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ABSTRACT. We consider a nonautonomous, semilinear,
hyperbolic-parabolic equation subject to a dynamical bound-
ary condition of memory type. First we prove the exis-
tence and uniqueness of global bounded solutions having rel-
atively compact range in the natural energy space. Under
the assumption that the nonlinear term f is real analytic,
we then derive an appropriate Lyapunov energy and we use
the �Lojasiewicz-Simon inequality to show the convergence of
global weak solutions to single steady states as time tends to
infinity. Finally, we provide an estimate for the convergence
rate.

1. Introduction. The main purpose of this work is to study
the existence and the asymptotic behavior of global weak solutions
to the semilinear degenerate wave equation with boundary conditions
of memory type given by

(1)

⎧⎨
⎩
K1(x)utt +K2(x)ut − Δu+ f(x, u) = g1 in R+ × Ω,

∂νu+ μ(x)u + k ∗ ut = g2 on R+ × Γ,

u(0) = u0,
√
K1ut(0) =

√
K1u1.

Here, Ω ⊆ RN (N ≥ 1) is a bounded open connected set with smooth
boundary Γ, ν denotes the outer normal vector to the boundary. The
coefficients K1, K2 ∈ L∞(Ω), μ ∈ W 1,∞(Γ) and k ∈ L1

loc(R
+) are

nonnegative functions, K2(x) ≥ k0 > 0, μ is not identically zero on Γ,
and k ∗ v stands for the convolution on the positive half-line, that is,
(k ∗ v)(t) =

∫ t

0
k(t− s)v(s) ds (t ≥ 0).
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The boundary condition arises in mathematical models for the motion
of viscoelastic materials. For such materials, the feedback operator is
a convolution operator in time. We consider also the case in which the
kernel is singular; a typical example for the kernel k we have in mind
is given by

(2) k(t) =
1

Γ(1 − β)
t−β e−wt (β ∈ (0, 1), w > 0),

where Γ is the Gamma function.

The nonlinearity f = f(x, u) : Ω × R → R is assumed to be a C2

function satisfying the following assumptions:

(F1) The function f is analytic in the second variable, uniformly with
respect to x ∈ Ω and u in bounded subsets of R;

(F2) One has f(·, 0) ∈ L∞(Ω), and there exist constants ρ ≥ 0 and
α ∈ (0, 1], (N − 2)α < 2 such that:∣∣∣∣∂f∂u (x, u)

∣∣∣∣ ≤ ρ(1 + |u|α) for every u ∈ R, x ∈ Ω.

(F3) There exist λ < λ1 and C ≥ 0 such that, for every u ∈ R and
every x ∈ Ω,

F (x, u) ≥ −λ u
2

2
− C,

where F (x, u) =
∫ u

0 f(x, s) ds (x ∈ Ω, u ∈ R), and λ1 > 0 is the best
Sobolev constant in the following Poincaré type inequality∫

Ω

|∇u|2 +

∫
Γ

μ(x)|u|2 ≥ λ1

∫
Ω

|u|2 (u ∈ H1(Ω)).

We study well-posedness of equation (1) in the energy space H =
H1(Ω) × L2(Ω) and the asymptotic behavior of weak solutions when
t→ ∞. In particular, for all initial values in the natural energy space,
we prove the existence and uniqueness of a global, bounded solution
of (1). In addition, we prove that every global, bounded solution
has relatively compact range in H. Then, by using a new Lyapunov
functional and the �Lojasiewicz-Simon inequality, we show that, if g1
and g2 tend to 0 sufficiently fast at infinity, then the solution of (1)
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converges to a single steady state. Finally, we show that the decay rate
to equilibrium is either exponential or polynomial.

Concerning existence of solutions, we carefully note that the function
K1 may vanish on Ω or on a subset of Ω. Equation (1) thus includes the
semilinear diffusion equation (K1 = 0), the semilinear wave equation
(K1 = 1), and mixed hyperbolic-parabolic problems (K1 ≥ 0). In our
existence proof below, we shall first replace K1 by K1 + ε and prove
existence of solutions for this perturbed, purely hyperbolic problem by
means of a Faedo-Galerkin method. We shall further obtain a priori
estimates for the solutions which are independent of ε > 0, in such a
way that we can pass to the limit when ε tends to zero, obtaining thus
a function u which is the solution of problem (1). By differentiating
the equation with respect to time, we shall also prove the existence of
strong solutions if the data are regular enough.

We recall that the basic argument in the proof of the convergence
results is the �Lojasiewicz inequality which was generalized first by
Simon [19], then by Haraux and Jendoubi [14, 16, 17] (see below
for the definition of the �Lojasiewicz-Simon inequality).

Concerning the convergence to steady state for nonlinear equations
with memory there is a technical difficulty consisting in proving that
the solutions of such problems are bounded and have relatively compact
range in the natural energy space. However, the more complicated
problem is to find an appropriate Lyapunov functional in order to
investigate the asymptotic behaviour of global, bounded solutions. For
the type of kernel k and nonlinearity f as above, we note that there
are up to now two techniques to construct an appropriate Lyapunov
functional which allows one to apply the �Lojasiewicz-Simon inequality
in order to obtain a convergence result. The first technique goes back
to Dafermos [10], and this technique was recently adapted by Aizicovici
and Feireisl [1] in order to obtain a convergence result for a phase-field
model with memory (see also Aizicovici and Petzeltová [2]), and then
by Chill and Fašangová [8] in order to obtain convergence results for
the wave equation, where the dissipation is both frictional and with
memory:

utt + ut + k ∗ ut − Δu+ f(x, u) = 0 in R+ × Ω.

Recently, Zacher and Vergara [20] have developed a second technique
to find Lyapunov functions for ordinary differential equations, in finite-
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dimensional spaces, of order less than 1, and of order between 1 and
2 in time, which, combined with the �Lojasiewicz inequality, leads to
a proof of convergence of global, bounded solutions to a single steady
state.

In [23], Zacher has proved that, still in the finite-dimensional case,
the dissipation given through the memory term is strong enough to
guarantee convergence of global, bounded and regular solutions of the
following second order equation

ü+ k ∗ u̇+ ∇E(u) = g,

when the nonlinear potential E satisfies the �Lojasiewicz inequality. In
his proof, Zacher used the �Lojasiewicz inequality together with the
method of higher order energies. In this direction it is important to
mention the work of Alabau-Boussouira, Prüss and Zacher [3], also,
where the autonomous, linear case (f = K2 = g1 = g2 = 0, K1 = 1)
was studied under the same boundary condition.

Concerning the nonautonomous, nonlinear case, the source terms
introduce non-standard difficulties. The convergence proof given here
is direct and naturally generalizes the autonomous case, without using
the additional discussion from Chill and Jendoubi [9] or the additional
integral lemma from Huang and Takác [15] (see also Feireisl and
Simondon [11] and the author’s article [21]).

Remark 1 (Related boundary conditions). For the well-posedness
of the Robin-type problem, we assume that the coefficient μ on the
boundary is not identically zero almost everywhere on Γ (with respect
to the surface measure). However, the following variants of (dynamical)
boundary conditions may also be studied. Assume, for example, that
Γ = Γ0∪Γ1 for two closed, disjoint subsets Γ0, Γ1 ⊆ Γ. Then the results
of this paper (existence and uniqueness of global, bounded solutions,
relative compactness of their range in the energy space, convergence
to equilibrium and decay rate estimates) still hold for the following
boundary condition

(3)

{
u = 0 on R+ × Γ0,

∂νu+ μ(x)u + k ∗ ut = g2 on R+ × Γ1,
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where μ ∈ W 1,∞(Γ1) is such that

(4)

⎧⎨
⎩

if Γ0 �= ∅, then μ ≥ 0,

if Γ0 = ∅, then μ is not identically zero

almost everywhere on Γ1.

Also, the results of this paper still hold when the boundary feedback is
both frictional and of memory type

(5)

{
u = 0 on R+ × Γ0,

∂νu+ μ(x)u + b(x)ut + k ∗ ut = g2 on R+ × Γ1,

where b is a nonnegative function on Γ1 and μ ∈ W 1,∞(Γ1) satisfying
(4). This boundary condition has been studied in [3], when g2 = 0; see
also [21, 22], when the feedback is only frictional (that is, k = 0).

Another boundary condition, with more regular kernels, has been
studied by several authors (see, for example, Santos [18], Cavalcanti et
al. [6, 7] and the references therein), namely, the boundary condition

(6)

{
u = 0 on R+ × Γ0,

u+ h ∗ ∂νu = 0 on R+ × Γ1.

Here, the relaxation function h belongs to W 1,∞(0,∞) and is assumed
to be positive and non-increasing. By differentiating equation (6) and
by applying the inverse Volterra operator, we obtain

∂νu = −ρ(ut + k1(0)u− k1(t)u0 + k′1 ∗ u
)

on R+ × Γ1,

where ρ = 1/h(0), and k1 is the resolvent kernel satisfying

k1 + ρh′ ∗ k1 = −ρh′.
Observe that

k′1 ∗ u =
d

dt
(k1 ∗ u) − k1(0)u = k1 ∗ ut + k1(t)u0 − k1(0)u.

