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NUMERICAL SOLUTION OF AN INTEGRAL
EQUATION FROM POINT PROCESS THEORY

R.S. ANDERSSEN, A.J. BADDELEY, F.R. de HOOG AND G.M. NAIR

ABSTRACT. We propose and analyze methods for the
numerical solution of an integral equation which arises in
statistical physics and spatial statistics. Instances of this
equation include the Mean Field, Poisson-Boltzmann and
Emden equations for the density of a molecular gas, and
the Poisson saddlepoint approximation for the intensity of
a spatial point process. Conditions are established under
which the Picard iteration and the under relaxation iteration
converge. Numerical validation is included.

1. Introduction. Several important techniques in statistical physics
and spatial statistics require the solution of integral equations of the
general form

(1) f(x) = g(x) exp

(
−
∫
D
c(x− y)f(y) dy

)
, x ∈ D,

where D denotes a bounded domain in Rk on which the function g is
strictly positive. The function c ∈ L2(D) is defined on the extended
domain E = {z ∈ Rk | z = x − y, x ∈ D, y ∈ D}. In addition,
c is assumed to be non-negative on E and is symmetric, that is,
c(z) = c(−z). Clearly, the solution f , if it exists, is also strictly positive
on D.

For notational simplicity, we use c ∗ f as the convolution of c and f .
That is,

(c ∗ f) (x) =
∫
D
c(x− y)f(y) dy.
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This is consistent with the usual Fourier convolution on defining f
and c to be zero on Rk\D and Rk\E, respectively. In addition, we
will occasionally drop the dependent variable from equations when the
meaning is clear from the context as a means of simplifying the algebra
in the convergence analysis.

Instances of equation (1) include the Mean Field [9] and Poisson-
Boltzmann-Emden [6, 14] approximations for the density of a molec-
ular gas, and the Poisson-saddlepoint [2, 3] approximation for the in-
tensity of a spatial point process. Our goal in this paper is to develop
stable numerical methods for solving the integral equation (1).

The paper is organized as follows. Background about the mathe-
matical structure of statistical physics and spatial statistics applica-
tions is surveyed in Section 2. The convergence analysis is the focus
of Section 3. Sufficient conditions for convergence are derived in sub-
section 3.1 for the Picard iterative solution of equation (1), while, in
subsection 3.2, sufficient conditions are derived for the application of
an under relaxation iterative procedure. Numerical examples are given
in Section 4.

Overall, it is concluded that, though conditions are established that
guarantee global convergence for the Picard iteration, they are so
constraining that they limit the utility of this form of iteration. As a
more flexible alternative, under relaxation is proposed, and conditions
for its convergence are established that are much less restrictive. These
results are analogous to the known numerical performance of the Picard
and under relaxation iterations for scalar problems.

2. Background. The integral equation examined here arises in the
analysis of spatial point processes in statistical physics and in spatial
statistics. A spatial point process [8] is a stochastic model for a random
spatial configuration of points in Rk. In statistical physics, the points
may represent the locations of individual molecules in a gas at some
instant of time, and the point process is a stochastic model of the
fine-scale behavior of the gas [9]. In spatial statistics, the points may
represent observed locations of trees, road accidents, bird nests, crystal
impurities and so on, and the point process is a statistical model of the
pattern of these locations [10, 15].

We restrict attention to the class of pairwise-interaction Gibbs point
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process models, which is the mainstay of classical statistical mechanics
of gases, as well as playing an important role in spatial statistics [10].
In brief, a configuration of nmolecules or particles, situated at locations
x1, . . . , xn inside a container D ⊂ Rk, is assumed to have probability
density

(2) p(x1, . . . , xn) = α

[ n∏
i=1

g(xi)
∏
i<j

h(||xi − xj ||)
]
,

where α is a normalizing constant, and g : Rk → [0,∞) and h :
[0,∞) → [0,∞) are known functions specifying the model. The
function g influences the propensity for points to be found at some
locations more frequently than other locations, while the function h
introduces stochastic dependence or interaction between the points.
In statistical physics, − log p(x1, . . . , xn) represents the total potential
energy of the configuration; − log g(x) is an external field representing
the energy required to position a point at location x, while − log h(||x−
y||) is the pair potential between two points at locations x and y. In
many, but not all, examples of interest, 0 ≤ h(·) ≤ 1. The number
of points n in the configuration may be fixed, or may also be allowed
to vary. In the latter case, the function g also influences the overall
abundance of points.

