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ABSTRACT. We propose a new well-conditioned bound-
ary integral equation to solve transmission problems of elec-
tromagnetism. This equation is well posed and appears as
a compact perturbation of the identity leading to fast itera-
tive solutions without the help of any preconditioner. Some
numerical experiments confirm this result.

1. Introduction. Boundary integral methods (BIM) are commonly
used for solving scattering problems of arbitrarily shaped three dimen-
sional obstacles and also for antenna design. Their popularity is due
to a combination of many factors. Firstly, the solutions of BIM fulfill
causality and radiation conditions automatically. Secondly, it is only
necessary to discretize the boundaries of the computational domain,
and the simulation requires a smaller number of unknowns than finite
element methods or finite difference methods. One of the main draw-
backs of using a BIM is that, after discretization, it results in a dense
system of linear equations. Moreover, if the size of the obstacle in-
creases, the solutions can only be obtained by means of some iterative
methods coupled with the multilevel fast multipole method (FMM).
The convergence of the iterative methods is directly linked to the choice
of the integral formulation. So, the main difficulty is to choose the best
boundary equation in the sense that this equation gives rise to a well-
conditioned linear system and also in the sense that the solutions must
be accurate. An algebraic preconditioner [11] is generally used to im-
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prove the convergence of the iterative solver. Unfortunately, this kind
of approach loses its effectiveness when the frequency increases or the
meshes become denser with respect to the wavelength.

A few years ago, a new practice of BIM emerged which consists of
building non standard integral equations that deliver well-conditioned
linear systems after discretization and are able to be efficiently solved
with no preconditioner.

At the origin of this approach was a generalization of the Brackhage-
Werner equation of acoustics in which the coupling coefficient between
the single and double layer potentials was replaced by an approximation
of the Dirichlet-to-Neumann operator [17, 20, 21]. This coupling
operator played the role of a preconditioner analytically regularizing
the badly conditioned single layer potential. At the same time, this
equation was shown to belong to a new class of integral equations,
the so-called generalized combined source integral equations (GCSIE),
opening the way to build some intrinsically well-conditioned equations
for many other boundary conditions.

Actually, the GCSIE formalism depends on the choice of a regulariz-

ing operator R̃ whose vocation is to approximate as closely as possible
the boundary operator R linking one component of the Cauchy data to
the other. A crucial feature of this approach is that, if the approxima-

tion R̃ is exact, the resulting equation becomes trivial. In other words,
the GCSIE formalism allows finding the optimal preconditioner whose

R̃ must be a good approximation.

A powerful technique for finding such an approximation consists of

building an operator R̃ with the same principal symbol as R. But this
problem is very ill-posed, one reason being that the principal symbol
of an operator is unchanged under compact perturbation. Therefore, a
second constraint of a more physical nature is introduced demanding

R̃ to coincide with R on flat parts of the boundary.

When this program is realized, the first requirement on the symbolic

structure of R̃ leads to an equation being a compact perturbation K
of identity, and the second requirement, to a K with a small operator
norm.

Therefore, this type of equation is well adapted to an iterative
solution and, if the spectral behavior of the equation is well restored
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to the discrete level, then the convergence rate is independent from
the space refinement [9, 10]. That is why the GCSIE equations
are attractive, compared to the classical algebraic preconditioners like
SPAI (SParse approximate inverse) where parameters depending on
the frequency and the quality of the mesh are not obviously taken
into account and need to be tuned very carefully. Indeed, The GCSIE
simplifies the work of the “end user” by regularizing the pathological
behavior of operations at the continuous level.

Several constructions of R̃ operators have been successfully tested
in acoustics or electromagnetism for Dirichlet or Neumann problems
[1, 2, 3, 6, 7, 14, 15], and more recently Robin problems [22, 25].
The numerical results are impressive in terms of reducing the number
of iterations and the CPU time. The GCSIE formalism can also be
extended to transmission problems leading in acoustics to well-posed
and well-conditioned equations [4, 5]. In electromagnetism, a first
integral equation has already been proposed [18] but with no proof of
its theoretical well posedness nor its numerical efficiency. The work we

present here fills this gap, thanks to the use of a simpler R̃ operator.

The paper is divided as follows. In Section 2, we present the
transmission problem to be solved, and we recall some background
on integral equations in electromagnetism. In Section 3, we propose
and theoretically analyze a GCSIE formulation for the transmission
problem. In particular, we prove that our choice leads to an equation
well-posed at any frequency and whose the underlying operator is a
compact perturbation of the identity. The final Section 4 is devoted
to numerical results. A comparison with the so-called PMCHWT
(Poggio-Miller-Chan-Harrington-Wu-Tsai) integral equation shows the
performance of the new GCSIE formulation.

