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ABSTRACT. In this paper, we consider the inverse scatter-
ing problem of recovering the shape of a cavity or the surface
impedance from one source and a knowledge of measurements
placed on a curve inside the cavity. Based on a potential ap-
proach the inverse problem is equivalent to a system of non-
linear and ill-posed integral equations, a regularized Newton
iterative approach is applied to reconstruct the boundary and
the injectivity for the linearized system is established. Nu-
merical examples are provided showing the viability of our
method.

1. Introduction. In some industrial applications of non-destructive
testing, it is important to monitor the structural integrity of some
cavity using acoustic or electromagnetic waves emitted and measured
by sources and receivers placed inside the cavity, such as monitoring the
structural integrity of the fusion reactor by electromagnetic waves [15];
such a problem can be called the inverse interior scattering problem.
As noted in [25], in some ways the interior scattering problem is
physically more complicated than the usual exterior scattering problem,
since now all the scattered waves are “trapped.” To the authors’
knowledge, there are only a few papers to solve this kind of inverse
interior scattering problem. In [15] potential methods and the range
test were used to test the structural integrity of the cavity. In [25,
28] the linear sampling method (cf. [8, 10]) was applied to recover the

2010 AMS Mathematics subject classification. Primary 35J25, 45Q05, 65R30,
78A46.

Keywords and phrases. Inverse scattering problem, shape of a cavity, surface
impedance, potential approach, nonlinear integral equations.

The research of the first author was supported in part by the Tianyuan fund
for Mathematics of the NSF of China (11126184) and the Fundamental Research
Funds for the Central Universities (2011QNA27). The research of the second author
was supported in part by the NSF of China (10971089) and a scholarship from the
Postgraduate Scholarship Program of the China Scholarship Council.

Received by the editors on July 29, 2012, and in revised form on December 28,
2012.

DOI:10.1216/JIE-2013-25-3-431 Copyright c©2013 Rocky Mountain Mathematics Consortium

431



432 H.-H. QIN AND J.-C. LIU

shape of a perfectly conducting cavity from a knowledge of sources and
measurements located inside the cavity and in [26] the method was
further extended to reconstruct the shape and the impedance. In a
recent paper [24], nonlinear integral equations were used to recover the
shape of a cavity bounded by a perfectly conducting boundary from a
knowledge of measurements and a single point source inside the cavity.
However, a perfectly conducting boundary condition is unrealistic.
Instead, a more realistic boundary condition is the impedance boundary
condition which was first used by Leontovich to model radio wave
propagation over the earth [3]. In this paper, we consider the scattering
of an electromagnetic time-harmonic point source located inside an
imperfectly conducting infinite cylinder with bounded cross section
D ⊂ R2, which is modeled by an interior impedance boundary value
problem for the Helmholtz equation inside D. The inverse problem we
are concerned with is to determine the shape of the boundary ∂D or
the impedance function λ from a knowledge of the measured scattered
fields and a single point source located on a curve C inside D.

In this paper, we use a nonlinear integral equation method to solve
our inverse problem. The nonlinear integral equation method was
first suggested by Kress and Rundell [19] where the authors solved
an inverse Dirichlet problem for the Laplace equation. Then this
kind of method was intensively studied in [5 7, 12 14, 16, 21, 24,
27] for the inverse problem in corrosion detection, exterior scattering
problems and the shape reconstruction for the perfectly conducting
cavity. In this work, we will apply this kind of method to solve our
inverse problem, that is, based on a single-layer potential with a density
on ∂D, we transform our inverse problem into a system of nonlinear
and ill-posed integral equations and then solve it by using regularized
iterations. The basic idea of the single-layer potential approach came
from Cakoni and Kress [5] where the authors solved an inverse shape
problem in corrosion detection. Finally, we will present some numerical
experiments to verify the effectiveness of the method.

The paper is organized as follows. In the next section, we formulate
the inverse interior scattering problem mathematically, derive a system
of integral equations, prove its equivalence to our inverse shape problem
and determine the impedance function for a fixed domain D. In
Section 3, we give three iteration schemes to reconstruct the boundary
and show the injectivity of the linearized system at the exact solution.
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Finally, we conclude our paper by providing some numerical examples
to show the viability of the proposed methods.

