constant L,
and T is a strict α-contraction with constant L.

Set

G = {u ∈ Lp(·)(a, b) : there exists λ ∈ [0, 1] such that u = λTu}.

We will prove that the set G is bounded in Lp(·)(a, b). In fact, for all
u ∈ G,

∥u∥p(·) = λ∥Tu∥p(·) ≤ λ(∥Fu∥p(·) + |µ|∥Gu∥p(·)).

First, we will estimate an upper bound for ∥Fu∥p(·). To do this, we use

the growth condition (3.2) and the following facts: (i) the Lp(·)-norm is
order preserving, (ii) the triangle inequality, (iii) Lq(·)(Ω) ↩→ Lp(·)(Ω),
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which implies that there exists K > 1 such that, for all f ∈ Lq(·)(a, b),
∥f∥p(·) ≤ K∥f∥q(·) and (iv) Lemma 2.3.

∥Fu∥p(·) ≤ ∥f + b1|u|p/q∥p(·)
≤ ∥f∥p(·) + b1∥up/q∥p(·)
≤ K∥f∥q(·) + b1K∥up/q∥q(·)
≤ K∥f∥q(·) + b1K∥u∥(p/q)±p(·) .

Now, we will give an upper bound for ∥Gu∥p(·). In this case, we use

the growth condition (3.3) and the following facts: (i) the Lp(·)-norm is
order preserving, (ii) the triangle inequality, (iii) the Hölder inequality,
(iv) the Minkoswski inequality and (v) Lemma 2.3.

∥Gu∥p(·) ≤
∥∥∥∥∫ b

a

g(·, t) dt
∥∥∥∥
p(·)

+

∥∥∥∥ ∫ b

a

b2|u(t)|p(t)/q(t) dt
∥∥∥∥
p(·)

≤
∥∥∥∥∫ b

a

g(·, t) dt
∥∥∥∥
p(·)

+ b2

∫ b

a

|u(t)|p(t)/q(t) dt∥1∥p(·)

≤ 2Kp(·)

∫ b

a

∥g(·, t)∥p(·) dt+ b2Kq(·)∥u∥
(p/q)±
p(·) ∥1∥q′(·)∥1∥p(·).

Thus, with these upper bounds, we obtain the following estimate for
all u ∈ G,

∥u∥p(·) ≤ λ(∥Fu∥p(·) + |µ|∥Gu∥p(·))

≤ λ(K∥f∥q(·) + b1K∥u∥(p/q)±p(·) )

+ λ|µ|(2Kp(·)

∫ b

a

∥g(·, t)∥p(·) dt

+ b2Kq(·)∥u∥
(p/q)±
p(·) ∥1∥q′(·)∥1∥p(·)).

Notice that the fact 0 < (p/q)± < 1, together with the inequality above,
shows that G is bounded in Lp(·)(a, b). Consequently, by Theorem 2.8,
the operator T has at least a fixed point, and the set of the fixed
points of T is bounded in Lp(·)(a, b). Therefore, the nonlinear integral
equation (3.1) has at least one solution u ∈ Lp(·)(a, b), and the set of
the solutions of the equation is bounded in Lp(·)(a, b). �
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4.2. Existence and uniqueness of solutions of equation (3.1)
through the sum of contractive type of mappings. As we saw,
if the function φ is α-contractive in the second variable, then the
operator F is a Banach contraction mapping in Lp(·)(a, b) with constant
α. Now, we will prove that, if ψ is a Lipschitz function, then the
induced operator G is a Lipschitz operator in Lp(·)(a, b). Then, the
existence and uniqueness of the solutions of equation (3.1) in this case
will be a consequence of the fact that the sum of two Banach contraction
mappings is a Banach contraction mapping.

Proposition 4.2. If the function ψ satisfies (3.3) and is Lipschitz on
the third variable with constant L > 0, i.e.,

(4.1) |ψ(s, t, x)− ψ(s, t, y)| ≤ L|x− y|, for all x, y ∈ (a, b), L > 0,

then the induced operator G is Lipschitz on the space Lp(·)(a, b) with
constant λ = LKp(·)∥1∥p(·)∥1∥p′(·).