2. Transmission problem and background on integral equa-
tions. In this section, we define at first the transmission problem con-
sidered in this paper, and then we give some well-known results about
the integral formalism in electromagnetism. In particular, we recall
the so-called PMCHWT (Poggio-Miller-Chan-Harrington-Wu-Tsai) in-
tegral equation.

2.1. Transmission problem. Let Ω1 and Ω2 := R3 \ Ω1 be two
open domains of R3 containing homogeneous dielectric materials with
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electric permittivity and magnetic permeability (εj ;µj), j = 1, 2. We
assume that Ω2 is bounded. The outward pointing normal vector on
the boundary Γ of Ωj is nj and n := n2. The impedance and the wave

number of each medium are, respectively, given by zj :=
√
µj/εj and

kj := ω
√
µjεj , where ω is the frequency. Finally, if U : R3 → R3 is a

vector field defined on Ω1∪Ω2, we adopt the notation γjU := n×Uj|Γ,
where Uj := U|Ωj

. The symbol ⊕ is used to stick together two fields
separately defined on Ω1 and Ω2, e.g., U = U1 ⊕U2.

For the sequel, we will say that a vector field (E,H) on R3 \ Γ is a
radiating electromagnetic field if it satisfies the Maxwell equations

(2.1)
∇×Ej − ikjzjHj = 0 in j (j = 1, 2)

∇×Hj + ikjz
−1
j Ej = 0 in j (j = 1, 2)

and the radiation condition

(2.2) lim(E1(x) + z1
x

|x|
×H1(x)) = 0 when |x| → +∞.

Given a couple (u0,v0) of tangential vector fields on Γ we search
a radiating electromagnetic field (E,H) satisfying in addition the
transmission condition γ1(E1,H1)− γ2(E2,H2) = (u0,v0) read as

(2.3) τ(E,H) = (u0,v0)

with the notation τ := γ1 − γ2. When (Einc,Hinc) is a plane wave
impinging Ω2 from Ω1 classic conditions are:

(2.4) γ1(E1,H1)− γ2(E2,H2) = −γ1(E
inc,Hinc),

leading to a well-posed transmission problem [8, 24].

2.2. Potentials and boundary operators. Classical potentials in
R3 \ Γ are given by:

(2.5) T =
1

ik
∇×∇× G and K = ∇× G,

where G stands for the vector potential, depending on a given wavenum-
ber k, which to a tangent vector-field u on Γ associates the vector-field
defined on R3 \ Γ by

(2.6) Gu(x) = − 1

4π

∫
Γ

eik|x−y|

|x− y|
u(y) dy.
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The traces of T and K potentials yield two fundamental boundary
operators

(2.7) T := −n× γjT , K := −n× (γjK + Id/2),

which are pseudo-differential operators of orders, respectively, 1 and
−1 when the boundary Γ is smooth [26]. These definitions do not
depend on the domain Ωj from which are taken the traces, reflecting a
specific behavior of the tangential components of T and K across the
boundary: no jump for T to the contrary of K whose jump is precisely
K. On the other hand, a well known and useful description for T is

(2.8) T =
1

ik
(∇Gs∇ ·+k2Gv)

where Gv (respectively, Gs) is the tangential (respectively, Dirichlet)
trace of G.

Both Gs and Gv will be simply referred to as G if the context is
clear, and n × T and n × K will be noted as, respectively, T× and
K×. Furthermore, when we will have to specify the wavenumber kj to
which are related these operators, we will append the subscript j to
their symbolic letter (e.g., Tj , Kj , Gj , etc.). Such operators with no
subscript will mean that the expression they compose is indifferently
true either with j = 1 or 2.

If (E,H) is a radiating electromagnetic field with k1 = k2 =: k, then
we have the following Stratton-Chu formulas [12]:

(2.9) Cjγj(E,H) =

{
(E,H) on Ωj

0 on Ωi (i ̸= j),

where

(2.10) C1 :=

(
−K zT
− 1

zT −K

)
, C2 := −C1.

Exterior and interior tangential traces of theses potentials lead to the
boundary operators

(2.11) Cj := jCj

named as Calderón projectors and verifying

(2.12) C1C2 = 0.
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From definitions (7) and (11) comes an expression of Cj in function of
the basic operators T and K:

C1 =

(
Id
2 −K× zT×

− 1
zT

× Id
2 −K×

)
(2.13)

C2 =

(
Id
2 +K× −zT×

1
zT

× Id
2 +K×.

)
Expanding Cj in (12) with (13) gives the so-called Calderón relations

(T×)2 =
Id

4
+ (K×)2(2.14)

T×K× = −K×T×.(2.15)

From now on in the sequel C1 and C2 are built, respectively, with the
given wave numbers k1 and k2 of the Maxwell equations (1) governing
the transmission problem we want to solve. Idem for the projectors C1

and C2.