The intensity of a point process is the expected (‘average’) number
of points per unit volume. In the problems of interest, the intensity
is a spatially-varying function λ(x) of location x in Rk. Given a
specification of a point process, it is often difficult or impossible to
determine the intensity function λ(x) exactly.

Various methods for approximating the intensity have been proposed
[2, 3, 6, 9, 14] each requiring us to solve an integral equation
(closure relation) of the general form (1), where f(x) is the proposed
approximation to the intractable intensity λ(x). The classical Mean
Field approximation [9, 16] to the intensity function λ(x) is the
solution λMF(x) of the integral equation

λMF (x) = g(x) exp

(∫
D
λMF (y) log h(x− y) dy

)
, x ∈ D.

In [2, 3], an alternative ‘Poisson saddlepoint’ approximation λPS(x) is
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proposed which is the solution of

(3) λPS(x) = g(x) exp

(
−

∫
D
λPS(y)[1− h(x− y)] dy

)
, x ∈ D.

The latter is also known as the Poisson-Boltzmann, Emden or gen-
eralized Poisson-Boltzmann-Emden equation [6, 14]. Both of these
equations are of the form highlighted in equation (1) with f(x) =
λMF (x), c(x) = − log h(x) for the Mean Field approximation, and
f(x) = λPS(x), c(x) = 1 − h(x) for the Poisson saddlepoint approxi-
mation. In either case, 0 ≤ h(x) ≤ 1 implies c(x) ≥ 0.

Our goal is to compute, using equation (1), approximations of the
intensity function λ(x) of the pairwise interaction process, for situations
where the trend function g(x) and the interaction function h(x) are
representative of statistical physics and spatial statistics applications.
Even though equation (1) determines useful approximations for λ, exact
solutions are not known in general. It is therefore necessary to turn to
computational procedures to determine information about f(x) with
respect to given choices for g and c.

In a typical application of these methods in spatial statistics [4, 5],
the function g would be of the form g(x) = exp(β⊤Z(x)) where Z(x)
is a p-dimensional vector valued function containing “covariate” data
(such as soil acidity values, terrain altitude, the Cartesian coordinate
functions, or a function that is equal to 1 inside some specified region
and 0 outside), and β is a p-dimensional vector of coefficients that has
been estimated from data by some appropriate statistical technique.
Thus, it can be assumed that g is positive and bounded over D, but it
may not be continuous. The function h would usually be more tightly
prescribed, often having the form h(x) = exp(−θV (x)), where V is
one of a small class of “interaction potential” functions the properties
of which are well studied. Again, θ is a parameter that has been
estimated from data by some appropriate statistical technique. The
goal of the application is to compute the predicted intensity λ(x) of the
point process model, approximately, by solving the integral equations
above. Numerical solution of (1) would be vastly more efficient than
the currently accepted practice of running very large Monte Carlo
experiments and estimating the intensity by averaging the densities
of the simulated point patterns.
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3. Convergence analysis. In general, it is not possible to deter-
mine the solution of equation (1) analytically and it is therefore neces-
sary to determine an approximate numerical solution computationally.
Although the structure of the equation is relatively simple, it is a k-
dimensional problem with k = 2 or k = 3 and can result in a large
number of non-linear equations when discretized. For this reason, it-
erative methods are an attractive option and, because the details of
the discretization method used are of secondary importance, we focus
here on iterative schemes based on the continuous, rather than the
discretized, problem.

In practice, the function c is often quite peaked around the origin,
and somewhat resembles a delta function. Then

f(x) ≈ g(x) exp (−f(x) (c ∗ 1) (x)) ,

and we can obtain an approximate solution f̂ by solving

(4) f̂(x) = g(x) exp
(
−f̂(x)(c ∗ 1)(x)

)
.