2. The formulation of the problem. We now consider the
scattering problem of an electromagnetic time harmonic point source
located inside an imperfectly conducting infinite cylinder, assuming
that a simply connected bounded domain D ⊂ R2 with C2 boundary
∂D is the cross section of the infinite cylinder and the electric field is
polarized in the TM mode. Then the scattering inside the cylinder is
modeled by the following interior impedance boundary value problem

Δus + k2us = 0 in D,(2.1)

∂us

∂ν
+ iλus = −∂Φ(·, d)

∂ν
− iλΦ(·, d) on ∂D,(2.2)

i.e., the total field u = us +Φ(·, d) satisfies

(2.3)
∂u

∂ν
+ iλu = 0 on ∂D,

where k > 0 is the wave number, d ∈ D is a fixed point, λ = λ(x) is
a real valued, positive and continuous function defined on ∂D, ν is the
unit outward normal to the boundary ∂D and Φ is the fundamental
solution to the Helmholtz equation defined by

Φ(x, d) =
i

4
H

(1)
0 (k|x− d|)

with H
(1)
0 being a Hankel function of the first kind of order zero.

It is well known that there exists a unique solution us ∈ H1(D) for
Φ(·, d) ∈ H1/2(∂D) to this direct interior impedance boundary value
problem (cf. [4]).

Now let C ⊂ D be a closed smooth curve and assume that, for a fixed
d ∈ C, we know

(2.4) us|C := us(x, d), for all x ∈ C.

The inverse problem we are interested in is to determine the boundary
∂D or the impedance function λ from a knowledge of the measured
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data us on a curve C inside D for one single point source located on
the curve C.

In the following, we will derive an equivalent system of integral
equations that we employ for the solution of the inverse problem by
a single-layer potential approach. Note that one can also use Green’s
representation approach (cf. [19]) to derive a different equivalent system
of integral equations for solving our inverse interior problem, but here
we only concentrate on discussing the single-layer potential approach.
We introduce the single layer potential

(2.5) us(x) =

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ D,

with a density ϕ ∈ H−1/2(∂D), and define the integral operators
S0 : H−1/2(∂D) → H1/2(C), S : H−1/2(∂D) → H1/2(∂D) and
K ′ : H−1/2(∂D) → H−1/2(∂D) by

(S0ϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ C,(2.6)

(Sϕ)(x) :=

∫
∂D

Φ(x, y)ϕ(y) ds(y), x ∈ ∂D(2.7)

and

(2.8) (K ′ϕ)(x) :=
∫
∂D

∂Φ(x, y)

∂ν(x)
ϕ(y) ds(y), x ∈ ∂D.

From now on, we assume that k2 is not a Dirichlet eigenvalue for
the negative Laplacian in D. Then we have the single-layer potential
operator defined by (2.5) from H−1/2(∂D) to H1(D) is injective and
note that the operator S defined by (2.7) is invertible (cf. [22]). Now
we can state the following theorem:

Theorem 2.1. Let D ⊂ R2 be a bounded simply connected domain
with C2 boundary ∂D, and assume that k2 is not a Dirichlet eigenvalue
for the negative Laplacian in D. If ∂D is a solution of the inverse shape
problem, then there exists ϕ ∈ H−1/2(∂D) such that

1

2
ϕ+K ′ϕ+ iλSϕ = −

(
∂

∂ν
+ iλ

)
Φ(·, d)

∣∣∣∣
∂D

,(2.9)

S0ϕ = us(·, d)|C .(2.10)
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Conversely, let ∂D and ϕ ∈ H−1/2(∂D) solve the system (2.9) (2.10).
Then ∂D is a solution of the inverse shape problem.

Proof. If ∂D is a solution of the inverse shape problem, since k2 is
not a Dirichlet eigenvalue for the negative Laplacian in D, we can
represent the scattered field us by (2.5) with an unknown density
ϕ ∈ H−1/2(∂D) requiring that us satisfy the conditions (2.2) and (2.4).
Then by the jump relations for the single-layer potential, letting x tend
to the boundary from inside D, we can obtain (2.9). Further, from (2.4)
we obtain (2.10).

Conversely, if ∂D and ϕ ∈ H−1/2(∂D) solve the system (2.9) (2.10),
we define us by (2.5), and then we obtain that us ∈ H1(D) satisfies
the Helmholtz equation (2.1). Furthermore, from (2.9) and (2.10) we
also have that us satisfies equations (2.2) and (2.4). Hence, ∂D is a
solution of the inverse shape problem.

Since the inverse problem is ill-posed in the sense that the solution
does not depend continuously on the given measured data, we need
to apply regularization schemes such as the Tikhonov regularization to
solve the ill-posed nonlinear integral equations (2.9) (2.10) for the given
measured data. In this case, the L2-norm will be the appropriate norm
to measure the data error and discuss the Tikhonov regularization.
Hence, for the remainder of the paper we will consider the operators
S : L2(∂D) �→ L2(∂D), S0 : L2(∂D) �→ L2(C) and K ′ : L2(∂D) �→
L2(∂D). Note that S : L2(∂D) �→ H1(∂D) is invertible provided that
k2 is not a Dirichlet eigenvalue for the negative Laplacian in D (cf.
[22)]. In order to apply the Tikhonov regularization technique to solve
the severely ill-posed integral equation (2.10), we state the following
theorem [24].