Proof. Let u, v ∈ Lp(·)(a, b). From Proposition 3.2, the operator G
is bounded and continuous on Lp(·)(a, b) (but not necessarily compact
because the condition p(·) ∈ LH0(a, b) is not required). Thus, using
the Hölder inequality, we obtain

∥Gu−Gv∥p(·) =
∥∥∥∥ ∫ b

a

[ψ(s, t, u(t))− ψ(s, t, v(t))] dt

∥∥∥∥
p(·)

≤
∥∥∥∥L ∫ b

a

|u(t)− v(t)|dt
∥∥∥∥
p(·)

≤ L

∫ b

a

|u(t)− v(t)| dt · ∥1∥p(·)

≤ LKp(·)∥u− v∥p(·)∥1∥p′(·)∥1∥p(·),

that is, G is Lipschitz on Lp(·)(a, b) with constant

λ = LKp(·)∥1∥p(·)∥1∥p′(·).

This completes the proof. �
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Theorem 4.3. If the function φ : (a, b)×R → R satisfies (3.2) and is
a strict contraction on the second variable, i.e.,

|φ(t, x)− φ(t, y)| ≤M |x− y|,

for M < 1, and ψ : (a, b)× (a, b)×R → R satisfies conditions (3.3) and
(4.1), with L > 0 sufficiently small, then the nonlinear integral equation
(3.1):

u(s) = φ(s, u(s)) + µ

∫ b

a

ψ(s, t, u(t)) dt, s ∈ (a, b), µ ∈ R

has a unique solution u ∈ Lp(·)(a, b).

Proof. From equation (3.2) and the fact that φ is a strict contraction
on the second variable with constant M , the operator F is a Banach
contraction on Lp(·)(a, b) with constant M . Conditions (3.3) and (4.1)
assure that the operator G is a Lipschitz operator on Lp(·)(a, b) with
constant λ = LKp(·)∥1∥p(·)∥1∥p′(·). Therefore, T = F + µG is a
Lipschitz operator with constant

κ =M + L|µ|Kp(·)∥1∥p(·)∥1∥p′(·).

Choosing L such that κ < 1, then T is Banach contraction operator on
Lp(·)(a, b) and therefore has a unique fixed point. Thus, equation (3.1)
has a unique solution on Lp(·)(a, b). �

Now, let us impose some, less restrictive, contraction’s conditions
on the Carathéodory function φ, such that the induced operator F
is a contractive type of mapping. In this case, the existence and
uniqueness of the solutions of equation (3.1) will be a consequence of
the existence of a unique fixed point for the mapping result from sum
of two contractive type of mappings.

Proposition 4.4. If the function φ satisfies that

|φ(s, u(s))| ≤ λ

λ+ 1
|u(s)|, λ ∈ [0, 1/2), u ∈ Lp(·)(a, b),(4.2)

then the operator F is a Kannan contraction operator on Lp(·)(a, b).

Proof. First notice that the operator F is bounded on Lp(·)(a, b) if
we replace (3.2) by (4.2). Let u, v ∈ Lp(·)(a, b). From the triangle
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inequality and (4.2) we have that

|φ(s, u(s))− φ(s, v(s))| ≤ |φ(s, u(s))|+ |φ(s, v(s))|
≤ λ|u(s)| − λφ|(s, u(s))|+ λ|v(s)| − |φ(s, v(s))|
≤ λ[|u(s)− φ(s, u(s))|+ |v(s)− φ(s, v(s))|].

Therefore, taking the Lp(·)-norm, we have

∥Fu− Fv∥p(·) ≤ λ[∥u− Fu∥p(·) + ∥v − Fv∥p(·)],
0 ≤ λ < 1/2.

Thus, F is a Kannan contraction on Lp(·)(a, b) with constant λ. �

Proposition 4.5. If the function φ satisfies that

(4.3) |φ(s, u(s))| ≤ λ

λ+ 1
|u(s)|, λ ∈ [0, 1/3), u ∈ Lp(·)(a, b),

then the operator F is a Reich contraction operator on Lp(·)(a, b).