Then, the boundary condition (6) can be rewritten in the following
form

(7)

{
u = 0 on R+ × Γ0,

∂νu+ ρut + ρk1 ∗ ut = 0 on R+ × Γ1,
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which is a particular case of the boundary condition (5).

Throughout the following:

• The inner product (respectively the norm) in the spaces H1(Ω),
H1(Ω)′, L2(Ω) and L2(Γ) is denoted by (·, ·)H1(Ω), (·, ·)∗, (·, ·)2 and
(·, ·)Γ (respectively, by ‖ · ‖H1(Ω), ‖ · ‖∗, ‖ · ‖2, and ‖ · ‖Γ). The norm in
Lp(Ω) is denoted by ‖ · ‖p.

• We denote by C (sometimes Ci) a generic positive constant which
may vary from line to line, which may depend on g1, g2, f and the
measure of Ω, but which can be chosen independently of t ∈ R+.

The remaining part of this paper is organized as follows. In Section 2,
we state the assumptions on the kernel and the source terms, and
we state the main results. The existence and uniqueness of solutions
to problem (1) is proved in Section 3. Section 4 is devoted to the
compactness results. In the final Section 5, we prove the convergence of
global bounded solutions and we obtain an estimate on the convergence
rate.

2. Assumptions and main results. Before stating our main
results, we present several assumptions about the initial data, the
source terms, and the memory kernel.

2.1. Assumptions on the source terms and the kernel. For
the global existence and uniqueness for weak solutions, we assume that
the functions g1 and g2 satisfy the regularity condition

(G1) g1 ∈ L2
loc(R

+;L2(Ω)) and g2 ∈W 1,2(R+;L2(Γ)),

and for our convergence result we assume in addition a decay condition,
namely, that there exist constants η0 ≥ 0 and δ > 0 such that for all
t ∈ R+

(G2) ‖g2(t)‖Γ +

∫ ∞

t

(‖g1(s)‖22 + ‖g′2(s)‖2Γ) ds ≤ η0
(1 + t)1+δ

.

Condition (G2) implies in turn that g2 ∈ L1(R+;L2(Γ)), ‖g2(t)‖Γ ↘ 0
and there exists an η ≥ 0 such that

(G2)′
∫ ∞

t

(‖g1(s)‖22 + ‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds ≤ η

(1 + t)1+δ
.
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Concerning the kernel k we suppose that

(K1) there exists a nonnegative and nonincreasing kernel b ∈ L1
loc(R

+)
such that b ∗ k = 1, and

(K2) there are γ > 0 and a ∈ L1(R+), strictly positive and nonin-
creasing, such that b = a+ γ (1 ∗ a).

Remark 2. (a) Condition (K1) implies that the kernel k is nonnega-
tive.

(b) The conditions (K1) and (K2) together imply that b(t) ≥ b∞ =
lims→∞ b(s) = γ‖a‖L1(R+) > 0 for every t > 0.

(c) It follows further from conditions (K1) and (K2) that k ∈ L1(R+).
Indeed, since k is nonnegative (see (a)), the condition (K1) implies
(b ∗ k)(t) ≤ 1 for every t ≥ 0. Using the lower bound for b from (b) and
the positivity of k, we see that ‖k‖L1(R+) ≤ 1/b∞.

(d) For each γ > 0 the unique solution of the equation in (K2) is
given by

a = b− γ (e−γ· ∗ b).

(e) Typical examples for the kernels b and k which satisfy conditions
(K1) and (K2) are given by

b(t) = Γ1−s(t)e
−wt + w[1 ∗ (Γ1−se

−w)(t)] (s ∈ (0, 1), w > 0),

k and Γ are given by (2).

In fact, our method can be adapted to the more general case when
the kernel k is completely positive, that is, the condition (K1) can be
weakened to the condition that

(K1′) there exist b0 > 0 and a nonnegative and nonincreasing kernel
b ∈ L1

loc(R
+) such that b0k(t) + (b ∗ k)(t) = 1 for all t ≥ 0 (see [23]).

This condition allows one to include the nonsingular case s = 0 in
example (2). In particular, our results are still valid for k(t) = e−wt

(t ≥ 0, w > 0).

2.2. Existence and uniqueness of global, bounded solutions.
Throughout the following, a function u : R+ → H2(Ω) is called a global
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strong solution of (1), if

{
u ∈ L∞

loc(R
+;H2(Ω)) ∩W 1,∞

loc (R+;H1(Ω)) ∩W 2,2
loc (R+;L2(Ω)),

K
1/2
1 ut ∈W 1,∞

loc (R+;L2(Ω)),

if it satisfies the initial conditions u(0) = u0 and (K1)1/2ut(0) =
(K1)1/2u1, and if it satisfies the differential equation (1) almost ev-
erywhere on R+. A function u ∈ C(R+;H1(Ω)) ∩W 1,2

loc (R+;L2(Ω)) is
called a global weak solution of (1), if it satisfies the initial conditions
u(0) = u0 and (K1)1/2ut(0) = (K1)1/2u1, and if there exists a sequence
(uμ) of strong solutions such that

uμ −→ u in C(R+;H1(Ω)) ∩W 1,2
loc (R+;L2(Ω)),

K
1/2
1 uμt −→ K

1/2
1 ut in C(R+;L2(Ω)).

Our first main result, which establishes the global well-posedness of
equation (1), reads as follows.

Theorem 3(Existence and uniqueness of global, bounded solutions).
Assume that the function f satisfies conditions (F2) and (F3), and that
the kernel k satisfies conditions (K1) and (K2).

(I) Strong solutions. Let
(8)

g1 ∈W 1,2
loc (R+;L2(Ω)) and g2 ∈ L1

loc(R
+;H

1
2 (Γ))∩W 2,2(R+;L2(Γ)),

and let the initial values (u0, u1) ∈ H2(Ω) ×Hq(Ω), (q > 3/2), satisfy
the compatibility conditions

(9)

{−Δu0 + f(x, u0) = g1(0) −K2u1 in Ω,

∂νu0 + μ(x)u0 = g2(0) on Γ.

Then problem (1) possesses a unique, global, strong solution.

(II) Weak solutions. Let g1 and g2 satisfy the regularity condition
(G1) and let (u0, u1) ∈ D, where

(10) D =

{
(u0, u1) ∈ H2(Ω) ×Hq(Ω); q >

3

2
and (9) holds

}
.
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Then problem (1) possesses a unique global weak solution u. In addi-
tion, this weak solution satisfies the following properties:

(T1) (u,K
1/2
1 ut) is bounded in H1(Ω) × L2(Ω).

(T2) (ut, v) ∈ L2(R+;L2(Ω)) ×L2(R+;L2(Γ)), where v = (d/dt)(k ∗
(u− u0)).

(T3) Let G : R+ → R be the energy of the solution u given by

G(t) =
1

2

∥∥∥K1/2
1 ut

∥∥∥2
2

+ E(u) +
1

2
a ∗ ‖v‖2Γ − (g2, a ∗ v)Γ

+
1

2k0

∫ ∞

t

‖g1(s)‖22 ds

+ d

∫ ∞

t

(‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds,

where d = ‖a‖L1(R+) max(γ, γ−1) and E : H1(Ω) → R is the energy
functional given by

(11) E(u) =
1

2

∫
Ω

|∇u|2 dx +

∫
Ω

F (x, u) dx+
1

2

∫
Γ

μ(x)|u|2 dσ.

Then G is nonincreasing and

(12)
d

dt
G(t) ≤ −k0

2
‖ut‖22 −

b∞
2

‖v‖2Γ − γ

4
a ∗ ‖v‖2Γ, t > 0.

(T4) The following variational equality holds for all φ ∈ H1(Ω)

d

dt

∫
Ω

K1(x)utφdx+

∫
Ω

K2(x)utφdx

+

∫
Ω

∇u∇φdx+

∫
Ω

f(x, u)φdx

+
d

dt

∫
Γ

(k ∗ (u − u0))φdσ +

∫
Γ

μ(x)uφdσ

=

∫
Ω

g1φdx +

∫
Γ

g2φdσ.

Remark 4. (a) When K1 = const, we replace the compatibility
conditions (9) by the compatibility conditions

∂νu0 + μ(x)u0 = g2(0) on Γ.
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(b) Note that, for every u1 ∈ L2(Ω), the problem (9) admits at most
one solution u0 ∈ H2(Ω).

2.3. Compactness property of solutions. In the following
theorem, we state an additional property of global weak solutions of
(1) which is of crucial importance for the study of their asymptotic
behavior, namely, the relative compactness of their range.

Theorem 5. Let u : R+ → H1(Ω) be a global bounded weak solution

of (1). Then the function U = (u,K
1/2
1 ut) is uniformly continuous

from R+ with values in H1(Ω) × L2(Ω), and
⋃

t≥0{U(t)} is relatively

compact in H1(Ω) × L2(Ω).