Theorem 2.2. The operator S0 is compact, injective and has dense
range in L2(C), provided k2 is not a Dirichlet eigenvalue for the
negative Laplacian in the interior of C.

For further analysis and, in particular, for the numerical solution,
we first need to parameterize the boundary and the involved integral
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operators. We assume that

(2.11) ∂D := {z(t) = (z1(t), z2(t)) : t ∈ [0, 2π]}

and
C := {ρ(t) = (ρ1(t), ρ2(t)) : t ∈ [0, 2π]}

with 2π periodic C2-smooth functions z, ρ : R �→ R2 such that z, ρ are
injective on [0, 2π) and satisfy z′(t) �= 0 and ρ′(t) �= 0 for all t. Further,
for simplicity, we introduce the notation a⊥ = (a2,−a1) for any vector
a = (a1, a2). Set ψ := |z′|ϕ ◦ z. Then we obtain from (2.6) (2.8) the
parameterized integral operators as follows

[S̃0(z, ψ)](t) =
i

4

∫ 2π

0

H
(1)
0 (k|ρ(t) − z(τ)|)ψ(τ) dτ,

(2.12)

[S̃(z, ψ)](t) =
i

4

∫ 2π

0

H
(1)
0 (k|z(t)− z(τ)|)ψ(τ) dτ

(2.13)

and

(2.14) [K ′(z, ψ)](t)

= − ik

4|z′(t)|
∫ 2π

0

H
(1)
1 (k|z(t)− z(τ)|) [z

′(t)]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)| ψ(τ) dτ

for t ∈ [0, 2π], ψ ∈ L2[0, 2π] and z ∈ C2[0, 2π]. Further, we write the
measured data ω0(ρ(t)) := us(ρ(t), d) and

[ω(z)](t) :=
ik

4|z′(t)|H
(1)
1 (k|z(t)− d|) [z

′(t)]⊥ · [z(t)− d]

|z(t)− d|
+
λ

4
H

(1)
0 (k|z(t)− d|).

Then the system (2.9) (2.10) is transformed to

(2.15) S̃0(z, ψ) = ω0,

(2.16) K̃ ′(z, ψ) + iλS̃(z, ψ) = ω(z),
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where K̃ ′(z, ψ) = ψ/(2|z′|) +K ′(z, ψ).

Note that the kernel of S̃0 is analytic. For the numerical approxima-
tion of the latter, the kernels for the operators S̃ and K̃ ′ can be treated
as in [9, Chapter 3.5].

To this end, we illustrate that, for a fixed domain D, the impedance
function λ can also be determined from the system (2.9) (2.10). The
process is as follows: we first apply Tikhonov regularization to solve
the severely ill-posed integral equation (2.10) with the L2 penalty term
for the density ϕ on ∂D, then we obtain the operators K ′ϕ and Sϕ.
Finally, the impedance function λ = λ(x) can be reconstructed by
solving the equation (2.9) for each point x ∈ ∂D. This idea had been
applied to recover the impedance in corrosion detection and the exterior
scattering problems (cf., e.g., [1, 5]).

In order to obtain a stable solution we can choose some basis functions
{φn} and write the impedance function λ as

(2.17) λ(x) =
∑
n

cnφn(x), x ∈ ∂D.

Then the coefficients {cn} can be obtained by solving the equation that
is obtained by inserting (2.17) into (2.9) in the least squares sense.

In the following numerical computations, we choose the curve C to
be a circle whose radius is rc = 0.16 and the point source d = rc(−1, 0).
The synthetic data us on the curve C is obtained by solving the
direct problem (2.1) (2.2) using a single-layer potential approach in
which the involved integral equation is solved by Nyström’s method
[9]. Furthermore, to avoid an inverse crime we use triple the number
of the discretization points in the forward solver than in the inverse
solver in which the involved integral operators were discretized by
using the trapezoidal rule with 60 equidistant grid points. In our
computation, we use the Tikhonov regularization method to solve
(2.10), and the regularization parameter is chosen by the L-curve
method which was first applied by Lawson and Hanson [20], and we use
the Matlab code developed by Hansen [11] to obtain the regularization
parameter. The basis functions φn are chosen as φn(x(t)) = exp (int),
n = 0,±1, . . . ,±N , t ∈ [0, 2π]. In the following two examples, we use
the parameter N = 4 and show the numerical results for k = 2.
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FIGURE 1. Reconstruction for the impedance λ with k = 2.