Proof. Let u, v ∈ Lp(·)(a, b). As in the proof of proposition above,
notice that the operator F is bounded on Lp(·)(a, b) if we replace (3.2)
by (4.3). In addition, from the triangle inequality, we have that

|φ(s, u(s))− φ(s, v(s))| ≤ λ|u(s)− φ(s, u(s))|+ λ|v(s)− φ(s, v(s))|
≤ λ∗|u(s)− v(s)|+ λ|u(s)− φ(s, u(s))|
+ λ|v(s)− φ(s, v(s))|, for 0 ≤ λ∗ < 1/3.

Therefore, taking the Lp(·)-norm, we have

∥Fu− Fv∥p(·) ≤ λ∗∥u− v∥p(·) + λ∥u− Fu∥p(·)
+ λ∥v − Fv∥p(·),

with λ∗, λ ∈ [0, 1/3). Thus, F is a Reich contraction on Lp(·)(a, b). �

By Bp(·)(r), we set the ball centered on 0 with radius r on the space

Lp(·)(a, b). Let, F be a linear functional of unit norm on Lp(·)(a, b) such
that{

0 < r∥u− µGu∥p(·) ≤ F(u− µGu) for all u ∈ Bp(·)(r) \ {u = µGu},
0 < r∥u− Fu∥p(·) ≤ F(u− Fu) for all u ∈ Bp(·)(r) \ {u = Fu}.
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Notice that the operator F adds Bp(·)(r) into Bp(·)1/(1 + λ)r if the
function φ satisfies (4.2) or (4.3). For the operator µG, the following
result holds.

Lemma 4.6. For |µ| sufficiently small, the operator µG adds Bp(·)(r)
into Bp(·)1/(1 + λ)r.

Proof. Let u ∈ Bp(·)(r). Then, from the proof of Proposition 3.2,
by Proposition 2.2 and the Hölder inequality, we have the following
estimation:

∥Gu∥p∓p(·) ≤ 2p+
(
2Kp(·)

∫ b

a

∥g(·, t)∥p(·) dt
)p±

+ 2p+
∫ b

a

|b2Kq(·)∥u∥
(p/q)±
p(·) ∥1∥q′(·)|p(s) ds

≤ 2p+
(
2Kp(·)

∫ b

a

∥g(·, t)∥p(·) dt
)p±

+ 2p+∥b2Kq(·)∥u∥
(p/q)±
p(·) ∥1∥q′(·)∥

p±
p(·)

≤ 2p+
(
2Kp(·)

∫ b

a

∥g(·, t)∥p(·) dt
)p±

+ 2p+
(
r(p/q)±b2Kq(·)∥1∥q′(·)∥1∥p(·)

)p±
.

Therefore,

∥µGu∥p∓p(·) ≤ |µ|p∓2p+
[ (

2Kp(·)
∥∥∥g(·, t)∥p(·)∥∥1)p±

+

((
1

1 + λ
r

)p∓
b2Kq(·)∥1∥q′(·)∥1∥p(·)

)p±]
.

By choosing |µ| sufficiently small such that the right side of the
inequality above is less than r, the conclusion follows. �

The next result proves the existence of a unique solution of equation
(3.1), in the case when the behavior of the function φ is such that the
induced operator F is a Kannan or Reich mapping.

Theorem 4.7. If the function φ : (a, b) × R −→ R satisfies (4.2) or
(4.3) and ψ : (a, b)× (a, b)×R → R satisfies conditions (3.3) and (4.1),
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then the nonlinear integral equation (3.1)

u(s) = φ(s, u(s)) + µ

∫ b

a

ψ(s, t, u(t)) dt, s ∈ (a, b), |µ| ≪ 1,

has a unique solution u ∈ Bp(·)(r), for a convenient choice of the
parameters µ, λ and r.

Proof. Let T = F + µG : Bp(·)(r) → Bp(·)(r) be the associated
operator to the equation (3.1). For |µ| sufficiently small, T acts over
functions u ∈ Bp(·)(r) satisfying the condition (2.3) in Bp(·)(r).