Note that (4) is a scalar equation for each x ∈ D. It has the solution

(5) f̂(x) =
W (g(x)(c ∗ 1)(x))

(c ∗ 1)(x)
, x ∈ D

called the pseudostationary solution [2], where W is the Lambert W
function [7], the inverse function of t 7→ t exp(t). In addition to
providing a useful starting approximation for iterative methods, (4)
provides considerable insight about iteration schemes applied to (1).
To illustrate this, consider the Picard iteration

f̂n+1(x) = g(x) exp
(
−f̂n(x)(c ∗ 1)(x)

)
, n = 0, 1, 2, . . . ,

for which a sufficient condition for convergence is g(x)(c ∗ 1)(x) < 1
and a necessary condition is W (g(x)(c ∗ 1)(x)) < 1. Both are violated

when g(x)(c ∗ 1)(x) becomes sufficiently large and f̂n(x) then oscillates

between a fixed lower and a fixed upper bound for f̂(x). This suggests
that the Picard iteration is over-correcting, and that under relaxation,
namely,

f̂n+1(x) = (1− α)f̂n(x) + αg(x) exp
(
−f̂n(x)(c ∗ 1)(x)

)
,(6)

0 < α ≤ 1,
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may be more appropriate. In fact, it can be shown that if α <

2/(1 + W (g(x)(c ∗ 1)(x))) and the initial iterate f̂0(x) is sufficiently

close to f̂(x), then the under relaxation iteration (6) converges. As
W is a monotonically increasing function satisfying W (0) = 0 and
W (z) ≈ ln(z) for large z, it follows that, for most choices of g
and c, we can choose α sufficiently small to guarantee convergence
provided our initial error is sufficiently small. Note also that, if
g(x)(c ∗ 1)(x) is sufficiently small, a choice of α > 1, which guarantees
that α(1 +W (g(x)(c ∗ 1)(x))) < 2, will also lead to convergence.

3.1. Convergence analysis for the Picard iteration. The integral
equation (1) can be rewritten as

(7) f = A(f), A(f) = g exp(−c ∗ f),

from which it follows that, with respect to the solution f ,

(8) A(f + q) = f exp(−c ∗ q).

For equation (1), the Picard iteration takes the form

(9) fn+1 = A(fn), n = 0, 1, 2, . . . .

Subtracting equation (9) from equation (7) gives, with ϵn = f − fn,

ϵn+1 = A(f)−A(fn),(10)

= −g

(∫ 1

0

exp(−c ∗ ((1− s)f + sfn) ds)

)
(c ∗ ϵn).

It follows that if, for some n, ϵn is either strictly positive or strictly
negative, then, for m ≥ n, the signs of ϵm and ϵm+1 will oscillate.
This implies that the corresponding Picard iterates fn generate upper
and lower bounds for f . In addition, since f and fn, for n > 0, are
non-negative, it follows from (10) that

|ϵn+1| ≤ gc ∗ |ϵn|.

We can generalize this by introducing a weighted error ϵ̂n = ϵn/u,
where u is an arbitrary strictly positive function. Consequently,

|ϵ̂n+1| ≤
g

u
c ∗ (|ϵ̂n|u),
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and hence

(11) ∥ϵ̂n+1∥∞ ≤ ∥ g
u
(c ∗ u)∥∞∥ϵ̂n∥∞.

This provides a sufficient condition for the global convergence of the
Picard iteration, namely:

Theorem 1. A sufficient condition for the convergence of the Picard
iteration (9) is that ∥(g/u)(c∗u)∥∞ < 1, where u is any strictly positive
function defined on D.

Proof. From (11), ∥ϵ̂n+1∥∞ < ∥ϵ̂n∥∞ and, hence ∥ϵ̂n∥∞ → 0 as
n → 0, independently of the choice of the starting solution f0. �

Note that, when u = 1, Theorem 1 yields exactly the same sufficient
condition derived in the previous section for the Picard iteration applied
to (10).

Although Theorem 1 provides a sufficient condition for convergence,
the Picard iteration will converge locally under much weaker conditions.
To investigate this, (8) can be used to obtain the following alternative
formulation of (9)

fn+1 = g exp(−c ∗ (f − (f − fn))) = f exp(c ∗ ϵn),

from which it follows that

ϵn+1 = A(f)−A(fn) = −f

(∫ 1

0

exp(sc ∗ ϵn) ds
)
(c ∗ ϵn)(12)

= −(1 + En)f(c ∗ ϵn),

where

(13) En = (c ∗ ϵn)
∫ 1

0

s

∫ 1

0

exp(stc ∗ ϵn) dt ds.