The first example considered here is a pear parameterized by

(2.18) ∂D = (1.5− 0.3 cos(3t)) (cos t, sin t) , 0 ≤ t ≤ 2π

with the parameterized impedance function λ given by

(2.19) λ(t) = cos3 t+ sin t− 0.5t2 + πt.

The numerical result is shown in Figure 1 (a) for the noiseless case and
2% noisy case.

In the second example we consider a bean parameterized by

(2.20) ∂D =
1 + 0.8 cos t+ 0.2 sin(2t)

1 + 0.7 cos t
(cos t, sin t) , 0 ≤ t ≤ 2π

with the impedance function λ given by (2.19). The numerical result
is shown in Figure 1 (b) with 2% and 4% random noise data.

From Figure 1, we note that the reconstruction method is effective
and the numerical result becomes worse when the noise level increases.
In order to analyze the sensitivity of the reconstruction with respect
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FIGURE 2. Relative error with k = 2 and 2% noisy data.

to the parameter N , we compute the relative l2 error between the
reconstruction λrec and the exact λ by

(2.21) error :=

( 2m+1∑
i=1

|λrec(ti)− λ(ti)|2
)1/2/( 2m+1∑

i=1

|λ(ti)|2
)1/2

,

where ti = (π/m)(i−1), i = 1, . . . , 2m+1. We display the relationship
between error and the parameter N for the first example with 2%
noisy data in Figure 2. Here, the regularization parameter is obtained
again by using the L-curve method. It is shown that the numerical
results are stable to the value of the parameter N , and we also note
that the Tikhonov regularization method with the L-curve technique to
solve (2.10) provides an acceptable approximation, while the problem
of choosing an optimal regularization parameter needs to be further
investigated.

3. The iteration scheme. In this section, we will apply three
possible iteration techniques for solving the system of integral equations
(2.15) (2.16) for the unknown boundary ∂D. In the next section, we
will illustrate that these iteration techniques are effective for our inverse
interior impedance boundary value problem.

Method A. This method is to simultaneously linearize equations
(2.15) and (2.16) with respect to ψ and z, which was suggested by
Kress and Rundell in [19] for an inverse boundary value problem for
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the Laplace equation and further analyzed in a number of papers [5, 6,
12, 13, 16, 21, 24]. Here, the full linearization of (2.15) (2.16) leads
to

S̃0(z, ψ) + S̃0(z, χ) + dS̃0(z, ψ; ζ) = ω0,(3.1)

K̃ ′(z, ψ) + K̃ ′(z, χ) + dK̃ ′(z, ψ; ζ)(3.2)

+iλ[S̃(z, ψ) + S̃(z, χ) + dS̃(z, ψ; ζ)] = ω(z) + dω(z; ζ).

The operators dS̃0(z, ψ; ζ), dK̃ ′(z, ψ; ζ), dS̃(z, ψ; ζ) and dω(z; ζ) denote
the Fréchet derivatives with respect to z in direction ζ of the opera-
tors S̃0(z, ψ), K̃ ′(z, ψ), S̃(z, ψ), and ω(z), respectively. The Fréchet

derivatives of the operators S̃0, K̃ ′, S̃ can be obtained by formally
differentiating their kernels with respects to z (cf. [23]) and dω can
be obtained by direct differentiation with respect to z. Their explicit
representations are given by:

dS̃0(z, ψ; ζ)(t) =
ik

4

∫ 2π

0

H
(1)
1 (k|ρ(t)− z(τ)|) [ρ(t) − z(τ)] · ζ(τ)

|ρ(t)− z(τ)| ψ(τ) dτ,

dK̃ ′(z, ψ; ζ) = −z
′(t) · ζ′(t)
|z′(t)|2 K̃ ′(z, ψ)− ik

4|z′(t)|

×
∫ 2π

0

{[
kH

(1)
0 (k|z(t)−z(τ)|)− 2H

(1)
1 (k|z(t)−z(τ)|)
|z(t)−z(τ)|

]

× [z′(t)]⊥ · [z(t)−z(τ)][z(t)−z(τ)]·[ζ(t)−ζ(τ)]
|z(t)−z(τ)|2

}
ψ(τ) dτ

− ik

4|z′(t)|
∫ 2π

0

H
(1)
1 (k|z(t)− z(τ)|)
|z(t)− z(τ)|

×
{
[ζ ′(t)]⊥ · [z(t)−z(τ)]+[z′(t)]⊥ · [ζ(t)−ζ(τ)]