2.4. The �Lojasiewicz-Simon inequality for the underlying
energy. Our basic argument in the proof of the convergence result
below is the �Lojasiewicz-Simon inequality for the energy functional
E given by (11). By the regularity and growth condition on f ,
the function E is twice continuously Fréchet differentiable [21]. Let
E′(u) ∈ H1(Ω)′ and E′′(u) ∈ L(H1(Ω), H1(Ω)′) denote the first and
second derivative at a point u ∈ H1(Ω), respectively. Then, for all φ,
ψ ∈ H1(Ω)

(13)

(E′(u), ψ)H1(Ω)′,H1(Ω) =

∫
Ω

∇u∇ψ dx+

∫
Ω

f(x, u)ψ dx

+

∫
Γ

μ(x)uψ dσ,

and

(E′′(u)φ, ψ)H1(Ω)′,H1(Ω) =

∫
Ω

∇φ∇ψ dx+

∫
Ω

∂f

∂u
(x, u)φψ dx

+

∫
Γ

μ(x)φψ dσ.

The proof of the following proposition, in the case N = 3, can be found
in [21, Proposition 9]; the proof for general space dimensions can be
easily adapted. Recall that the norm in H1(Ω)′ is denoted by ‖ · ‖∗.
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Proposition 6. Under the assumptions (F1) and (F2) on the func-
tion f the energy functional E ∈ C2(H1(Ω)) satisfies the �Lojasiewicz-
Simon inequality near every equilibrium point φ ∈ H1(Ω), that is, for
every φ ∈ H1(Ω) with E′(φ) = 0, there exist βφ > 0, σφ > 0 and
0 < θφ ≤ 1/2 such that

|E(φ) − E(ψ)|1−θφ ≤ βφ‖E′(φ)‖∗
for all ψ ∈ H1(Ω) such that ‖φ − ψ‖H1(Ω) < σφ. The number θφ is
called the �Lojasiewicz exponent of E at φ.

2.5. Convergence to equilibrium and decay rate. The
following theorem describes the asymptotic behavior of global weak
solutions to problem (1).

Theorem 7. Let u : R+ → H1(Ω) be a global, bounded, weak so-
lution of equation (1). Suppose that f satisfies (F1), (F2), and that
(g1, g2) satisfies the growth condition (G2). Then, the solution con-
verges to a single stationary state, which follows from the integrability
of ut. That is, there exists φ ∈ H1(Ω), solution of the stationary prob-
lem: {−Δφ+ f(x, φ) = 0 in Ω,

∂νφ+ μφ = 0 on Γ,

such that

‖K1/2
1 ut(t)‖2 + ‖u(t) − φ‖H1(Ω) −→ 0 as t→ ∞.

From the proof of Theorem 7 and the differential inequality given be-
low (Lemma 15), we deduce in addition that the �Lojasiewicz exponent
θ in the �Lojasiewicz-Simon inequality determines the decay rate of the
solution u to the steady state φ.

Theorem 8. Let θ = θφ be the �Lojasiewicz exponent of E at φ,
where φ is given by Theorem 7, and let δ be given by (G2). Then, the
following assertions hold:

(i) If θ ∈ (0, (1/2)), then there exists a constant C > 0 such that

‖u(t) − φ‖2 ≤ C (1 + t)−ξ for every t ≥ 0,
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where

ξ =

{
inf {(θ/(1 − 2θ)), (δ/2)} if (g1, g2) �= (0, 0),

(θ/(1 − 2θ)) if (g1, g2) = (0, 0).

(ii) If θ = (1/2) and (g1, g2) = (0, 0), then there exist constants C
and κ > 0 such that

‖u(t) − φ‖2 ≤ Ce−θκt.

3. Existence and uniqueness. In this section, we prove the exis-
tence and uniqueness of strong/weak solutions of problem (1), that is,
we prove Theorem 3. First, we prove the existence and the uniqueness
of strong solutions satisfying the properties (T1) (T4), when the initial
data and the source terms are sufficiently smooth. Then we extend the
same results to weak solutions by using an approximation argument.

For the convenience of the reader, we recall here explicitly some
auxiliary lemmas which will be used in the proof below. We begin
with the subsequent simple lemma [20, Lemma 2.1].

Lemma 9. Let H be a Hilbert space and T > 0. Suppose that
k ∈ L1

loc(R
+) is nonnegative. Then, for any v ∈ L2([0, T ];H), the

following holds:

‖(k ∗ v)(t)‖2H ≤ (k ∗ ‖v‖2H(1 ∗ k)(t)) for almost every t ∈ (0, T ).

The second lemma [20, Theorem 2.1] is one key to finding a proper
Lyapunov function for problem (1).

Lemma 10. Let H be a Hilbert space, T > 0, and b ∈ L1
loc(R

+)
nonnegative and nonincreasing such that b ∗ k = 1 in (0,∞) for some
nonnegative kernel k ∈ L1

loc(R
+). Suppose that v ∈ L2(0, T ;H) is such

that b ∗ v ∈ H1(0, T ;H) as well as b ∗ ‖v‖2H ∈ W 1,1(0, T ). Then
(14)(

v(t),
d

dt
(b ∗ v)(t)

)
H

≥ 1

2

d

dt
(b ∗ ‖v‖2H)(t)

+
1

2
b(t)‖v‖2H for almost every t ∈ (0, T ).
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Remark 11. (a) Under the same assumptions on kernel b, the
inequality (14) in Lemma 10 is also satisfied for any function v ∈
H1(0, T ;H), [20, Remark 2.1].

(b) For the kernels k and b given as in Remark 2 (e), the inequality
(14) in Lemma 10 is also satisfied for any function v ∈ L2(0, T ;H) such
that b ∗ v ∈ H1(0, T ;H), [20, Example 2.1].

Proof of Theorem 3. Existence of strong solution. We transform the
problem (1) into an equivalent problem with null initial data. In fact,
let us consider the change of variables

v(x, t) = u(x, t) − φ(x, t),

where

φ(x, t) = u0(x) + tu1(x).

Due to this change of variables and the regularity of the initial data we
get the following equivalent problem for the variable v:

(15)

⎧⎨
⎩
K1vtt +K2vt − Δv + f(x, v + φ) = F in R+ × Ω,

∂νv + μ(x)v + k ∗ vt = G on R+ × Γ,

v(0) = 0, (K1)1/2vt(0) = 0.

Here,

F = −K2u1 + Δφ+ g1,

and

G = g2 − (∂νφ+ μ(x)φ + k ∗ u1).

We note that if v is a solution of the modified problem (15) in [0, T ],
then u = v + φ is a solution of (1) on the same interval.

Since K1 ≥ 0, we first perturb problem (15) by the term εvtt (ε > 0)
and we apply a Faedo-Galerkin method in order to solve the perturbed
problem. Then we shall pass to the limit with ε → 0 in the perturbed
problem and obtain the solution for problem (15).
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Let K1ε := K1 + ε, and consider the perturbed problem:

(16)

⎧⎪⎪⎨
⎪⎪⎩
K1ε(x)vεtt +K2vεt − Δvε

+f(x, vε + φ) = F in R+ × Ω,

∂νvε + μ(x)vε + k ∗ vεt = G on R+ × Γ,

vε(0) = 0, (K1ε)
1/2vεt(0) = 0.

Let (wi)i∈N be a total family in H2(Ω) which is orthonormal in L2(Ω),
and let Vm be the subspace of H2(Ω) which is spanned by the first
m vectors w1, . . . , wm. Consider the following weak formulation of an
approximated problem, namely, to find a solution

vεm(t) :=
∑

gim(t)wi,

of the ordinary differential equation

(17) (K1εv
′′
εm(t), w)2 + (K2v

′
εm(t), w)2

+ (∇vεm(t),∇w)2 + (f(vεm(t) + φ), w)2

+ (μ(x)vεm(t), w)Γ

+

∫ t

0

k(t− s)(v′εm(s), w)Γ ds = (F , w)2 + (G, w)Γ,

for every w ∈ Vm,

vεm(0) = 0, v′εm(0) = 0.

By standard arguments from the theory of ordinary differential equa-
tions, one proves the existence and uniqueness of a maximal solution
of the integro-differential equation (17) on some interval [0, tεm]. We
show that this solution can be extended to the whole interval [0, T ] by
using the first estimate as follows.

First estimate. Taking w = v′εm in (17), we obtain

(18)
d

dt

(
1

2
‖K1/2

1ε v′εm‖22 +
1

2
‖∇vεm‖22

+

∫
Ω

F (x, vεm + φ) dx +
1

2
‖μ1/2vεm‖2Γ

)

+ ‖K1/2
2 v′εm‖22 + (k ∗ v′εm, v′εm)Γ

= (F , v′εm)2 + (G, v′εm)Γ

+

∫
Ω

f(vεm + φ)u1 dx.
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Let wεm = k ∗ v′εm. We use property (K1) in order to write

v′εm =
d

dt
([b ∗ k] ∗ v′εm) =

d

dt
(b ∗ wεm),

which yields

(k ∗ v′εm, v′εm)Γ = (wεm,
d

dt
(b ∗ wεm))Γ.

Then, by Lemma 10,

(19) (k ∗ v′εm, v′εm)Γ ≥ 1

2

d

dt
(b ∗ ‖wεm‖2Γ)(t) +

1

2
b(t)‖wεm‖2Γ.