2.3. A classic integral equation. The derivation of an integral
equation to solve (1)–(4) is based on the Stratton-Chu formulas. Ap-
plying (9) to the solution (Ej ,Hj) of (1)–(4) and to the incident plane
wave (Einc,Hinc) gives, respectively,

γ1C1γ1(E1,H1)− γ2C2γ2(E2,H2) = −γ1(E
inc,Hinc)(2.16)

γ1C1γ1(E
inc,Hinc) = 0.(2.17)

Converting exterior traces to interior ones in (16) with (4) and adding
(17) to (16) one obtains the PMCHWT integral equation [16]

(2.18) (C1 − C2)(M,J) = −γ1(E
inc,Hinc)

whose solutions (M,J) = (γ2E, γ2H) are the Cauchy data of the
electromagnetic field in the dielectric Ω2.

3. Intrinsically well-conditioned integral equations.

3.1. Principle of the construction and objectives. The starting
point for building regularized boundary integral equations with the
GCSIE formalism is based on some obvious but crucial remarks. Since
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the transmission problem (1)–(3) is well posed there exists a potential
R such that R(u0,v0) = (E,H). Therefore, by construction of R,

(3.1) τR = Id.

Taking traces of the electromagnetic field radiated by R in each domain
Ωj leads to a 2× 2 matrix of boundary operators:

(3.2) Rj := γjR.

We denote by R := (R1, R2). The relation (19) giving R1 −R2 = Id,

(3.3) R = (R1, R1 − Id).

From the Stratton-Chu formulas (9) and the definition of Rj (20) we
have

(E,H) = C1γ1(E,H)⊕C2γ2(E,H)

= (C1R1 ⊕C2R2)(u0,v0).

Finally, the transmission condition τ(E,H) = (u0,v0) gives the crucial
relation

(3.4) τ(C1R1 ⊕C2R2) = Id.

Now, let R̃ = (R̃1, R̃2) be an approximation of R. We decide to look
for the solution (E,H) of the transmission problem (1)–(3) under the
form

(3.5) (E,H) = (C1R̃1 ⊕C2R̃2)(u,v)

where (u,v) are a couple of current distributions on Γ acting as a source

excitation of the potential C1R̃1 ⊕ C2R̃2. Therefore, in order to find
a source (u,v) radiating the field solution of (1)–(3), we have to solve
the resulting source integral equation

(3.6) τ(C1R̃1 ⊕C2R̃2)(u,v) = (u0,v0).

Because of the crucial relation (22), if R̃ = R, the new equation
(24) becomes trivial. Therefore, we take up the challenge that if we

succeed in building an operator R̃ sufficiently “close” to R, the resulting
equation will be a “small” perturbation of the identity produced after
discretization of a well-conditioned linear system.
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3.2. Convenient form of the regularizing operator R. We recall
that there exists a boundary operator Yj (j = 1, 2), called admittance,
such that, for all radiating electromagnetic fields (Ej ,Hj),

(3.7) Yj(γjEj) = γjHj .

Actually, admittance links the first Cauchy data of Ej given by γjEj

to the second one being γjHj . As E and H play symmetrical roles in
(1), one can easily show that

(3.8) Y 2
j = −Id/z2j .

Proposition 3.1. The 2× 2 matrix R1 can be read as

(3.9) R1 =

(
A −z21Y1B

Y1A B

)
,

where A := (Id + z22Y2Y1)
−1 and B := (Id + z21Y2Y1)

−1.

Proof. If Rj
kl denotes the operator-coefficient kl of Rj , (19) is equiv-

alent to

R1
11 −R2

11 = Id R1
12 = R2

12(3.10)

R1
21 = R2

21 R1
22 −R2

22 = Id.

As the two rows of Rj are the Cauchy data of the field radiated by R
which are linked to each other following (25), we have

(3.11) YjR
j
11 = Rj

21 YjR
j
12 = Rj

22.

Therefore, R1
21 = Y1A and R1

12 = Y −1
1 B = −z21Y1B with the help of

(26).

Multiplying R1
11 − R2

11 = Id by Y2 and, using (29), gives Y2R
1
11 −

R2
21 = Y2. ChangingR

2
21 inR1

21 and reusing (29) leads to (Y2−Y1)R
1
11 =

Y2. Finally, A = R11 = (Y2 − Y1)
−1Y2 = (Id − Y −1

2 Y1)
−1 =

(Id + z22Y2Y1)
−1 thanks to (26). B is found in a similar way.

We now have to equip the GCSIE (24) with an R̃ operator being
a relevant approximation of R. Due to (21), it is quite natural to

search R̃ under the form (R̃1, R̃1 − Id) where R̃1 is defined by the
expression (27) in which A, B and Y1 are replaced by some counterpart
approximations. �
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The two next paragraphs are devoted to finding such approximations
with the help of the pseudo-differential calculus. Therefore, in order to
use this tool, the surface Γ is supposed smooth. Ψs denotes the class
of classical pseudodifferential operators of order s on Γ.