}
ψ(τ) dτ,

dS̃(z, ψ; ζ) = − ik
4

∫ 2π

0

H
(1)
1 (k|z(t)− z(τ)|)

× [z(t)− z(τ)] · [ζ(t) − ζ(τ)]

|z(t)− z(τ)| ψ(τ) dτ

and

dω(z; ζ) =
ik

4|z′(t)|
{
− H

(1)
1 (k|z(t)− d|)
|z(t)− d|

[z′(t)]⊥ · [z(t)− d][z′(t)] · [ζ′(t)]
|z′(t)|2
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+

[
kH

(1)
0 (k|z(t)− d|)− 2H

(1)
1 (k|z(t)− d|)
|z(t)− d|

]

× [z′(t)]⊥ · [z(t)− d][z(t)− d] · ζ(t)
|z(t)− d|2 +

H
(1)
1 (k|z(t)− d|)
|z(t)− d|

× {
[ζ′(t)]⊥ · [z(t)− d] + [z′(t)]⊥ · ζ(t)}}

− λk

4
H

(1)
1 (k|z(t)− d|) [z(t)− d] · ζ(t)

|z(t)− d| .

Note that the kernel for the operator dS̃0 is analytic, and the kernel
of the second term of dK̃ ′ is smooth with its diagonal value given
by −(1/2π)[[z′(t)]⊥ · z′′(t)z′(t) · ζ′(t)]/|z′(t)|4. The kernel of the third

term of dK̃ ′ and the kernel of dS̃ can be treated as in the case of the
operator K̃ ′.

For a detailed description of the iterative procedure for solving our
inverse shape problem via (3.1) and (3.2), we refer to [19].

Method B. This method is to decompose the inverse problem into
a severely ill-posed linear problem and a mildly ill-posed nonlinear
problem, which has been studied by Cakoni, Kress, etc., (cf. [5, 12,
14, 24]). In this case, we only linearize equation (2.16) with respect
to z and obtain the linearized equation
(3.3)

K̃ ′(z, ψ) + dK̃ ′(z, ψ; ζ) + iλ[S̃(z, ψ) + dS̃(z, ψ; ζ)] = ω(z) + dω(z; ζ).

Then, we can solve our inverse shape problem via (2.15) and (3.3)
by an iteration scheme. For the detailed description of the iterative
procedure, we refer to [5].

Method C. This method is for reversing the roles of the equations in
Method B, that is, given an approximation z for the boundary, we first
solve equation (2.16) for the density ψ and, keeping ψ fixed, linearize
(2.15) with respect to z and then solve the linearized equation

(3.4) S̃0(z, ψ) + dS̃0(z, ψ; ζ) = ω0

for ζ to obtain the boundary update z + ζ. The procedure is repeated
until a suitable stopping criterion is satisfied. This method has been
suggested by Johansson and Sleeman in [16] for the exterior scattering
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problem and further investigated in much literature (cf., e.g., [14] and
the references therein).

In the following, we will show injectivity for the linearized system
(3.1) (3.2) at the exact solution. Without loss of generality, we can
assume that the perturbation ζ is in the direction of the normal to the
boundary. From now on, we assume that the boundary ∂D is of class
C3 to ensure that ζ = q[z′]⊥ ∈ C2[0, 2π] for a scalar q ∈ C2[0, 2π] and
that the exact solution us is twice continuously differential on ∂D.

Now, for ψ ∈ H1[0, 2π] and ζ ∈ C2[0, 2π] we define

V (x) := −
∫ 2π

0

gradxΦ(x, z(τ)) · ζ(τ)ψ(τ)dτ, x ∈ R2\∂D
(3.5)

and

U(x) :=

∫ 2π

0

Φ(x, z(τ))ψ(τ) dτ, x ∈ D.

(3.6)

Then we have the following lemma.

Lemma 3.1. For ζ = q[z′]⊥ ∈ C2[0, 2π] with a scalar q ∈ C2[0, 2π]
and ψ ∈ H1[0, 2π], we have that

dK̃ ′(z, ψ; ζ) = κ|z′|q (gradU · ν) ◦ z − k2|z′|qU ◦ z
− 1

|z′|
d

dt

(
q
d

dt
(U ◦ z)

)
+ (gradV · ν) ◦ z,

where κ = [z′′ · [z′]⊥]/|z′|3 denotes the curvature of the boundary ∂D.

Proof. Since

gradx
∂

∂ν(y)
Φ(x, y) = k2Φ(x, y)ν(y) −

[
∂

∂σ(y)
gradxΦ(x, y)

]⊥
,

y ∈ ∂D, x ∈ R2\{y},
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where ν is the outward normal to ∂D and σ is the unit tangent vector
in counterclockwise orientation (cf., [17, Chapter 7.5]). Then, for any
vector a, we have

(3.7)
[
gradx

(
[z′(τ)]⊥ · gradyΦ(x, z(τ))

)] · a
= k2Φ(x, z(τ))[z′(τ)]⊥ · a+

[
d

dτ
gradxΦ(x, z(τ))

]
· a⊥.