Using this inequality and the decomposition b = a+ γ(1 ∗ a), we find

(20)
(k ∗ v′εm, v′εm)Γ ≥ 1

2

d

dt
(a ∗ ‖wεm‖2Γ)(t) +

γ

2
(a ∗ ‖wεm‖2Γ)(t)

+
b∞
2

‖wεm‖2Γ,

where b∞ = limt→∞ b(t) = γ‖a‖L1(R+). Using the last inequality, (18),
and the fact that K2 ≥ k0 > 0, we obtain

(21)
d

dt

(
1

2
‖K1/2

1ε v′εm‖22 +
1

2
‖∇vεm‖22

+

∫
Ω

F (x, vεm + φ) dx+
1

2
‖μ1/2vεm‖2Γ

+
1

2
a ∗ ‖wεm‖2Γ

)
+ k0‖v′εm‖22 +

b∞
2

‖wεm‖2Γ +
γ

2
a ∗ ‖wεm‖2Γ

≤ (F , v′εm)2 + (G, v′εm)Γ +

∫
Ω

f(vεm + φ)u1 dx.

Integrating (21) over the interval (0, t) and observing that vεm(0) =
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v′εm(0) = 0, it follows that

(22)
1

2
‖K1/2

1ε v′εm‖22 + k0

∫ t

0

‖v′εm‖22 ds

+
1

2
‖∇vεm‖22 +

∫
Ω

F (x, vεm + φ) dx

+
1

2
‖μ1/2vεm‖2Γ +

1

2
a ∗ ‖wεm‖2Γ

+
b∞
2

∫ t

0

‖wεm‖2Γ ds+
γ

2

∫ t

0

a ∗ ‖wεm‖2Γ ds

≤
∫ t

0

((F , v′εm)2 + (G, v′εm)Γ) ds

+

∫ t

0

∫
Ω

f(vεm + φ)u1 dx ds+

∫
Ω

F (x, u0) dx.

Next, we shall estimate some terms in (22). In fact, by (F3), we have

(23)

∫
Ω

F (x, vεm + φ) dx ≥ −λ
2

∫
Ω

|vεm + φ|2 dx− C

≥ −C‖vεm‖22 − C.

By the Cauchy-Schwarz inequality and since F ∈ L2(0, T ;L2(Ω)),

(24)

∫ t

0

(F , v′εm)2 ds ≤ 1

k0

∫ t

0

‖F‖22 ds+
k0
4

∫ t

0

‖v′εm‖22 ds

≤ k0
4

∫ t

0

‖v′εm‖22 ds+ C.

Moreover, by Lemma 9, (K1) and Young’s inequality, we have
(25)

(G, v′εm)Γ =

(
G, d
dt
b ∗ wεm

)
Γ

= (G, d
dt
a ∗ wεm)Γ + γ(G, a ∗ wεm)Γ

=
d

dt
(G, a ∗ wεm)Γ − (G′, a ∗wεm)Γ + γ(G, a ∗ wεm)Γ

≤ d

dt
(G, a ∗ wεm)Γ + ‖a‖L1(R+)(γ‖G‖2Γ + γ−1‖G′‖2Γ)

+
γ

4‖a‖L1(R+)

‖a ∗ wεm‖2Γ

≤ d

dt
(G, a ∗ wεm)Γ + d(‖G‖2Γ + ‖G′‖2Γ) +

γ

4
a ∗ ‖wεm‖2Γ,
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where d = ‖a‖L1(R+) max(γ, γ−1). Then
(26)∫ t

0

(G, v′εm)Γ ds ≤ (G, a ∗ wεm)Γ + d

∫ t

0

(‖G‖2Γ + ‖G′‖2Γ) ds

+
γ

4

∫ t

0

a ∗ ‖wεm‖2Γ ds

≤ 1

4
a ∗ ‖wεm‖2Γ + C‖G‖2Γ + d

∫ t

0

(‖G‖2Γ + ‖G′‖2Γ) ds

+
γ

4

∫ t

0

a ∗ ‖wεm‖2Γ ds

≤ 1

4
a ∗ ‖wεm‖2Γ +

γ

4

∫ t

0

a ∗ ‖wεm‖2Γ + C.

Also, by the growth condition (F2), Cauchy-Schwarz inequality and
Young’s inequality, we have

(27)

∫ t

0

∫
Ω

f(vεm + φ)u1 dx ds ≤ C

∫ t

0

∫
Ω

(1 + |vεm + φ|1+α)u1 dx ds

≤ C + C

∫ t

0

∫
Ω

|vεm|1+αu1 dx ds

≤ C + C

∫ t

0

(‖|vεm|1+α‖2‖u1‖2) ds

≤ C + C

∫ t

0

‖vεm‖1+α
2(α+1) ds

≤ C + C

∫ t

0

‖vεm‖1+α
H1(Ω) ds

≤ C + C

∫ t

0

‖vεm‖2H1(Ω) ds.

Combining (22) (27), we obtain

1

2
‖K1/2

1ε v′εm‖22 +
3k0
4

∫ t

0

‖v′εm‖22 ds+
1

2
‖∇vεm‖22 +

1

2
‖μ1/2vεm‖2Γ

(28)

+
1

4
a ∗ ‖wεm‖2Γ +

b∞
2

∫ t

0

‖wεm‖2Γ ds
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+
γ

4

∫ t

0

a ∗ ‖wεm‖2Γ ds

≤ C

(∫ t

0

‖vεm‖22 ds+

∫ t

0

‖vεm‖2H1(Ω) ds+ ‖vεm‖22 + 1

)
.

Observe that

C‖vεm‖22 = C

∫ t

0

d

dt
‖vεm(s)‖22 ds ≤

C2

k0

∫ t

0

‖vεm(s)‖22 ds

+
k0
4

∫ t

0

‖v′εm(s)‖22 ds.

Using this inequality and (28), we obtain

(29)
1

2
‖K1/2

1ε v′εm‖22 +
k0
2

∫ t

0

‖v′εm‖22 ds

+
1

2
‖∇vεm‖22 +

1

2
‖μ1/2vεm‖2Γ

+
1

4
a ∗ ‖wεm‖2Γ +

b∞
2

∫ t

0

‖wεm‖2Γ ds

+
γ

4

∫ t

0

a ∗ ‖wεm‖2Γ ds

≤ C

∫ t

0

‖vεm‖2H1(Ω) ds+ C.

By using this inequality and Gronwall’s inequality, we obtain that

(30)

‖K1/2
1ε v′εm‖22+

∫ T

0

‖v′εm‖22 ds+‖vεm‖2H1(Ω)+a∗‖wεm‖2Γ+

∫ T

0

‖wεm‖2Γ ds
≤ CT ,

where CT is a positive constant independent of m, ε and t.

Second estimate. Next, we estimate v′′εm(0). Indeed, taking w =
v′′εm(0) in (17) and noting that vεm(0) = v′εm(0) = 0, we obtain

‖K1/2
1ε v′′εm(0)‖22 + (f(u0) −F(0), v′′m(0))2 + (G(0), v′′εm(0))Γ = 0.
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Using the assumptions on the initial data, we obtain

(31) ‖K1/2
1ε v′′εm(0)‖2 = 0.

Also, taking the derivative of (17) with respect to time t, taking
w = v′′εm(t), and arguing as in the first estimate, we obtain

(32)
d

dt

(
1

2
‖K1/2

1ε v′′εm‖22

+
1

2
‖∇v′εm‖22 +

1

2
‖μ 1

2 v′εm‖2Γ +
1

2
a ∗ ‖zεm‖2Γ

)

+ k0‖v′′εm‖22 +
b∞
2

‖zεm‖2Γ +
γ

2
a ∗ ‖zεm‖2Γ

+

∫
Ω

f ′(vεm + φ)(v′εm + u1)v′′εm dx

≤ (F ′, v′′εm)2 + (G′, v′′εm)Γ, where zεm = k ∗ v′′εm.

Integrating this inequality over the interval (0, t) and noticing vεm(0) =

v′εm(0) = ‖K1/2
1ε vεm(0)‖2 = 0, it follows that

(33)
1

2
‖K1/2

1ε v′′εm‖22 +
1

2
‖∇v′εm‖22

+
1

2
‖μ 1

2 v′εm‖2Γ +
1

2
a ∗ ‖zεm‖2Γ

+ k0

∫ t

0

‖v′′εm‖22 ds+
b∞
2

∫ t

0

‖zεm‖2Γ ds

+
γ

2

∫ t

0

a ∗ ‖zεm‖2Γ ds

≤ −
∫ t

0

∫
Ω

f ′(vεm + φ)(v′εm + u1)v′′εm dx ds

+

∫ t

0

((F ′, v′′εm)2 + (G′, v′′εm)Γ) ds.