If the function φ satisfies (4.2), by Proposition 4.4, F ∈ KA(λ)
and if φ satisfies (4.3), from Proposition 4.5, F ∈ RE(λ∗, λ, λ). On
the other hand, Proposition 4.2 gives that µG ∈ BC(|µ|λL), with
λL = LKp(·)∥1∥p(·)∥1∥p′(·).

Thus, from Theorem 2.11, we conclude that T belongs to one of the
following classes:

• T ∈ D(|µ|λL, λ/r).
• T ∈ RE(λ∗ + |µ|λL, λ/r, λ/r).

In both cases, by virtue of Theorem 2.10, the operator T has a unique
fixed point on Bp(·)(r) for a convenient choice of the contractive’s
parameters. Therefore, equation (3.1) has a unique solution u ∈
Bp(·)(r). �

4.3. Continuous solutions of equation (3.1). Since, in the case
p+ < ∞, the set C(a, b) ∩ Lp(·)(a, b) as well as the set of continuous
functions with finite support are dense in Lp(·)(a, b), this section is
devoted to studying the existence of continuous solutions of equation
(3.1). To attain this aim, we are going to use Schaefer’s fixed point
theorem and Arzelà-Ascoli’s theorem. For the sake of the presentation
we enunciate both results here.

Theorem 4.8 (Arzelà-Ascoli). A necessary and sufficient condition
for a family of continuous functions defined on the compact interval
[a, b] to be compact in C[a, b] is that this family is uniformly bounded
and equicontinuous.
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Theorem 4.9 (Schaefer’s fixed point theorem). Assume that X is a
Banach space and that T : X → X is a continuous compact mapping.
Moreover, assume that the set∪

0≤λ≤1

{x ∈ X : x = λTx}

is bounded. Then T has a fixed point.

The existence of continuous solutions of equation (3.1) is established
in the following result.

Theorem 4.10. If the function φ : [a, b] × R → R satisfies (3.2) with
f ∈ L∞(a, b) and is continuous, and if the function ψ : [a, b] × [a, b] ×
R → R satisfies (3.3) with M := sups∈[a,b] |

∫ b
a
g(s, t) dt| < ∞ and is

continuous, then the nonlinear integral equation (3.1):

u(s) = φ(s, u(s)) + µ

∫ b

a

ψ(s, t, u(t)) dt, s ∈ (a, b), µ ∈ R

has a solution u ∈ C[a, b].

Proof. We prove the existence of continuous solutions of equation
(3.1) by establishing the existence of fixed points of the associated
operator T = F + µG. To attain such a goal, we are going to apply
Theorem 4.9; therefore, we need to show that the operator T applies
C[a, b] into itself, is continuous and compact.

First, we will prove that T (C[a, b]) ⊂ C[a, b]. Let us consider an
arbitrary function u ∈ C[a, b], and let s, s0 ∈ [a, b]. Then, we get

|(Tu)(s)− (Tu)(s0)| ≤ |φ(s, u(s))− φ(s0, u(s0))|(4.4)

+ |µ|
∫ b

a

|ψ(s, t, u(t))− ψ(s0, t, u(t))| dt.

Since there exists M > 0 such that |u(t)| ≤ M , for all t ∈ [a, b],
then u is uniformly continuous. This implies that the function φ :
[a, b]× [−M,M ] → R is uniformly continuous; that is, for each ϵ/2 > 0,
there exists δ1 > 0 such that

|φ(s, u(s))− φ(s0, u(s0))| <
ϵ

2
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for all (s, u(s)), (s0, u(s0)) ∈ [a, b] × [−M,M ], satisfying that 0 <
∥(s, u(s))− (s0, u(s0))∥∞ = max{|s− s0|, |u(s)− u(s0)|} < δ1.

Similarly, for each ϵ/[2(|µ|+ 1)(b− a)] > 0, there exists δ2 > 0 such
that

|ψ(s, t, u(t))− ψ(s0, t, u(t))| <
ϵ

2(|µ|+ 1)(b− a)

for all (s, t, u(t)), (s0, t, u(t)) ∈ [a, b] × [a, b] × [−M,M ] satisfying
0 < ∥(s, t, u(t))− (s0, t, u(t))∥∞ = |s− s0| < δ2.