Since
(3.8)∫ 2π

0

ψK̃(z, ϕ) dt =

∫ 2π

0

|z′|ϕK̃ ′(z, ψ) dt for all ϕ, ψ ∈ H1[0, 2π],

where

K̃(z, ϕ)(t)

=
ϕ(t)

2
+
ik

4

∫ 2π

0

H
(1)
1 (k|z(t)− z(τ)|) [z(t)− z(τ)] · [z′(τ)]⊥

|z(t)− z(τ)| ϕ(τ) dτ.

Then, similar to the proof of Lemma 3.3 in [7], we obtain

(3.9)
z′ · ζ′
|z′| K̃

′(z, ψ) + |z′| dK̃ ′(z, ψ; ζ)

= k2
∫ 2π

0

Φ(z(t), z(τ))[z′(t)]⊥ · [ζ(τ) − ζ(t)]ψ(τ) dτ

+
d

dt

∫ 2π

0

gradxΦ(z(t), z(τ)) · {[ζ(t)]⊥ − [ζ(τ)]⊥}ψ(τ) dτ

and

(3.10)
d

dt

∫ 2π

0

gradxΦ(z(t), z(τ)) · [ζ(τ)]⊥ψ(τ) dτ
= −|z′(t)| (gradV · ν) ◦ z

+ k2
∫ 2π

0

Φ(z(t), z(τ))[z′(t)]⊥ · [ζ(τ)]ψ(τ) dτ.

Further, by the jump relations for the derivative of single-layer
potentials, letting x tend to the boundary ∂D from inside D, noting
that ζ⊥ = −qz′, we obtain

(3.11)

∫ 2π

0

gradxΦ(z(t), z(τ)) · [ζ(t)]⊥ψ(τ) dτ = −q(t) d
dt
(U ◦ z)
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and

(3.12)
z′ · ζ′
|z′| K̃

′(z, ψ) = −κ|z′|2q (gradU · ν) ◦ z.

Finally, combining (3.9) (3.12), the proof is completed.

Lemma 3.2. Under the assumptions of Lemma 3.1, we have

(3.13) dS̃(z, ψ; ζ) = V ◦ z + |z′|q(gradU · ν) ◦ z.

Proof. By the jump relations for single-layer potentials, letting x tend
to the boundary ∂D from inside D, we have

V ◦ z = −1

2
ζ(t) · ν(z(t)) ψ(t)|z′(t)|

(3.14)

+
ik

4

∫ 2π

0

H
(1)
1 (k|z(t)−z(τ)|) [z(t)−z(τ)]·ζ(τ)|z(t)− z(τ)| ψ(τ) dτ

and

(gradU · ν) ◦ z =
ψ(t)

2|z′(t)| −
ik

4|z′(t)|

(3.15)

×
∫ 2π

0

H
(1)
1 (k|z(t)− z(τ)|) [z(t)−z(τ)]·[z

′(t)]⊥

|z(t)− z(τ)| ψ(τ) dτ.

Since ζ = q[z′]⊥, combining (3.14) and (3.15), we obtain (3.13).

Now we can state the injectivity result on the linearized system
(3.1) (3.2) at the exact solution.

Theorem 3.3. Assume that k2 is not a Dirichlet eigenvalue for the
region bounded by C, and let z be the parameterization of the exact
boundary ∂D. Let ψ solve equations (2.15) (2.16) for a nonnegative
λ ∈ C[0, 2π] with λ > k, and let us be the single-layer potential with
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density ψ. Assume that ζ = q[z′]⊥ ∈ C2[0, 2π] for a scalar q ∈ C2[0, 2π]
and χ ∈ L2[0, 2π] satisfy the homogeneous system

S̃0(z, χ) + dS̃0(z, ψ; ζ) = 0,(3.16)

K̃ ′(z, χ) + dK̃ ′(z, ψ; ζ) + iλ[S̃(z, χ) + dS̃(z, ψ; ζ)] = dω(z; ζ).

(3.17)

Then χ = 0 and ζ = 0.