3.3. Approximations of A and B.

Proposition 3.2. The admittance operators Y1 and Y2 are of order 1
and

z1Y1 = −2T×
1 + 4K×

1 T×
1 modΨ−1(3.12)

z2Y2 = 2T×
2 + 4K×

2 T×
2 modΨ−1(3.13)

Proof. As for Rj , a similar relation to (29) stands for Cj (the reason
is the same). Therefore, (13) leads to

z1Y1T
×
1 =

Id

2
−K×

1(3.14)

z2Y2T
×
2 = − Id

2
−K×

2 .(3.15)

Using (32) and the Calderón formula (14), we get

−z1
1

4
Y1 =

1

2
T×
1 −K×

1 T×
1 − z1Y1(K

×
1 )2.

The orders of K×
1 and (K×

1 )2 being, respectively, −1 and −2, −(1/4)Y1

and (1/2)T×
1 have the same principal symbol and, therefore, the order

of Y1 is 1. As Y1(K
×
1 )2 is of order −1, one has (30). The proof of (31)

is the same. �

The well-known Helmholtz decomposition states that the spaceH0
T of

L2 tangential fields on Γ splits into a direct sum of two closed orthogonal
subspaces:

(3.16) H0
T = n×∇H1 ⊕⊥ ∇H1

where H1 is the usual Sobolev space of order 1 on Γ. Moreover, it
is possible to give to the underlying projectors of this decomposition a
more explicit form with the help of the Moore-Penrose pseudoinverse of
Laplace-Beltrami operator ∆. Indeed, if Hs

• (s > 0) denotes the space

of fields u ∈ Hs with
∫
u dΓ = 0, ∆ induces a one-to-one mapping ∆̃
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from H2
• to H0

• . Taking ∆1 as the pseudoinverse w∆̃−1
∏
, where

∏
is

the orthogonal projector of H0 onto H0
• , one has:

Proposition 3.3. Projectors (
∏

loop,
∏

star) of the Helmholtz decom-

position (33) read as ∏
loop

= DloopPloop(3.17)

∏
star

= DstarPstar

where

Ploop = ∆−1∇ · n×, Pstar = ∆−1∇(3.18)

Dloop = −n×∇, Dstar = ∇.(3.19)

Proof. We denote by (π1, π2) the underlying projectors of the decom-
position (33) by (π1, π2). For all u = n×∇p with p ∈ H1(Γ), one has∏

loop u = n×∇∆−1∇·∇p = n×∇(p−
∫
Γ
p(x) dx/|Γ|) = n×∇p = u.

So
∏

loop π1 = π1, and, as
∏

loop π2 = 0, it is shown that
∏

loop =∏
loop(π1 + π2) = π1. A similar proof stands for

∏
star = π2. �

From now on, we will need to use the principal symbols of Gs and
∆ given as functions of a ξ parameter being a cotangent vector onΓ:

(3.20) σG(ξ) = −∥ξ∥−1/2, σ∆(ξ) = −∥ξ∥2.

These symbols, well known for a long time [26], are at the heart of the
next result.

Proposition 3.4. The operator Y2Y1 is of order 0 and

(3.21) z1z2Y2Y1 =
k1
k2

∏
loop

+
k2
k1

∏
star

modΨ−1.

Proof. Firstly, let us verify that

(3.22) T×
2 T×

1 = −1

4

(
k1
k2

∏
loop

+
k2
k1

∏
star

)
modΨ−1.
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Indeed, from (8), we have modulo Ψ−1,

T×
2 T×

1 = − 1

k1k2
(k21n×∇G2∇ · n×G1 + k22n×G2n×∇G1∇·)

= − 1

k1k2
(k21n×∇G2G1∇ · n×−k22∇G2G1∇·).

Then, equality (39) results from −4G1G2 = ∆−1 modΨ−3, because of
(37), and from relations (34).

We denote by S1 = z1Y1 +2T×
1 and S2 = z2Y2 − 2T×

2 , and compute

z1z2Y2Y1 = (S2 + 2T×
2 )(S1 − 2T×

1 )

= S2S1 − 4T×
2 T×

1 − 2S2T
×
1 + 2T×

2 S1.

From (30) and (31), one knows that, mod−1, S1 = 4K×
1 T×

1 and
S2 = 4K×

2 T×
2 . Therefore, using the anti-commuting property (15) and

the fact that T×
1 T×

2 is of order 0 as enlightened by (39), we can drop
the −1 order operators S1S2, S1T

×
2 , T×

1 S2, and again with the help of
(39) one obtains (38). �

Proposition 3.5. The operators A and B in (27) are of order 0 and
are respectively equal modulo Ψ−1 to

Ã :=
z1k2

z1k2 + z2k1

∏
loop

+
z1k1

z1k1 + z2k2

∏
star

(3.23)

B̃ :=
z2k2

z1k1 + z2k2

∏
loop

+
z2k1

z1k2 + z2k1

∏
star

.(3.24)

Proof. Using (38) and the relation Id =
∏

loop +
∏

star gives

Id + z22Y2Y1 =
k1z2 + k2z1

k2z1

∏
loop

+
k2z2 + k1z1

k1z1

∏
star

modΨ−1.