Taking δ = min{δ1, δ2}, from inequality (4.4), we conclude that

|(Tu)(s)− (Tu)(s0)| <
ϵ

2
+ |µ|

∫ b

a

ϵ

2(|µ|+ 1)(b− a)
dt

=
ϵ

2
+

|µ|
1 + |µ|

ϵ

2
≤ ϵ.

Therefore, (Tu)(s) is a (uniformly) continuous function, for any u ∈
C[a, b]. Hence, T (C[a, b]) ⊂ C[a, b]. Actually, since the previous
conclusion does not depend on the function u, we prove in fact, that
the set T (C[a, b]) ⊂ C[a, b] is equicontinuous.

The continuity of T on C[a, b] follows from the continuity of T
on Lp(·)[a, b] and the fact that C[a, b] ⊂ Lp(·)[a, b]. Now, we are
going to prove the compactness of T . It suffices to check that the
conditions of Arzelà-Ascoli’s theorem are satisfied for T (B∞(1)), that
is, the closure on C[a, b] of the image under T of the closed unit ball
B∞(1). Since T is a continuous operator, the set T (B∞(1)) is bounded.

The equicontinuity of T (B∞(1)) follows from the equicontinuity of
T (C[a, b]). Therefore, the operator T : C[a, b] → C[a, b] is compact.

Finally, we are going to prove that for each λ ∈ [0, 1] the sets

Gλ := {u ∈ C[a, b] : u = λTu}

are bounded. In fact, from conditions (3.2) and (3.3), for u ∈ Gλ, we
get

∥u∥∞ = λ∥Tu∥∞ ≤ λ∥φ(s, u(s))∥∞ + λ

∥∥∥∥µ∫ b

a

ψ(s, t, u(t)) dt

∥∥∥∥
∞

(4.5)

≤ λ

(
∥f∥∞ + b1∥up/q∥∞ + |µ|

∥∥∥∥∫ b

a

(g(s, t)+b2|u(t)|p(t)/q(t)) dt
∥∥∥∥
∞

)
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≤ λ
(
∥f∥∞ + b1∥up/q∥∞

)
+ λ|µ| sup

s∈[a,b]

{
b2(b− a)∥up/q∥∞ +

∫ b

a

g(s, t) dt

}
= λ

(
∥f∥∞ + (b1 + b2(b− a)|µ|)∥up/q∥∞ + |µ|M

)
.

Notice that, from the fact that 1 ∈ Lp(·)[a, b] for any function p(·) with
p+ <∞, [4, Proposition 2.43] guarantees that L∞[a, b] ⊂ Lp(·)[a, b], so
for all f ∈ L∞[a, b], ∥f∥p(·) ≤ ∥1∥p(·)∥f∥∞. Therefore, for all functions
f ∈ C[a, b] ⊂ L∞[a, b], we can find a constant K > 0 such that
∥f∥∞ ≤ K∥f∥q(·). Using this fact and Lemma 2.3, we have

∥up/q∥∞ ≤ K∥up/q∥q(·) ≤ K∥u∥(p/q)±p(·)(4.6)

≤ K∥1∥(p/q)±p(·) ∥u∥(p/q)±∞ .

Therefore, from inequality (4.5), we have

∥u∥∞ = λ∥Tu∥∞

≤ λ
(
∥f∥∞ + (b1 + b2(b− a)|µ|)K∥1∥(p/q)±p(·) + |µ|M

)
.

Hence, each set Gλ is bounded, and so ∪0≤λ≤1Gλ. Applying Schaefer’s
fixed point theorem, the operator T has a fixed point in C[a, b], or
equivalently, equation (3.1) has a solution on C[a, b]. The proof is
complete. �

Remark 4.11. Notice that the growth conditions (3.2) and (3.3),
imposed on the functions φ and ψ, respectively, are related to the
exponent functions on the underlying spaces Lp(·). Theorem 4.10
establishes conditions for the existence of solutions on C[a, b] of the
equation (3.1) and, as we saw, the proof takes into consideration the
relations between the norm of C[a, b] and the norm of Lp(·)[a, b] (see,
inequalities (4.6)).