Next, we shall estimate the nonlinear terms of (33). For this, by using



536 HASSAN YASSINE

Hölder’s inequality and the first estimate, we obtain (for N ≥ 3)

(34)

∫ t

0

∫
Ω

f ′(vεm + φ)(v′εm + u1)v
′′
εm dx ds

≤ C

∫ t

0

∫
Ω

(1 + |vεm + φ|α)(v′εm + u1)v
′′
εm dx ds

≤ C

∫ t

0

(‖1 + |vεm + φ|α‖N‖v′εm + u1‖2N/(N−2)‖v′′εm‖2
)
ds

≤ C

∫ t

0

(
(1 + ‖vεm + φ‖αNα)‖v′εm + u1‖2N/(N−2)‖v′′εm‖2

)
ds

≤ k0
4

∫ t

0

‖v′′εm‖22 ds+ C

∫ t

0

‖v′εm + u1‖22N/(N−2) ds

≤ k0
4

∫ t

0

‖v′′εm‖22 ds+ C

∫ t

0

‖v′εm‖2H1(Ω) ds+ C.

The inequality (34) still holds when N ≤ 2 by using the boundedness
of vεm in H1(Ω) (first estimate) and the fact that:

• H1(Ω) ↪→ C(Ω) in the one-dimensional case and

• H1(Ω) ↪→ Lp(Ω), for all p ∈ [1,∞[, if N = 2.

Again, by the Cauchy-Schwarz inequality and since F ′ ∈ L2([0, T ];L2(Ω)):

(35)

∫ t

0

(F ′, v′′εm)2 ds ≤ k0
4

∫ t

0

‖v′′εm‖22 ds+ C.

Moreover, similarly as in (26),

(36)

∫ t

0

(G′, v′′εm)Γ ds ≤ 1

4
a ∗ ‖zεm‖2Γ +

γ

4

∫ t

0

a ∗ ‖zεm‖2Γ ds+ C.

Combining (33) (36) and applying Gronwall’s inequality, we obtain

(37) ‖K 1
2
1εv

′′
εm‖22 +

∫ T

0

‖v′′εm‖22 ds+ ‖v′εm‖2H1(Ω) + a ∗ ‖zεm‖2Γ

+

∫ T

0

‖zεm‖2Γ ds ≤ CT ,

where CT is a positive constant independent of m, ε and t.
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Passing to the limit. Using estimates (30) and (37) and passing
to the limit (first m → ∞, and then ε → 0), we see that there
exists a strong solution u ∈ W 1,∞

loc (R+;H1(Ω)) ∩ W 2,2
loc (R+;L2(Ω)),

K
1/2
1 ut ∈ W 1,∞

loc (R+;L2(Ω)). In addition, u satisfies, for every t ≥ 0,
the nonhomogeneous Neumann problem:

(38)

{−Δu = −K1utt −K2ut − f(x, u) + g1 in L2(Ω),

∂νu = −μu− k ∗ ut + g2 in H1/2(Γ).

The theory of elliptic problems gives us u ∈ L∞
loc(R

+;H2(Ω)).

Boundedness and energy estimate for strong solutions. Now, let u be
a global strong solution of (1), and let v = k ∗ ut. We take the inner
product of equation (1) with ut in order to find that

d

dt

(
1

2
‖K1/2

1 ut‖22 + E(u)

)
+ (K2(x)ut, ut)2 + (v, ut)Γ

= (g1, ut)2 + (g2, ut)Γ.

Using that K2 is strictly positive and the Cauchy-Schwarz inequality,
we find

(39)
d

dt

(
1

2
‖K1/2

1 ut‖22 + E(u) +
1

2k0

∫ ∞

t

‖g1(s)‖22 ds
)

+ (k ∗ ut, ut)Γ

≤ −k0
2
‖ut‖22 + (g2, ut)Γ.

Using the regularity of the strong solution, Remark 11 and arguing as
in (20), we obtain

(40) (k ∗ ut, ut)Γ ≥ 1

2

d

dt
a ∗ ‖v‖2Γ +

b∞
2

‖v‖2Γ +
γ

2
a ∗ ‖v‖2Γ,

where b∞ = limt→∞ b(t) = γ‖a‖L1(R+). Moreover, by Lemma 9 and
by Young’s inequality, we have (as in (25))

(41)
(g2, ut)Γ ≤ d

dt
(g2, a ∗ v)Γ + d(‖g2‖2Γ + ‖g′2‖2Γ) +

γ

4
a ∗ ‖v‖2Γ

(t > 0).
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Combining (39), (40) and (41), one obtains (12) for every strong
solution. In addition, from the condition (F2) we have∫

Ω

|F (x, u0)| ≤ C(1 + ‖u0‖α+2
H1 ),

where C ≥ 0 is a constant depending only on the constants from
condition (F2) (including the norm ‖f(·, 0)‖L∞) and the constant of
the embedding H1(Ω) ↪→ Lα+2(Ω). It follows from this inequality
and the definition of G that there exists a constant C1 ≥ 0 which is
independent of the initial data such that

(42) G(0) ≤ C1 (1 + ‖K1/2
1 u1‖2L2 + ‖u0‖α+2

H1 .

On the other hand, by using condition (F3), the definition of G, the
boundedness of g2 with values in L2(Γ), and the following estimates
given by Lemma 9, that is,

(43) (g2, a ∗ v)Γ ≤ ‖a‖L1(R+)‖g2‖2Γ +
1

4
a ∗ ‖v‖2Γ,

one easily shows that there exists a positive constant C2 depending
on λ and λ1, and a positive constant C3 depending on f , g2 and the
measure of Ω such that, for every t ≥ 0,

(44) ‖u(t)‖2H1(Ω) + ‖K1/2
1 ut(t)‖22 ≤ C2G(t) + C3.

We combine (12), (42) and (44) to obtain the a priori estimate

(45) ‖u(t)‖2H1(Ω) + ‖K1/2
1 ut(t)‖22

+

∫ t

0

‖ut(s)‖22 ds+

∫ t

0

‖v(s)‖2Γ ds

≤ C4 (1 + ‖K1/2
1 u1‖2L2 + ‖u0‖μ+2

H1 ) (t ≥ 0),

where C4 ≥ 0 depends only on the constants C1, C2, C3 and on g1,
but is independent of the initial data. This a priori estimate gives the
boundedness of strong solutions in H1(Ω).

Uniqueness and continuous dependence. Next we show the continuous
dependence of strong solutions on the initial data. Let up (p = 1, 2) be
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two strong solutions of (1), corresponding to the initial data (up0, u
p
1)

and the forcing terms (gp1 , g
p
2) (p = 1, 2). Setting u = u1 − u2,

g1 = g11 − g21 and g2 = g12 − g22, one has

(46)

⎧⎨
⎩
K1utt +K2ut − Δu+ f(x, u1) − f(x, u2) = g1 in R+ × Ω,

∂ν ū+ μu+ k ∗ ut = g2 on R+ × Γ,

u(0) = u10 − u20,
√
K1ut(0) =

√
K1u

1
1 −

√
K1u

2
1.

Let h = k ∗ ut. We multiply equation (46) with ut and integrate over
Ω, in order to find that

d

dt

(
1

2
‖K 1

2
1 ut‖22 +

1

2
‖∇u‖22 +

1

2
‖μ1/2u‖2Γ

+
1

2
a ∗ ‖h‖2Γ − (g2, a ∗ h)Γ +

1

2k0

∫ ∞

t

‖g1(s)‖22 ds

+ d

∫ ∞

t

(‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds

)

+

∫
Ω

(f(u1) − f(u2))(u1t − u2t ) dx

+
k0
2
‖ut‖22 +

b∞
2

‖h‖2Γ +
γ

4
a ∗ ‖h‖2Γ

≤ 0,

where we have used (40) and (41), when (u, v) are replaced by (u, h).

Integrating this inequality over (0, t), using (43), and the fact that the
Nemytskii operator generated by f is locally Lipschitz continuous from
H1(Ω) into L2(Ω) (note that u1 and u2 are bounded in C(R+, H1(Ω))
by (45)), we obtain

1

2
‖K1/2

1 ut‖22 +
1

2
‖∇u‖22 + 1/2‖μ1/2u‖2Γ(47)

+
1

4
a ∗ ‖h‖2Γ +

k0
4

∫ t

0

‖ut‖22 ds+
b∞
2

∫ t

0

‖h‖2Γ ds

+
γ

4

∫ t

0

a ∗ ‖h‖2Γ ds+
1

2k0

∫ ∞

t

‖g1(s)‖22 ds

+ d

∫ ∞

t

(‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds
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≤ C

∫ t

0

‖u(s)‖2H1(Ω) ds+
1

2k0

∫ ∞

0

‖g1(s)‖22 ds

+ d

∫ ∞

0

(‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds

+ C(‖K1/2
1 ut(0)‖22 + ‖u(0)‖2H1).

From this inequality and Gronwall’s lemma we infer that, for every
t ≥ 0,

(48) ‖K1/2
1 ut(t)‖22 + ‖u(t)‖2H1(Ω)

+

∫ t

0

‖ut(s)‖22 ds+

∫ t

0

‖h‖2Γ ds

≤ CeCt

(∫ t

0

‖g1(s)‖22 ds+

∫ ∞

t

(‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds

+ ‖K1/2
1 ut(0)‖22 + ‖u(0)‖2H1

)
.

The continuous dependence of strong solutions on initial data, and the
uniqueness of strong solutions are both an immediate consequence of
this inequality.