Therefore, (Id + z22Y2Y1)Ã = Id + R with R ∈ Ψ−1 and, because

A(Id + z22Y2Y1)Ã = Ã, one has A + AR = Ã, leading to (40). It is
the same thing for (41). �
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We leave it to the reader to verify a simple but very crucial relation
for the sequel:

(3.25) Ãn×+n× B̃ = n× .

3.4. Approximation of Y1. The Helmholtz decomposition allows us
to handle any vectorial boundary operator M as a 2×2 matrix of scalar
boundary operators Mij as follows:

(3.26) M = (DloopDstar

(
M11 M12

M21 M22

)(
PloopPstar

)
.

A meticulous pseudo-differential calculus, out of the scope of this
paper, gives the following matrix representation of Gv in the Helmholtz
potentials:

(3.27) Gv =

(
Gs 0
0 Gs

)
modΨ−2

allowing us to easily state

(3.28) T× =
1

ik

(
0 −G(∆ + k2Id)

k2G 0

)
modΨ−2,

thanks to (8) and (35)–(36).

As the two lines of the Calderón projector C1 in (13) are the Cauchy
data of a radiating electromagnetic field, according to the definition
(25) Y (Id/2 − K×) = −z−1T×. And, because K× is well known to
vanish on a flat surface, the admittance Y on an infinite plane is

(3.29) Y = −2z−1T×.

On the other hand, the complete symbol of Gon a an infinite plane
being 1

2i (k
2 −∥ξ∥2)−1/2, this operator appears as a fractional power of

the Helmholtz equation:

(3.30) G =
1

2i
(∆ + k2Id)−1/2.

Combining (45), (46) and (47), we obtain on an infinite plane

(3.31) Y =
1

zk

(
0 −(∆ + k2Id)1/2

k2(∆ + k2Id)−1/2 0

)
.
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So we have a representation of Y on the plane through a formula easily
generalizable to any kind of surface. Indeed, if ∆ in (48) is viewed as
the Laplace-Beltrami operator, this formula yields an approximation of
the admittance for a general surface Γ.

But, taken as is, formula (48) would result in a GCSIE equation with
spurious modes. A remedy is to localize it by replacing k with k + iϵ,
where ϵ > 0 is a small damping parameter. Finally, the approximation
of Y1 we propose is:

(3.32) Ỹ1 :=
1

z1k1

(
0 −(∆ + k21,ϵId)

1/2

k21(∆ + k21,ϵId)
−1/2 0

)
,

where k1,ϵ := k1 + iϵ with ϵ > 0.

3.5. A well-posed equation. With an approximation of the optimal

regularizing operator R gkiven as R̃ = (R̃1, R̃1 − Id), the GCSIE
equation (24) becomes

(3.33) C1R̃1 + C2(Id− R̃1)(u,v) = (u0,v0).

For the sequel,

(3.34) R̃1 :=

(
Ã −z21 Ỹ1B̃

Ỹ1Ã B̃

)
,

where Ã, B̃ and Ỹ1 are given by (40), (41) and (49), respectively. The
goal of this paragraph is to show that equation (50) is well-posed.

Proposition 3.6. If a tangential vector field (u,v) on Γ verifies

R̃(u,v) = (u,v), then Ỹ1u = v.

Proof. If R̃(u,v) = (u,v), then Ỹ1Ãu + B̃v = v, we can rewrite

Ỹ ′
1n × Ãn × n × u = (Id − B̃)v with Ỹ ′

1 := Ỹ1n×. As relation (42) is

equivalent to n×Ãn× = (B̃−Id), we have Ỹ ′
1(B̃−Id)n×u = (Id−B̃)v,

which yields Ỹ1u = v because (B̃ − Id) and Ỹ ′
1 commute. �

If Hs denotes the usual Sobolev space of vector fields on Γ whose
norm is written | · |s, we define Hs,s′ as the functional space composed

of any tangential field u such that
∏

loop u ∈ Hs and
∏

star u ∈ Hs′ .
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Equipped with the norm (|
∏

loop u|2s + |
∏

star u|2s′)1/2, Hs,s′ becomes a
Hilbert space.

We are going to see that a relevant space for our equation is
X := H0,1/2. It is worthwhile mentioning that X can be defined in

a less abstract manner. Indeed, if H
−1/2
div is the space of all tangential

vectorial fields in H−1/2 with divergence in H−1/2, the space X is

nothing else than L2
T ∩H

−1/2
div . For details, we refer the reader to [19]

where X is used to achieve the numerical analysis of the combined field
integral equation of the electromagnetism.