Since the main goal of this paper is to analyze the existence of
solutions of the equation (3.1) defined on Lp(·)(a, b), Theorem 4.10
becomes a tool to guarantee the existence of continuous solutions of
equation (3.1) in this framework, and takes more relevance from the
fact that the set of continuous functions whose support is compact and
contained in (a, b) is dense in Lp(·)(a, b) (upon, p+ <∞).
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The existence of solutions of equation (3.1) on C[a, b], in the case
when the growth conditions (3.2) and (3.3) of the Carathéodory func-
tions φ and ψ are not related to the norm of the space discussed in
[16].

The uniqueness of the continuous solutions of the integral equation
(3.1) is given in the following result.

Theorem 4.12. If the function φ : [a, b] × R → R is continuous and
is a strict contraction in the second variable, i.e.,

|φ(t, x)− φ(t, y)| ≤ L|x− y|, 0 ≤ L < 1,

and if the function ψ : [a, b] × [a, b] × R → R is continuous and is
Lipschitz on the third variable, i.e.,

|ψ(t, s, x)− φ(t, s, y)| ≤M |x− y|, M ≥ 0,

then the nonlinear integral equation (3.1):

u(s) = φ(s, u(s)) + µ

∫ b

a

ψ(s, t, u(t)) dt, s ∈ (a, b), µ ∈ R

has a unique solution u ∈ C[a, b] whenever L+ |µ|M(b− a) < 1.

Proof. Let u, v ∈ C[a, b]. Since the Carathéodory functions φ and
ψ are continuous, in Theorem 4.10, it was proved that T (C[a, b]) ⊂
C[a, b]. Now, from the triangle inequality and the Lipschitz conditions
on the functions φ and ψ we get

∥Tu− Tv∥∞ ≤ ∥φ(s, u)− φ(s, v)∥∞

+

∥∥∥∥µ ∫ b

a

[ψ(s, t, u(t))− ψ(s, t, v(t))] dt

∥∥∥∥
∞

≤ (L+ |µ|(b− a)M)∥u− v∥∞.

That means the operator T : C[a, b] → C[a, b] belongs to BC(α) with
α = (L+ |µ|(b− a)M) < 1. Thus, from Theorem 2.10, T has a unique
fixed point, obtaining in this way the conclusion. �

Remark 4.13. Notice that Theorem 4.3 guarantees the existence of a
unique solution of equation (3.1) on the whole space Lp(·)(a, b), whereas
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Theorem 4.12 guarantees the existence of a unique continuous solution
of this equation. Thus, as Theorem 4.10, under the assumptions
(3.2) and (3.3), it can be useful to extract the continuous solutions
of equation (3.1).

Final remarks. We would like to point out that the use of fixed
point theorems for the mappings resulting from the sum of two
contractive-type maps (Theorem 2.11) don’t require continuity or com-
pactness of the associate operators. Consequently, via this result, we
can analyze the existence of solutions of Volterra integral type equations
with kernels having a diverse kind of growth behavior, without impos-
ing continuity or compactness conditions to the operators involved. It
also can be performed on different function spaces. To the best of our
knowledge, it has not been considered yet.
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and non-existence results for p(x)-Laplacian type equations, Rend. Circ. Matem.
Palermo 59 (2010), 1–46.

12. D.E. Edmunds and W.D. Evans, Hardy operators, function spaces and em-
beddings, Springer-Verlag, Berlin, 2004.

13. X. Fan and D. Zhao, On the spaces Lp(·)(Ω) and Wm,p(·)(Ω), J. Math. Anal.
Appl. 263 (2001), 424–446.

14. A. Gogatishvili and J. Lang, Generalized Hardy operators with kernel and
variable integral limits in Banach function spaces, J. Inequal. Appl. 4 (1999), 1–16.

15. G. Gripenberg, S.O. Londen and O. Staffans, Volterra integral and functional

equations, Cambridge University Press, Cambridge, 1990.

16. F. Isaia, On a nonlinear integral equation without compactness, Acta Math.
Univ. Comen. 75 (2006), 233–240.

17. , An existence result for a nonlinear integral equation without com-
pactness, PanAmer. Math. J. 14 (2004), 93–106.
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