Proof. Define

W := w + V(3.18)

where

w(x) :=

∫ 2π

0

Φ(x, z(τ))χ(τ) dτ, x ∈ R2\∂D(3.19)

and V was defined by (3.5). From (3.16), we haveW |C = 0. Note that
W satisfies ΔW + k2W = 0 inside C and, since k2 is not a Dirichlet
eigenvalue in the interior of the curve C, we have that W = 0 inside C
(cf. [2]). By the unique continuation principle we have W = 0 in D.
Then, by the jump relations for single-layer and double-layer potentials,
letting x tend to the boundary ∂D from inside D, we obtain

(3.20)
(gradW · ν) ◦ z + iλ(W ◦ z) = K̃ ′(z, χ) + (gradV · ν) ◦ z

+ iλ(S̃(z, χ) + V ◦ z) = 0,

where V ◦ z is given by (3.14) and K̃ ′(z, χ) = χ/(2|z′|) + K ′(z, χ).
Combining (3.17) and (3.20), we obtain

(3.21) dK̃ ′(z, ψ; ζ)+iλ dS̃(z, ψ; ζ)−(gradV ·ν)◦z−iλV ◦z = dω(z; ζ).

Since us is the single-layer potential with density ψ, recalling the
definition of U given by (3.6), we identify us = U and note that us

satisfies the impedance boundary condition due to the fact that ψ solves
equations (2.15) (2.16). Hence, by Lemmas 3.1, 3.2 and (3.21), we have

(3.22) (κ+ iλ)|z′|q (gradus · ν) ◦ z − k2|z′|qus ◦ z
− 1

|z′|
d

dt

(
q
d

dt
(us ◦ z)

)
= dω(z; ζ).
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Further, by the impedance boundary condition (2.2) and (3.22), we
have

(3.23) (k2 − λ2)|z′|qus ◦ z + 1

|z′|
d

dt

(
q
d

dt
(us ◦ z)

)
+ iλ|z′|qκus ◦ z

= − (dω(z; ζ) + (κ+ iλ)|z′|q ((gradΦ(·, d) · ν) ◦ z + iλΦ(z, d))) ,

and, after computation, we can obtain

(3.24) − dω(z; ζ) + k2|z′|qΦ(z, d) + 1

|z′|
d

dt

(
q
d

dt
Φ(z, d)

)
= (κ+ iλ)|z′|q(gradΦ(·, d) · ν) ◦ z.

Combining (3.23) and (3.24), we obtain

(k2 − λ2)|z′|qu ◦ z + 1

|z′|
d

dt

(
q
d

dt
(u ◦ z)

)
+ iλ|z′|qκu ◦ z = 0,

where u = us +Φ(·, d). Further, we have

(3.25) (k2−λ2)ζ ·ν(z)u◦z+ d

ds

(
ζ ·ν(z)du

ds
◦z

)
+ iλκζ ·ν(z)u◦z = 0,

where s denotes arc length.

Following the idea in [18], multiplying (3.25) by the conjugate com-
plex u and taking the real part, we obtain

(3.26) (k2 − λ2)ζ · ν|u|2 + 1

2

d

ds

(
ζ · ν d|u|

2

ds

)
− ζ · ν

∣∣∣∣duds
∣∣∣∣2 = 0 on ∂D.

Now, if ζ · ν is not identically zero, without loss of generality, one can
assume that the set I = {x ∈ ∂D : ζ · ν > 0} is nonempty. Then, from
(3.26), we have

(3.27)

∫
I

{
(k2 − λ2)|u|2 −

∣∣∣∣duds
∣∣∣∣2
}
ζ · ν ds = 0.

Since λ > k, from (3.27) we obtain u = 0 on I and then the impedance
boundary condition for u implies ∂u/∂ν = 0 on I. Then Holmgren’s
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theorem implies that u = 0 inD\{d}, i.e., us+Φ(·, d) = 0 inD\{d}, and
we immediately have the contraction from the fact that us is bounded
in D but Φ(·, d) is not. Hence, we conclude that ζ · ν(z) = 0, i.e.,
q[z′]⊥ · [z′]⊥ = 0 which means ζ = 0. Now

W (x) =

∫ 2π

0

Φ(x, z(τ))χ(τ) dτ, x ∈ R2\∂D.

From (3.16), we get W |C = 0. Since k2 is not a Dirichlet eigenvalue in
the interior of C and the unique continuation principle yields W = 0 in
D, then W = 0 on ∂D. Since 	W +k2W = 0 in R2\D andW satisfies
the Sommerfeld radiation condition, then the continuity of the single-
layer potential and the uniqueness for the exterior Dirichlet boundary
value problem yield W = 0 in R2\D. Finally, the jump relation for the
gradient of the single-layer potential yields χ = 0.