A convenient way of expressing that Mij ∈ Ψmij for all i, j = 1, 2 in
(43) is to write

(3.35) M ∈ Ψ

(
m11 m12

m21 m22

)
.

When all orders mij are the same, say m, we will just write Ψm.

Proposition 3.7. It is known that K× ∈ Ψ−1, but the matrix repre-
sentation (43) shows that K× is a little bit more regular :

(3.36) K× ∈ Ψ

(
−1 −1
−3 −1

)
.

Proof. Starting from the Calderón relation Id = −4(T×2 − K×2

),

one has modulo Ψ−3,
∏

star K
×∏

loop = −4
∏

star K
×T×2 ∏

loop, which

is equal to 4
∏

star T
×K×T×∏

loop, due to the anti-commuting relation

(15). As
∏

star T
× and T×∏

loop are in Ψ−1, K×
21 ∈ Ψ−3 and (53) is

shown. �

If u,v are some vector fields on Γ, we denote by ⟨u,v⟩ :=
∫
u · n×

v dΓ. Related to this duality product is a classical result, a consequence
of the famous Rellich’s lemma (see, for instance, [13, Theorem 6.10]):

Proposition 3.8. Any radiating electromagnetic field (E,H) on R3\Γ,
non-null on Ω1, satisfies

ℜ⟨γ1H, γ1E⟩ > 0(3.37)

ℜ⟨γ2H, γ2E⟩ = 0.(3.38)
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Proposition 3.9. If u is a non-null tangential vector field on Γ, then

ℜ⟨Ỹ1u,u⟩ and ℜ⟨Ỹ1B̃u,u⟩ are both > 0.

Proof. Let p := Ploopu and q := Pstaru be the Helmholtz potentials
of u. Then

z1k1ℜ⟨Ỹ1u,u⟩ = k21ℜ⟨(∆ + k21,εId)
−1/2p, p⟩

ℜ⟨(∆ + k21,εId)
1/2q, q⟩.

As the spectrum of ∆ lies on the negative real axis, the spectral theorem
states that the real part of the spectrum of (∆+ k21,εId)

±1/2 is strictly

positive. Therefore, ℜ⟨Ỹ1u,u⟩ > 0 and, with the same reasoning,

ℜ⟨Ỹ1B̃v,v⟩ > 0. �

Theorem 3.10. The operator C1R̃1 + C2(Id − R̃1) is a one-to-one
(bijective) mapping on X.

Proof. We will apply the Fredholm alternative to Z := C1R̃1 +

C2(Id − R̃1) seen as an injective compact perturbation of identity on
X. More exactly, we will show that Z is equal to the identity plus an
operator belonging to a special class of pseudo-differential operators

(3.39) Ψc := Ψ

(
−1 0
−2 −1

)
,

all of whose elements are compact in X because of the mapping H0,1/2

to H1/2,3/2.

Let us first establish some technical results:

2(z1T
×
1 + z2T

×
2 )Ỹ1Ã = Id modΨc(3.40)

2z1z
−1
2 (z2T

×
1 + z1T

×
2 )Ỹ1B̃ = Id modΨc(3.41)

z−1
1 T×

1 Ã− z−1
2 T×

2 (Id− Ã) = 0 modΨc(3.42)

z1T
×
1 B̃ − z2T

×
2 (Id− B̃) = 0 modΨc(3.43)

K×Ỹ1Ã = 0 modΨc(3.44)

K×Ỹ1B̃ = 0 modΨc.(3.45)
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The identities (57) and (58) are trivial consequences of definitions of Ã

and B̃ at the condition to verify that

(3.46) 2z1T
×
j Ỹ1 =

k1
kj

∏
loop

+
kj
k1

∏
star

modΨc.

As from (49),

(3.47) Ỹ1 ∈ Ψ

(
−2 1
−1 −2

)
,

the product of an operator of class Ψ−2 with Ỹ1 is in Ψc. Hence,

combining (45) and (49) shows that, modulo Ψc, z1T
×
j Ỹ1 is equal to

(3.48)

− 1

ikjk1

(
Gj(∆ + k2j Id)k

2
1(∆ + k21,εId)

1/2 0

0 k2jGj(∆ + k21,εId)
1/2

)
.

We then derive (63) by a simple pseudo-differential calculus involving
the principal symbols of Gj , (∆ + k2j Id) and (∆ + k21,εId)

±1/2 given,

respectively, by −∥ξ∥−1/2, −∥ξ∥2 and (i∥ξ∥)±1.

Expanding T×
1 , T×

2 and B with (45), (41) shows that, modulo Ψc,

z1T
×
1 B̃ − z2T

×
2 (Id− B̃) is equal to(

0 β(G1(∆− k21Id)−G2(∆− k22Id))
α(G2 −G1) 0

)
with α = iz1z2k1k2(z1k1 + z2k2)

−1, β = iz1z2(z2k1 + z1k2)
−1. This

results in (60) because G1 and G2 are operators of class Ψ−1 with the
same principal symbol. We could show this in the same manner as (59).