For an arbitrary positive function u, it follows that

ϵ̂n+1 = −(1 + En)
f

u
(c ∗ uϵ̂n),

and, hence, that

∥ϵ̂n+1∥∞ ≤ ∥(1 + En)
f

u
(c ∗ u)∥∞∥ϵ̂n)∥∞.
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Thus, if ∥(1 + En)f/u(c ∗ u)∥∞ < 1, then ∥ϵ̂n∥∞ → 0 as n → 0 and
the Picard iteration converges. Consequently, for a starting solution
f0 sufficiently close to f , ϵn ∼ 0 for suitably large n, and, hence, from
(13), it follows that En ≈ 1/2c ∗ ϵn is arbitrarily small and thus the
Picard iteration converges locally if ∥(f/u)(c ∗ u)∥∞ < 1. This will be
explored in more detail in the analysis of the under relaxation iteration.

3.2. Convergence analysis for the under relaxation iteration.
The under relaxation iteration for equation (1) takes the form

fn = (1− α)fn−1 + αA(fn−1),(14)

A(f) = g exp(−c ∗ f), 0 < α < 1,

where the starting solution f0 is given. Assuming that the solution
f of equation (1) exists, an analogous derivation to that used in the
construction of (12) yields

(15) ϵn+1 = (1− α)ϵn − αf(c ∗ ϵn)− αEnf(c ∗ ϵn),

where En is given in (13).

For the analysis of the under relaxation iteration, it is convenient to
work with a weighted error; namely, ϵ̃n = ϵn/

√
f . The choice of the

weighting will become clear in the sequel. Equation (15) then takes the
form

(16) ϵ̃n+1 =
[
(1− α)I − αB̃ − αEnB̃

]
ϵ̃n,

where I : L2(D) 7→ L2(D) is the identity operator and, given that

c ∈ L2(D), the integral operator B̃ : L2(D) 7→ L2(D) defined by

(B̃q)(x) :=
∫
D

√
f(x)c(x− y)

√
f(y)q(y) dy, x ∈ D

is compact. Taking norms on both sides of (16) yields

(17) ∥ϵ̃n+1∥2 ≤
(
∥(1− α)I − αB̃∥2 + α∥En∥∞∥B̃∥2

)
∥ϵ̃n∥2,

and, hence, a sufficient condition for convergence of the over-relaxation
iteration is

(18) ∥(1− α)I − αB̃∥2 + α∥En∥∞∥B̃∥2 < 1.
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Because the kernel
√

f(x)c(x− y)
√

f(y) is symmetric with respect

to x and y, the operator B̃ is self-adjoint. As a consequence, ∥B̃∥2
and ∥(1 − α)I − αB̃∥2 can be determined from the greatest lower

and lowest upper bounds of the eigenvalues of B̃. This is the reason

for choosing the weighted error ϵ̃n. Specifically, let λ̃1, λ̃2, . . . be the

eigenvalues of B̃ in order of decreasing absolute value, β̃ = maxm{λ̃m}
and µ̃ = − infm{λ̃m}. From the Perron-Frobenius theorem, it follows

that β̃ ≥ µ̃ since the kernel of B̃ is non-negative [11]. Then

∥B̃∥2 = β̃(19)

and

∥(1− α)I − αB̃∥2 = max
{
1− α(1− µ̃), α(1 + β̃)− 1

}
.(20)

In addition, it follows from (13) and the inequality ∥ϵ∥1 ≤
√
∥f∥1∥ϵ̃∥2

that

(21) ∥En∥∞ ≤ 1

2
∥c∥∞∥

√
∥f∥1∥ϵ̃n∥2 exp(∥c∥∞

√
∥f∥1∥ϵ̃n∥2).

The inequalities (19), (20) and (21), when applied to (18), yield suffi-
cient conditions for the convergence of the under relaxation iteration.
Specifically:

Theorem 2. Sufficient conditions for the convergence of the over-
relaxation iteration (14) are:

(22) µ̃ < 1− β̃

2
∥c∥∞

√
∥f∥1∥ϵ̃0∥2 exp(∥c∥∞

√
∥f∥1∥ϵ̃0∥2)

and

(23) α <
2

1 + β̃
(
1 + 1

2∥c∥∞
√

∥f∥1∥ϵ̃0∥2 exp(∥c∥∞
√

∥f∥1∥ϵ̃0∥2)
) .