Existence and uniqueness of weak solutions. Let (u0, u1) ∈ D and
(g1, g2) ∈ L2

loc(R
+;L2(Ω)) × W 1,2(R+;L2(Γ)). Then there exists a

sequence ((up0, u
p
1))p ⊆ H2(Ω) × H3/2(Ω) satisfying the compatibility

condition (9), and a sequence ((gp1 , g
p
2))p satisfying the regularity prop-

erties (8), such that

(up0, u
p
1) −→ (u0, u1) in H1(Ω) × L2(Ω), and

(gp1 , g
p
2) −→ (g1, g2) in L2

loc(R
+;L2(Ω)) ×W 1,2(R+;L2(Γ)).

Then, for each p ∈ N, there exists a unique strong solution up to the
problem (1). By estimate (45), we have

(49)

up is uniformly bounded in Cb(R
+;H1(Ω)),

upt is uniformly bounded in L2(R+;L2(Ω)),

K
1/2
1 upt is uniformly bounded in Cb(R

+;L2(Ω)),

k ∗ upt is uniformly bounded in L2(R+;L2(Γ)).
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Moreover, by the estimate (48) we have

(50)

up is a Cauchy sequence in C(R+;H1(Ω)),

upt is a Cauchy sequence in L2
loc(R

+;L2(Ω)),

K
1/2
1 upt is a Cauchy sequence in C(R+;L2(Ω)),

k ∗ upt is a Cauchy sequence in L2
loc(R

+;L2(Γ)).

The convergences given by (49) and (50) are sufficient to obtain a weak
solution u to problem (1) as the strong limit of the above sequence of
strong solutions, that is,

(51)

up −→ u in C(R+;H1(Ω)),

upt −→ ut in L2
loc(R

+;L2(Ω)),

K
1/2
1 upt −→ K

1/2
1 ut in C(R+;L2(Ω)),

k ∗ upt −→ v =
d

dt
(k ∗ (u− u0)) in L2

loc(R
+;L2(Γ)).

However, from (51), one easily sees that the energy inequality (12),
the estimate (45) and the a priori estimate (48) remain true for
any weak solution, respectively any pair of weak solutions. The
uniqueness of weak solutions is again an immediate consequence of
the a priori estimate (48). From the estimate (45) we obtain that every
weak solution is bounded (property (T1)). Moreover, by (12), the
boundedness of u in H1(Ω), the continuity of E, and (43), the energy
function G is decreasing and bounded from below, and therefore

(52) lim
t→∞G(t) = inf

t≥0
G(t) = G∞ exists.

From this and the energy inequality (12), we obtain (T2). Finally,
in order to prove the variational equality (T4) we note first that
this equality is satisfied pointwise (in time) for any strong solution.
However, by using again that weak solutions are locally uniform limits
of strong solutions, one sees that this equality remains valid for all weak
solutions.

4. Compact range of global and bounded solutions. In this
section we obtain a compactness result which generalizes the previous
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results in [13] to the case of dynamical boundary conditions. In order
to prove Theorem 5, let us list two lemmas for which we need the
following notation. Let X be a (real) Banach space equipped with the
norm ‖ · ‖X , and let S2(R+;X) be the Stepanov space defined by

S2(R+;X) =

{
g ∈ L2

loc(R
+;X), sup

t∈R+

∫ t+1

t

‖g(s)‖2X ds <∞
}
.

For any h > 0, t ≥ 0 and any g ∈ S2(R+;X) we denote by gh(t) the
difference g(t+ h)− g(t) and we say that g is S1-uniformly continuous
with values in X if

sup
t∈R+

∫ t+1

t

‖gh(s)‖2X ds −→ 0 as h→ 0.

Lemma 12 [5]. Let u be a global bounded weak solution of (1).
Assume that f satisfies (F2) and that g1 satisfies (G2). Then the source
term H(t) = g1(t) − f(t, u) is S1-uniformly continuous in L2(Ω) and
H ∈ S2(R+, L2(Ω)).

Lemma 13 [13]. Let X and Y be two Banach spaces endowed
respectively with the norms ‖·‖X and ‖·‖Y . Assume that X is compactly
embedded into Y . Then:

(a) If u : R+ → Y is uniformly continuous and

sup
t≥0

δ∈[0,1]

∥∥∥∥
∫ t+δ

t

u(s) ds

∥∥∥∥
X

<∞,

then
⋃

t≥0{u(t)} is precompact in Y .

(b) If u ∈ C1(R+, Y ) is bounded with values in X, and if u′ is
uniformly continuous with values in Y , then

⋃
t≥0{u′(t)} is precompact

in Y .

Proof of Theorem 5. We proceed in two steps.

Step 1. We first show that the function (u(t),K
1/2
1 ut(t)) is uniformly

continuous with values in H1(Ω) × L2(Ω). For all t ≥ 0, h ≥ 0,
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we let uh(t) = u(t + h) − u(t). Since ut ∈ L2(R+;L2(Ω)) and
g1 − f(·, u) ∈ S2(R+, L2(Ω)), we have

sup
t≥0

∫ t+1

t

‖K1utt − Δu‖2 ds ≤ C.

From this estimate and (1), we easily deduce the inequality

∫ t+1

t

‖uh(s)‖2H1(Ω) ds

≤ C

{∫ t+1

t

(μuh(s), μuh(s))Γ + (∇uh(s),∇uh(s))2 ds

}

≤ C

{∫ t+1

t

(μuh(s) + ∂νu
h(s), μuh(s))Γ + (−Δuh(s), uh(s))2 ds

}

≤ C

{∫ t+1

t

‖K1/2
1 uht (s)‖22 ds+ ‖K1u

h
t (t)‖2‖uh(t)‖2

+ ‖K1u
h
t (t+ 1)‖2‖uh(t+ 1)‖2

+

∫ t+1

t

‖gh2 − vh‖2Γ ds+ sup
[t,t+1]

‖uh‖2
}

≤ C

{∫ t+1

t

‖K1/2
1 uht (s)‖22 ds+

∫ t+1

t

‖gh2 − vh‖2Γ ds+ C3 sup
[t,t+1]

‖uh‖2
}
.

Since ut ∈ L2(R+;L2(Ω)), u is uniformly continuous from R+ into
L2(Ω). Using this and the last inequality, we obtain
(53)∫ t+1

t

‖uh(s)‖2H1(Ω) ds ≤ C

{∫ t+1

t

‖K1/2
1 uht (s)‖22 ds+

∫ t+1

t

‖gh2 − vh‖2Γ ds
}

+ φ1(h),

where φ1(h) → 0 as h → 0. Moreover, since ut ∈ L2(R+;L2(Ω)) and
since the left-shift semigroup on the space L2(R+;L2(Ω)) is strongly
continuous, then we have

(54)

∫ t+1

t

‖K1/2
1 uht (s)‖22 ds −→ 0 as h→ 0.
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Similarly, since g2, v ∈ L2(R+;L2(Γ)),

(55)

∫ t+1

t

‖gh2 − vh‖2Γ ds −→ 0 as h→ 0.

By using the last two limits and the inequality (53), we obtain

(56)

∫ t+1

t

‖uh(s)‖2H1(Ω) ds ≤ φ2(h),

where φ2(h) → 0 as h→ 0. Now we introduce

Vh(t) =
1

2

(‖K1/2
1 uht (t)‖22 + ‖∇uh(t)‖22 + ‖μ1/2uh(t)‖2Γ + a ∗ ‖vh‖2Γ(t)

)
.

Since a ∗ ‖v‖2Γ ∈ L1(R+),

(57)

∫ t+1

t

a ∗ ‖vh‖2Γ(s) ds −→ 0 as h→ 0.

Combining (54), (56) and (57), we obtain

(58)

∫ t+1

t

Vh(θ) dθ ≤ φ3(h), where φ3(h) −→ 0 as h→ 0.

On the other hand, for a strong solution u, by taking the derivative of
Vh(t) with respect to t, and by using (1) and (40), we obtain
(59)
d

dt
Vh(t) ≤ (gh1 − fh(x, u), uht )2 + (gh2 , u

h
t )Γ

−
(

(K2u
h
t , u

h
t ) +

γ

2
a ∗ ‖vh‖2Γ +

1

2
a ∗ ‖vh‖2Γ +

b∞
2

‖vh‖2Γ
)

≤ (gh1 − fh(x, u), uht )2 + (gh2 , u
h
t )Γ.

Integrating (59) over [θ, t + 1] with θ ∈ [t, t + 1], using Lemma 12,
the fact that u(t) is bounded in H1(Ω), ut ∈ L2(R+;L2(Ω)), and
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g′2 ∈ L2(R+;L2(Γ)), we deduce that, for any t ≥ 0:
(60)

Vh(t+ 1) − Vh(θ) ≤ C

∫ t+1

t

(‖(g1 − f(x, u))h(s)‖22 + ‖uht (s)‖22) ds

+

∫ t+1

θ

(gh2 , u
h
t )Γ(s) ds

≤ C

∫ t+1

t

(‖(g1 − f(x, u))h(s)‖22 + ‖uht (s)‖22) ds

−
∫ t+1

θ

((g′2)h, uh)Γ(s) ds

+ C sup
[t,t+1]

‖gh2 (s)‖Γ

≤ C

∫ t+1

t

(‖(g1 − f(x, u))h(s)‖22 + ‖uht (s)‖22) ds

+ C

∫ t+1

t

‖(g′2)h(s)‖2Γ ds

+ C sup
[t,t+1]

‖gh2 (s)‖Γ

≤ φ4(h), where φ4(h) −→ 0 as h→ 0.