With (53) and (64), we have K× Ỹ1 ∈ Ψ

(
−2 0
−2 −2

)
, leading to (61)

and (62).

Using (13) and (51), each coefficient-operator Zij of C1R̃1+C2(Id−
R̃1) can be read as:

Z11 =

(
Id

2
−K×

1

)
Ã+ z1T

×
1 Ỹ1Ã

+

(
Id

2
+K×

2

)
(Id− Ã) + z2T

×
2 Ỹ1Ã
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Z12 = −
(
Id

2
−K×

1

)
z21 Ỹ1B̃

+ z1T
×
1 B̃ +

(
Id

2
+K×

2

)
z21 Ỹ1B̃

− z2T
×
2 (Id− B̃)

Z21 = −z−1
1 T×

1 Ã+

(
Id

2
−K×

1

)
Ỹ1Ã

+ z−1
2 T×

2 (Id− Ã)−
(
Id

2
+K×

2

)
Ỹ1Ã

Z22 = z−1
1 T×

1 z21 Ỹ1B̃ +

(
Id

2
+K×

1

)
B̃

+ z−1
2 T×

2 z21 Ỹ1B̃ +

(
Id

2
+K×

2

)
(Id− B̃).

Therefore, modulo Ψc, we have Z11 = Id because of (53) and (57),
Z12 = 0 because of (60) and (62), Z21 = 0 because of (59) and
(61), Z22 = Id because of (53) and (58), proving that Z is a compact
perturbation of the identity on X. Now, let us show the injectivity.

Let (u,v) ∈ X be such that Z(u,v) = 0. As the transmission
problem (1)–(3) is well posed, the two following electromagnetic fields

(3.49) (E1,H1) := C1R̃1(u,v), (E2,H2) := C2(Id− R̃1)(u,v)

are null, respectively, on Ω1 and Ω2. From (13), we have the jump
relations

(γ1 − γ2)C1 = Id , (γ2 − γ1)C2 = Id,

which applied to (65) lead to
(3.50)

−γ2E1 = R̃1
11u+ R̃1

12v, γ1E2 = u− R̃1
11u− R̃1

12v

−γ2H1 = R̃1
21u+ R̃1

22v, −γ1H2 = v − R̃1
21u− R̃1

22v.

We leave it to the reader to verify that n × Ỹ1 and n × R̃1
ij go from

X = H0,1/2 to its dual X∗ = H0,−1/2, allowing to compute, with
the help of (66), the duality ⟨γ1H2, γ1E2⟩ = ⟨γ2H1, γ2E1⟩ + ⟨v,u⟩ −
⟨v, R̃1

11u⟩−⟨v, R̃1
12v⟩−⟨R̃1

21u,u⟩−⟨R̃1
22v,u⟩. Relation (42) shows that

⟨v, Ãu⟩+ ⟨B̃v,u⟩ = ⟨v,u⟩, and so ℜ⟨γ1H2, γ1E2⟩ = −z21ℜ⟨Ỹ1B̃v,v⟩ −
ℜ⟨Ỹ1u,u⟩. We conclude with Proposition 9 that ℜ⟨γ1H2, γ1E2⟩ ≤ 0,
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which implies that E2 = H2 = 0 on the whole space as a consequence of

(54). Coming back to the right relations of (66) gives R̃1(u,v) = (u,v);

hence, Ỹ1u = v according to Proposition 6. The left relations of (66)

imply that ℜ⟨γ1H2, γ1E2⟩ = ℜ⟨u,v⟩ = ℜ⟨u, Ỹ1u⟩ and, as (E2,H2) is

null, ℜ⟨u, Ỹ1u⟩ = 0. Proposition 9 gives u = 0, and it follows that

v = Ỹ1u = 0.

Finally, since Z is an injective compact perturbation of the identity
on X, it is an invertible operator according to the Fredholm alternative
theorem. �

4. Numerical issues. The aim of this part is not to present in
details the discretization scheme of the GCSIE, which will be the
subject of a future communication in order to give some preliminary
results indicating good iterative behavior of the GCSIE (50) compared
to the popular PMCHWT equation (18). If boundary operators are
classically discretized following a Galerkin method on Raviart-Thomas

elements, it is worthwhile to say that the synthesis of Ỹ1 given by (49) is
not straightforward. Indeed, taken as it is, this formula is numerically
intractable because of the square roots of operators. A solution is to
approach the functions z1/2 and z−1/2 in the vicinity of the spectrum
of ∆+k21 with a sum of poles (z−pi)

−1 given by a Padé expansion. We
refer to [23] where the technique is presented in the context a GCSIE
for Leontovich problems.