Proof. It follows by induction from (17), (19), (20), (21), (22) and
(23) that ∥ϵ̂n+1∥2 < ∥ϵ̂n∥2, and hence ∥ϵ̂n∥2 → 0 as n → 0. �

If we let

(24) m = ∥c∥∞
√

∥f∥1 ∥ϵ̃0∥2,
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the inequalities (22) and (23) can be rewritten as

(25) µ̃+
β̃m exp(m)

2
≤ 1

and

(26) α <
2

1 + β̃ (1 + (m exp(m))/2)
.

For inequalities (25) and (26) to hold, it is necessary that µ̃ < 1 and

α < 2/(1 + β̃). In fact, it can be shown that these are also necessary
conditions for the under relaxation iteration to converge. Furthermore,
it follows from Theorem 2 that these are also sufficient conditions
for local convergence – that is, convergence provided that the initial
iterate f0 is sufficiently close to the solution f . As the inequality

α < 2/(1 + β̃) can always be satisfied by taking α sufficiently small,
the hard constraint on local convergence for a relaxation of the Picard
iteration is µ̃ < 1. However, note that, for the Picard iteration (α = 1),

local convergence requires β̃ < 1, a substantially stronger constraint
than µ̃ < 1.

Clearly, the greatest lower and lowest upper bounds of the eigenval-

ues of B̃ are important quantities for convergence of the over-relaxation
iteration and we briefly examine these. A bound for the lowest upper

bound β̃ is relatively straightforward and follows from

(27) β̃ = ∥B̃∥2 ≤ ∥B̃∥∞ = ∥
√
f(c ∗

√
f)∥∞ ≤ ∥f∥∞∥c∥1.

Estimates for lower bounds are somewhat more difficult. Note,

however, that when B̃ is non-negative definite µ̃ < 0 and over-relaxation
will converge locally provided α is sufficiently small.

If µ̃ > 0, bounds can be obtained by considering convolution
equations whose spectral properties have been widely studied. Let
B : L2(D) 7→ L2(D) be the integral operator defined by Bq := c ∗ q,
λ1, λ2, . . . denote the eigenvalues of B in order of decreasing absolute
value, β = maxm{λm} and µ = − infm{λm}. In addition, let C(ζ) =∫
E c(x) exp(iζ · x) dx be the Fourier transform of c. Then, it follows
from Widom [19] that

β ≤ sup
ζ

{C(ζ)} = ∥c∥1,
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and

(28) µ ≤ − inf
ζ
{C(ζ)} .

This last bound is useful when the Fourier transform can be evaluated
as is the case, for example, for a Strauss point process. Bounds for β̃

and µ̃ now follow on noting that β̃ ≤ ∥f∥∞β and µ̃ ≤ ∥f∥∞µ.

4. Numerical performance. Two simple examples of the under
relaxation iteration in R2 have been analyzed in [2]. A comparison
of the intensity determined by the Poisson saddlepoint approximation
and by simulation can be found in [2, 3]. In this section, we give an
example which is somewhat more challenging and realistic.

4.1. Data. Figure 1 shows part of a survey of gold deposits in the
Murchison region of Western Australia [18]. Crosses show the gold
deposits; solid lines are geological faults; grey shading is greenstone
outcrop.

Figure 1. Data from a geological survey of the Murchison region.

Typically the gold deposits would be modeled as a Poisson point
process [1, 13] with intensity function of the form

(29) g(x) = exp(β0 + β1I(x) + β2 d(x)),

where β0, β1, β2 are parameters to be estimated, d(x) is the distance
from x to the nearest geological fault, and I(x) is the indicator that
equals 1 if x falls inside the greenstone outcrop, and equals 0 otherwise.
Typical values of the fitted parameters for this dataset are β0 =
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log 0.005, β1 = log 2 and β2 = −0.1. The function with these parameter
values is shown in Figure 2.

0.
00

2
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00
4

0.
00

6
0.

00
8

Figure 2. Poisson intensity function, or Gibbs forcing function, g(x) for
the Murchison data example.

4.2. Application to Strauss process. A possible alternative model
for the above data is a Strauss point process [12, 17], a particular case
of the pairwise interaction Gibbs process (2) with interaction term

h(x) =

{
γ if ∥x∥2 ≤ R,
1 otherwise.

We take the first order term (‘forcing function’) g(x) in (2) to be of the
form (29). The intensity function of the Strauss process is not known
analytically as a function of the model parameters, so we shall use the
Poisson-saddlepoint approximation, the solution of (3), which is of the
form (1) with c(x) = 1− h(x).