By an approximation argument, inequality (60) still holds for all weak
solutions. Then, by integrating (60) over [t, t+1] with respect to θ and
by using (58), we obtain

Vh(t+ 1) ≤ φ4(h) +

∫ t+1

t

Vh(θ) dθ ≤ φ5(h),

which tends to 0 as h→ 0. This concludes the proof of Step 1.

Step 2. We show that (u(t),K
1/2
1 ut(t)) is relatively compact in

H1(Ω) × L2(Ω). By applying Lemma 13 (b) with Y = L2(Ω) and

X = H1(Ω), we obtain immediately that
⋃

t≥0{K1/2
1 ut(t)} is relatively

compact in L2(Ω). To prove that
⋃

t≥0{u(t)} is relatively compact in

H1(Ω), we remark that

K1ut(t+ h) −K1ut(t) −
∫ t+h

t

Δu(s) ds+

∫ t+h

t

K2ut(s) ds

=

∫ t+h

t

(g1(s) − f(x, u(s))) ds.
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By using (F2), Lemma 12, ut ∈ L2(R+;L2(Ω)) and the fact that

(u,K
1/2
1 ut) is bounded with values in H1(Ω) × L2(Ω), we obtain

sup
t≥0

δ∈[0,1]

∥∥∥∥
∫ t+δ

t

Δu(s) ds

∥∥∥∥
2

<∞.

By applying Lemma 13 (a) with Y = H1(Ω) and X = {φ ∈
H1(Ω); Δφ ∈ L2(Ω)}, we obtain the claim.

5. Convergence of global weak solutions. In this section we
study the long-time stabilization of global bounded solutions of (1),
that is, we prove Theorems 7 and 8. Let us recall that the ω-limit set
of a continuous function u : R+ → H1(Ω) is defined by

ω(u) = {φ ∈ H1(Ω) : there exists tn → +∞
such that lim

n→∞ ‖u(tn) − φ‖H1(Ω) = 0}.

From well-known results on dynamical systems [12], if u is a continuous
function having in addition relatively compact range, then the ω-limit
set of u is a non-empty, compact, and connected subset of H1(Ω).
Moreover, since our system has a continuous Lyapunov functional G,
we prove the following lemma which is fundamental for the proof of
Theorem 7.

Lemma 14. Let u be a global bounded weak solution of equation (1)
and v = (d/dt)(k ∗ (u− u0)). Then:

(i) The function E is constant on ω(u), and

E(φ) = lim
t→∞E(u(t)) = E∞ <∞, for all φ ∈ ω(u).

(ii) limt→∞ ‖K1/2
1 ut‖2 = limt→∞ a ∗ ‖v‖2Γ = 0.

(iii) E′(φ) = 0, for all φ ∈ ω(u).

(iv) There exists a uniform �Lojasiewicz exponent θ ∈ ]0, (1/2)], β > 0
and T > 0 such that, for all t ≥ T ,

(61) |E(u(t)) − E∞|1−θ ≤ β‖E′(u(t))‖∗.
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Proof. Let φ ∈ ω(u). Then there exists an unbounded increasing
sequence (tn) in R+ such that u(tn) → φ in H1(Ω). Since ut ∈
L2(R+, L2(Ω)), we have

u(tn + s) = u(tn) +

∫ tn+s

tn

ut(ρ) dρ −→ φ

in L2(Ω) for every s ∈ [0, 1].

This, together with the relative compactness of the trajectory inH1(Ω),
implies that u(tn + s) → φ in H1(Ω) for every s ∈ [0, 1]. Then, by
continuity of E, E(u(tn + s)) → E(φ) in H1(Ω)′ for every s ∈ [0, 1].
Using the dominated convergence theorem,

E(φ) = lim
n→∞

∫ 1

0

E(u(tn + s)) ds.

Therefore, by integrating G(tn + ·) in [0, 1], we obtain

E(φ) = lim
n→∞

∫ 1

0

G(tn + s) ds = G∞,

where we have used (T2), (G1), (52) and the following estimate:

∣∣∣∣
∫ tn+1

tn

(g2(s), a ∗ v(s))Γ ds

∣∣∣∣
2

≤
∫ tn+1

tn

‖g2(s)‖2Γ ds

+ ‖a‖L1(R+)

∫ tn+1

tn

a ∗ ‖v(s)‖2Γ ds.

Since φ was chosen arbitrarily in ω(u), this implies that E is constant
on ω(u). Moreover, by the relative compactness of u with values in
H1(Ω), we obtain limt→∞ E(u(t)) = G∞ = E∞. Then assertion (i) is
proved. From this, the definition of G and since g2(t) and the integral
terms in G tend to 0 as t→ ∞, we obtain assertion (ii).

In order to prove (iii), let φ ∈ ω(u), and choose tn → ∞ such that
u(tn) → φ in H1(Ω). We have already seen that this implies u(tn+s) →
φ in H1(Ω) for every s ∈ [0, 1]. Hence, E′(u(tn+s)) → E′(φ) in H1(Ω)′

for every s ∈ [0, 1]. Finally, using the dominated convergence theorem,
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(T2), (T4), (ii) and (G1), we have, for all ψ ∈ H1(Ω),

(E′(φ), ψ)H1(Ω)′,H1(Ω)

=

∫ 1

0

(E′(φ), ψ)H1(Ω)′,H1(Ω) ds

= lim
n→∞

∫ 1

0

(E′(u(tn + s)), ψ)H1(Ω)′,H1(Ω) ds

= lim
n→∞

∫ 1

0

(∫
Ω

∇u(tn + s)∇ψ dx+

∫
Ω

f(x, u(tn + s))ψ dx

+

∫
Γ

μu(tn + s)ψ dσ

)
ds

= lim
n→∞

∫ 1

0

(
− d

dt

∫
Ω

K1ut(tn + s)ψ dx

−
∫
Ω

(K2ut − g1)(tn + s)ψ dx

−
∫
Γ

(v − g2)(tn + s)ψ dσ

)
ds

= lim
n→∞

[ ∫ 1

0

(∫
Ω

(−K2ut + g1)(tn + s)ψ dx

−
∫
Γ

(v − g2)(tn + s)ψ dσ

)
ds

+

∫
Ω

(K1ut(tn) −K1ut(tn + 1))ψ dx

]
= 0.

This proves (iii). Since ω(u) is compact, then there exists a finite family
of open balls B(φi, σi) covering ω(u), where φi ∈ ω(u) and σi > 0 is
such that |E(ψ) − E∞| ≤ 1 for every ψ ∈ B(φi, σi). By Proposition 6,
and for all i, there exist constants θi and βi such that

|E(ψ) − E∞|1−θi ≤ βi‖E′(ψ)‖∗,

for every ψ ∈ B(φi, σi). Since limt→∞ dist (u(t), ω(u)) = 0, then there
exists T > 0 such that u(t) ∈ ⋃

B(φi, σi) for all t ≥ T . Choosing
β = supβi, θ = inf θi, we obtain (iv).
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After the previous preparation, we are ready to prove Theorem 7.

Proof of Theorem 7. Let W0(t) : R+ → R be the function defined by

W0(t) = G(t) − E∞ + ε(E′(u(t)),K1ut)∗ (t ≥ 0).

Then, by (T3) and (T4), we have

(62)

d

dt
W0(t) =

d

dt
G(t) + ε(E′′(u)ut,K1ut)∗ + ε(E′(u),K1utt)∗

≤ −k0
2
‖ut‖22 −

b∞
2
‖v‖2Γ − γ

4
a ∗ ‖v‖2Γ

+ ε(E′′(u)ut,K1ut)∗ + ε(E′(u),−E′(u) −K2ut − v

+ g1(t) + g2(t))∗.

In order to estimate the term (E′′(u)ut,K1ut)∗ let L : H1(Ω) → H1(Ω)′

be the linear operator associated with the inner product on the space
H1(Ω):

(63) (Lu, v)H1(Ω)′,H1(Ω) = (u, v)H1(Ω) =

∫
Ω

∇u∇v dx+

∫
Γ

μuv dσ,

and let K = L−1. We equip H1(Ω)′ with the inner product:

(g1, g2)∗ = (Kg1,Kg2)H1(Ω), g1, g2 ∈ H1(Ω)′.

Note that K ◦E′′(v) ∈ L(H1(Ω)). Moreover, by (63) and the definition
of E, for all u ∈ H1(Ω), v ∈ H1(Ω), we have

K ◦ E′′(u)v = v + L−1

(
∂f

∂u
(x, u)v

)
.

From this, the growth assumption on f and the Sobolev embedding
theorem, it is not difficult to deduce that the operator K ◦ E′′(v)
extends to a bounded linear operator on L2(Ω) for every v ∈ H1(Ω),
and K ◦E′′ : H1(Ω) → L(L2(Ω)) maps bounded sets into bounded sets.