In the experiments that follow, both GCSIE and PMCHWT matrix-
vector products are accelerated with a multilevel fast multipole algo-
rithm and iterative solutions are done with a regular GMRES solver
whose stopping criterion on the residue is fixed to 10−3. For the PM-
CHWT equation an SPAI (SParse Approximate Inverse) preconditioner
is used.

4.1. Analytical case: Dielectric sphere. We consider the trans-
mission problem given by a plane wave impinging at 2 GHz a dielectric
unit sphere with constants ε = 4 and µ = 1. The diameter of the sphere
is about 26 wavelengths of a plane wave travelling in the dielectric.

The far field of the scattered field, named the bistatic radar cross
section (RCS), is a good criterion for evaluating the accuracy of a
solution. The RCS of a sphere can be analytically computed with the
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Mie series. In Figure 1 we observe a very good agreement between this
reference solution and the results of the GCSIE and PMCHWT.

Angle

R
C

S
 i
n

 d
B

(m
2
) 

Figure 1. Bistatic radar cross section of the sphere at 2 GHz.

Figure 2 represents the spectrums of the GCSIE and the PMCHWT
operators whose eigenvectors on a sphere are the spherical harmonics
[15]. As expected, the spectrum of the GCSIE is bounded with an

important accumulation of eigenvalues near (1, 0), meaning that R̃ is a
rather good approximation of the optimal regularizing operator R. By
contrast, the spectrum of the PMCHWT turns around the origin (0, 0)
and is spread more in the complex plane. This kind of distribution is
less adapted to a fast iterative resolution.

As the convergence speed of an iterative solver also depends on the
mesh, two homogeneous meshes of different sizes are tested. If λ is
the wave length of a plane wave travelling inside the sphere and h is
the average edge length of the mesh, then the ratio λ/h measures the
accuracy of the mesh. Table 1 shows that the number of matrix-vector
products for the GCSIE is very stable with regard to the discretization
of the geometry. This stability is not verified by the PMCHWT whose
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Figure 2. Spectrums of the GCSIE and PMCHWT (sphere at 225 MHz).

Table 1. Iterations count vs. mesh precision (sphere at 2 GHz).

λ/h GCSIE PMCHWT
7 23 it. 40 it.
14 27 it. 100 it. (res= 10−2)

Table 2. Iterations count vs. frequency at a fixed mesh precision λ/h = 14
(sphere).

frequency GCSIE PMCHWT
225 Mhz 23 it. 40 it.
450 MHz 60 it. 115 it.
900 MHz 115 it. 300 it. (res= 2 · 10−3)

iterations’ count increases significantly with the size of the mesh,
despite the use of the SPAI preconditioner.

It is also well known that the convergence speed of an iterative
method is slowed down by the rise of the frequency. Table 2 presents
results at different frequencies but with a fixed mesh precision λ/h = 14
and a GMRES residual equal to 10−3. As expected, the number of it-
erations increases in function of the frequency, but the new formulation
is significantly more stable than the PMCHWT.
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Figure 3. Geometry of the NASA almond.

4.2. Singular geometry: Dielectric almond. The NASA almond
(Figure 3) is a popular benchmark in the community of computational
electromagnetics. For our experiments, the almond is filled with a
dielectric material of constants ε = 4 and µ = 1 and has characteristic
lengths about equal to 9λ×3λ×22λ where λ is the interior wavelength.
The incident plane wave illuminates the almond by the tip at 1.3 GHz.
The mesh is made of 134648 triangles and supports 201972 degrees of
freedom corresponding to a precision λ/h ∼ 7.

Figure 4 gives the bistatic RCS of the almond. Curves are very close
to each other.

Figure 5 shows the history of the GMRES convergence for the
GCSIE and SPAI preconditioned PMCHWT formulations. We see that
the GCSIE formulation gives the solution with a smaller number of
iterations. We have about a factor 7 between the two methods.

5. Conclusions. In this paper, we have proposed and analyzed a
new GCSIE formulation for the scattering by homogeneous dielectric
3-D arbitrary shaped objects. In particular, for smooth obstacles, we
have proved that this formulation is well-posed at any frequency and
can be viewed as a compact perturbation of the identity operator. This
formulation has been implemented in the context of a GMRES solution
coupled with a multilevel fast multipole method. Some numerical
comparisons with the so-called PMCHWT formulation have shown
the efficiency of the new formulation: solutions of the GCSIE are
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Figure 4. Bistatic Radar Cross section (almond at 1 GHz).

Figure 5. History of the GMRES convergence with a GCSIE and an SPAI
preconditioned PMCHWT equation.
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obtained after a small number of iterations and with a similar accuracy
as PMCHWT. In conclusion, this GCSIE formulation seems to be an
interesting alternative to the classical formulations in the context of
homogeneous dielectric obstacles.
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