Typical parameter values for the Strauss interaction in this example
are radius R = 10 km and strength γ = 0.5. This gives ∥c∥∞ =
(1− 0.5) = 0.5. Since c ≥ 0, f ∗ c ≥ 0 and so (1) gives f(x) ≤ g(x) for
all x. Repeating this argument gives inequalities

(30) g1(x) ≤ f(x) ≤ g2(x),

where g1(x) = g(x) exp(−(g∗c)(x)) and g2(x) = g(x) exp(−(g1 ∗c)(x)).
The initial state f0(x) for the iterations will be the pseudostationary
solution (5).

Figure 3 shows transects of these functions along a diagonal line
from bottom left to top right in the survey region depicted in Figure 1.
Dotted lines show the forcing function g, and thick solid lines show the
pseudostationary approximation f0(x). The grey shading is delimited
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Figure 3. Diagonal transects (bottom left to top right) of functions in
spatial domain of Figure 1. Thick solid line: pseudostationary approximation
f0(x). Grey shading: interval between upper and lower bounds g1(x), g2(x)
for the true solution f . Dotted lines: forcing function g(x).

by the upper and lower bounds g1(x), g2(x) for the true solution
f . (Note that it is not necessarily true that the pseudostationary
approximation lies between the limits g1, g2 as it happens to do in
this example).

The inequalities (30) give

(31) 0.007503 = ∥g1∥∞ ≤ ∥f∥∞ ≤ ∥g2∥∞ = 0.00854,

where the numerical values were computed using a pixel approximation.

This gives an upper bound on β̃,

(32) β̃ ≤ ∥f∥∞β ≤ ∥f∥∞∥c∥∞ ≤ 0.00854× 0.5 = 0.00427.

For µ̃, we have

µ̃ ≤ ∥f∥∞µ ≤ ∥f∥∞(− inf
ζ
C(ζ)),

where C is the Fourier transform of c. We have C(ζ) = (1 − γ)F(ζ),
where F is the Fourier transform of the indicator function of a disc of
radius R,

F(ζ) = 2πR2 J1(R∥ζ∥)
R∥ζ∥

,

where J1 is the Bessel function of the first kind, of order 1. Noting that
inft≥0(J1(t)/t) ≈ −0.07, we have

− inf
ζ
C(ζ) ≈ 0.14π(1− γ)R2 = 21.99,
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yielding µ̃ ≤ 0.1878.

Similarly, the sandwich inequalities for f give bounds on
√
∥f∥1:

2.642 =
√

∥g1∥1 ≤
√

∥f∥1 ≤
√
∥g2∥1 = 3.213.

Now ϵ̃0 = ϵ0/
√
f where ϵ0 = f − f0 is the discrepancy between

the initial starting function and the correct answer f . We need
an upper bound on ∥ϵ̃0∥2. Using the sandwich inequalities for f ,

we get |ϵ0(x)| ≤ U(x) and |ϵ̃0(x)| ≤ U(x)/
√

g1(x) where U(x) =
max{|f0(x) − g1(x)|, |f0(x) − g2(x)|}. This yields ∥ϵ̃0∥2 ≤ 1.01. The
results above yield an upper bound for m in (24) as m ≤ 1.623, and
this gives an upper bound for the left hand side of the condition in (25)
as

0.1878 + 0.00427/2× 1.623 exp(1.623) = 0.2054.

Hence, condition (25) is satisfied.

In condition (26), if we replace the denominator of the right hand
side of (26) by an upper bound for the denominator, we obtain a lower
bound for the right hand side of (26). Any value of α less than this
bound is guaranteed to satisfy (26). The bound, using (32), is

αmax =
2

1 + 0.00427(1 + 1.623 exp(1.623)/2)
= 1.957.

Consequently, any value of α in [0, 1] would suffice.

4.3. Picard iteration. We shall use under-relaxation with α = 0.9.
Figure 4 shows the L∞ discrepancies between successive iterations, i.e.,
∥λi+1(·)−λi(·)∥∞ where λi(·) is the i-th iterate. Convergence is clearly
occurring at an exponential rate.

Figure 5 shows the initial pseudostationary approximation and the
result of 30 successive iterates of the under-relaxation operator. Fig-
ure 6 shows diagonal transects of the initial state and the 30th iteration.
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