In addition, for all u ∈ L2(Ω), v ∈ H1(Ω)′, we have

(u, v)∗ = (Ku,Kv)H1(Ω) = (LKu,Kv)H1(Ω)′,H1(Ω)

= (u,Kv)H1(Ω)′,H1(Ω) = (u,Kv)2.
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Then:

(64)

(E′′(u)ut,K1ut)∗ = (K ◦ E′′(u)ut,K1ut)2

≤ ‖K ◦ E′′(u)‖L(L2(Ω))‖K1‖L∞(Ω)‖ut‖22
≤ C ‖ut‖22.

Also, by the Cauchy-Schwarz inequality:

(65) (E′(u),−E′(u) −K2ut − v + g1(t) + g2(t))∗

≤ −1

2
‖E′(u)‖2∗ + C

(‖ut‖22
+ ‖v‖2Γ + ‖g1(t)‖22 + ‖g2(t)‖2Γ

)
.

Combining (62) (65) and choosing ε > 0 small enough, we obtain

(66)
d

dt
W (t) ≤ −C(‖ut‖22 + ‖E′(u)‖2∗ + ‖v‖2Γ + a ∗ ‖v‖2Γ

)
(t > 0),

where W : R+ → R is the energy given by

(67)

W (t) =
1

2
‖K1/2

1 ut‖22 + E(u) − E∞

+
1

2
a ∗ ‖v‖2Γ − (g2, a ∗ v)Γ + ε(E′(u(t)),K1ut)∗

+

(
1

2k0
− Cε

)∫ ∞

t

‖g1(s)‖22 ds

+ (d− Cε)

∫ ∞

t

(‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds,

and Cε < inf {(1/2k0), d}. Thus, the function W is nonincreasing and
limt→∞W (t) = 0. It follows that W (t) ≥ 0 for all t ∈ R+. If there
exists a T0 ≥ 0 such that W (T0) = 0, then W (t) = 0 for all t ≥ T0.
Therefore, by inequality (66), ut = 0 for all t ≥ T0, and the function u
is constant for t ≥ T0, that is, u(t) = φ for t ≥ T0. In this case, there
remains nothing to prove. We may therefore suppose in the following
that W (t) is strictly positive on R+.

Now, Let θ be as in Lemma 14 (iv), and let θ0 ∈ (0, θ] be such that

(68) (1 + δ)(1 − θ0) > 1,



BEHAVIOR OF A HYPERBOLIC-PARABOLIC EQUATION 551

that is, θ0 < δ/(1 + δ). Note that (61) is satisfied with θ replaced by
θ0. Using Young’s inequality, we deduce from the definition of W and
Lemma 9 that, for every t ≥ 0,

W (t)1−θ0 ≤ C

{
‖K1/2

1 ut‖2(1−θ0)
2 + (a ∗ ‖v(t)‖2Γ)

2(1−θ0)/2
2

+ |E(u) − E∞|(1−θ0) + ‖g2(t)‖Γ + (a ∗ ‖v(t)‖2)
(1−θ0)/(2θ0)
Γ

+

(∫ ∞

t

(‖g1(s)‖22 + ‖g2(s)‖2Γ + ‖g′2(s)‖2Γ) ds

)1−θ0

+ ‖K1ut‖(1−θ0)/θ0
2 + ‖E′(u)‖∗

}
.

On the other hand, by assertions (ii) and (iv) from Lemma 14, there
exists T > 0 such that, for all t ≥ T , we have{

‖K1/2
1 ut‖2 + ‖K1ut‖2 + (a ∗ ‖v(t)‖2)

1/2
2

}
< 1

and

|E(u(t)) − E∞|1−θ0 ≤ β‖E′(u(t))‖∗.
Using this, (G2′) and the fact that 2(1 − θ0) ≥ 1 and (1 − θ0)/θ0 ≥ 1,
we obtain, for all t ≥ T ,

(69)
W (t)1−θ0 ≤ C

{
‖ut‖2 + (a ∗ ‖v(t)‖2Γ)1/2 + ‖E′(u)‖∗

+ ‖g2(t)‖Γ + (1 + t)−(1+δ)(1−θ0)
}
.

Combining the last inequality and (66), we obtain

(70) − d

dt
W (t)θ0

= −θ0W (t)θ0−1 d

dt
W (t)

≥ C
(‖ut‖22 + ‖E′(u)‖2∗ + ‖v‖2Γ + a ∗ ‖v‖2Γ

)
‖ut‖2 + (a ∗ ‖v(t)‖2Γ)1/2 + ‖E′(u)‖∗ + ‖g2(t)‖Γ + (1 + t)−(1+δ)(1−θ0)

≥ C
(‖ut‖2 + ‖v(t)‖Γ + (a ∗ ‖v(t)‖2Γ)1/2 + ‖E′(u)‖∗

)
− C

(‖g2(t)‖Γ + (1 + t)−(1+δ)(1−θ0)
)
.
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From this and the fact that the term −(d/dt)W (t)θ0 + C(‖g2(t)‖Γ +
(1 + t)−(1+δ)(1−θ0)) is integrable on [T,+∞), we obtain that ‖ut‖2
is integrable on [T,+∞), which implies that limt→∞ u(t, ·) exists in
L2(Ω). By the relative compactness of the range of u in H1(Ω),
limt→∞ u(t, ·) exists in H1(Ω). This is the claim.

Proof of Theorem 8. The following lemma is used in the proof of the
convergence rate to equilibrium. Its proof can be found in [4].

Lemma 15. Let ζ ∈ W 1,1
loc (R+,R+). We suppose that there exist

constants K1 > 0, K2 ≥ 0, k > 1 and λ > 0 such that, for almost every
t ≥ 0, we have

ζ′(t) +K1ζ(t)
k ≤ K2(1 + t)−λ.

Then there exists a positive constant m such that

ζ(t) ≤ m(1 + t)−ν , where ν = inf

{
1

k − 1
,
λ

k

}
.

In order to prove Theorem 8, we proceed in two steps.

Step 1 (Polynomial decay). First, we note that the inequalities (69)
and (70) are satisfied when θ0 is replaced by the initial exponent θ given
by Lemma 14 (iv). By using (69) together with Young’s inequality, we
obtain for every t ∈ [T,∞[,

(71)
W (t)2(1−θ) ≤ C

{
‖ut‖22 + (a ∗ ‖v(t)‖2Γ) + ‖E′(u)‖2∗

+ ‖g2(t)‖2Γ + (1 + t)−2(1+δ)(1−θ)
}
.

Using this, (G2) and (66), we obtain the following differential inequality
for every t ≥ T

(72) C
d

dt
W (t) +W (t)2(1−θ) ≤ C(1 + t)−2(1+δ)(1−θ).

Then we may apply Lemma 15 in order to obtain

(73) W (t) ≤ C(1 + t)−γ ,
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where γ = inf {1/(1 − 2θ), 1 + δ}. By again using (66), we have

− d

dt
W (t) ≥ C‖ut(t)‖22.

Integrating this inequality over [t, 2t] (t ≥ T ) and using (73), we obtain

∫ 2t

t

‖ut(s)‖22 ds ≤ C(1 + t)−γ .

Note that for every t ∈ R+,

∫ 2t

t

‖ut(s)‖2 ds ≤ t1/2
(∫ 2t

t

‖ut(s)‖22 ds
)1/2

.

It follows that∫ 2t

t

‖ut(s)‖2 ds ≤ C(1 + t)(1−γ)/2 for every t ≥ T.

Therefore, we obtain for every t ≥ T ,

∫ ∞

t

‖ut(s)‖2 ds ≤
∞∑
k=0

∫ 2k+1t

2kt

‖ut(s)‖2 ds

≤ C

∞∑
k=0

(2kt)(1−γ)/2 ≤ C(1 + t)(1−γ)/2.

Then, for all t ≥ T ,

‖u(t) − φ‖2 ≤
∫ ∞

t

‖ut(s)‖2 ds ≤ C(1 + t)−ξ,

where ξ = inf

{
θ

1 − 2θ
,
δ

2

}
.

Step 2 (Exponential decay). Suppose that g1 = 0 and g2 = 0. Then
(72) becomes

− d

dt
W (t) ≥ CW (t)2(1−θ).
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Since W (t) > 0, for sufficiently large times t, we obtain from this
inequality that{

(−1/(1 − 2θ))(d/dt)W (t)−(1−2θ) ≤ −C if θ ∈ (0, (1/2)),

(d/dt)(lnW (t)) ≤ −C if θ = 1/2.

Hence, integrating these differential inequalities, we obtain that there
exists a constant C > 0 such that, for every large t > 0,

(74)

{
W (t) ≤ C(1 + t)−1/(1−2θ) if θ ∈ (0, (1/2)),

W (t) ≤ Ce−Ct if θ = 1/2.

Note that the inequality (70) (when g1 = g2 = 0) implies, for every
s ≥ T ,

− d

dt
W (t)θ ≥ C‖ut(t)‖2.

Integrating this inequality on the interval [t,∞) (t ≥ T ), we obtain

‖u(t) − φ‖2 ≤
∫ ∞

t

‖ut(s)‖2 ds ≤ CW (t)θ.

This inequality together with inequality (74) implies the claim.
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