4. Numerical examples. In this section, we present several
numerical examples to illustrate the effectiveness of reconstruction
methods as described in the previous section. For simplicity, we
assume that the interior curve C is a circle, i.e., C = {ρ(t) | ρ(t) =
rc(cos t, sin t), t ∈ [0, 2π]}, where rc > 0 is a constant. The synthetic
data us on curve C is obtained by solving the direct problem (2.1) (2.2)
using a single-layer potential approach in which the involved integral
equation is solved by Nyström’s method [9]. Furthermore, to avoid an
inverse crime, we use a different number of collocation points in the
forward solver than in the inverse solver. We apply the trapezoidal
rule to discretize integral equations occurring in (3.1) (3.2), (2.15) and
(3.3), (2.16) and (3.4) with M equidistant grid points and use the
Tikhonov regularization technique to solve them with the L2 penalty
term for the density ψ, the updates χ and ζ. Recalling the form
ζ = q[z′]⊥ of the boundary perturbation, the magnitude q of the normal
perturbation is approximated by a trigonometric polynomial of degree
less than or equal to m ∈ N, i.e.,

q(t) ≈
m∑
j=0

aj cos (jt) +
m∑
j=1

bj sin (jt).

The corresponding regularization parameters are denoted as αψ, αχ
and αζ . For the purpose of illustration, the regularization parameters
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(c) Method C.

FIGURE 3. Reconstruction for ∂Dp with k = 2, λ = 4 + sin3 t and 1% noise.

are chosen by trial and error in the following numerical examples. More
research is required on a more sophisticated choice of the regularization
parameter to improve the performance. Furthermore, for Methods B
and C as observed in [5, 19] we need an additional regularization by
updating the density ψ by ψnew = γψ + (1 − γ)ψold, where ψ is the
solution of equations (2.15) and (2.16), respectively, and γ is chosen
between 0.5 and 0.75.

In the following numerical computations, we always take the source
point d = rc(−1, 0) and the equidistant grid points M = 56, choose a
circle of radius ro centered at origin as the initial guess for the boundary
to start the iterations and fix the number of iterations to be eight in
all the examples.
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(a) Method A with 1% noise; (b) Method A with 5% noise;
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(c) Method B with 1% noise; (d) Method C with 1% noise.

FIGURE 4. Reconstruction for ∂Da with k = 1, λ = 4 + sin3 t.

The first example considered here is a peanut parameterized by

(4.1) ∂Dp = 0.8
√
cos2 t+ 0.25 sin2 t (cos t, sin t) , 0 ≤ t ≤ 2π.

Reconstructions with rc = 0.05, ro = 0.3, m = 2 and k = 2 are shown
in Figure 3. We display the reconstructions with 1% random noise
for λ = 4 + sin3 t. The reconstruction for Method A with αψ = 10−9

and αχ = αζ = 10−6 is shown in Figure 3 (a). The reconstruction for
Method B is shown in Figure 3 (b) with αψ = 4×10−10 and αζ = 10−7,
and in Figure 3 (c) we choose αψ = 10−13 and αζ = 10−7 for Method C.

For the second example we consider a pear parameterized by

(4.2) ∂Da = (1.5− 0.3 cos(3t)) (cos t, sin t) , 0 ≤ t ≤ 2π.
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(a) Relative error for the peanut; (b) Relative error for the pear.

FIGURE 5. Relative error for the boundary with λ = 4 + sin3 t and 1% noise.

The numerical results are shown in Figure 4, where the involved
parameters are chosen as rc = 0.05, ro = 0.3, m = 3 and k = 1.
Three methods are also used to recover the shape for λ = 4 + sin3 t.
We choose the parameters αψ = 10−9 and αχ = αζ = 10−10 in Figure
4 (a) with 1% noise, and αψ = 10−10, αχ = αζ = 10−10 in Figure
4 (b) with 5% noise for Method A. In Figure 4 (c), the parameters are
chosen as αψ = 10−14 and αζ = 10−10 with 1% noise for Method B,
whereas in Figure 4 (d), we choose αψ = αζ = 10−10 with 1% noise for
Method C.

Here we point out that, in our numerical examples, we fix the number
of iterations to be eight. In order to analyze the sensitivity of the
reconstruction with respect to the number of iterations, recalling the
definition of the relative l2 error (2.21), we compute the relative l2 error
between the nth approximation to the polar radius and the exact polar
radius for the peanut ∂Dp and the pear ∂Da, which is a function of the
number of iterations, and display the relationship between the relative
error and the number of iterations in Figure 5. In Figures 5 (a) and
5 (b), all the parameters are taken to be the same as the first and the
second examples, respectively. It is shown that a good approximation
can be obtained only with a few iterations, and it seems that Methods
A and C are more stable than Method B. Further research is needed in
order to obtain a suitable stopping criterion for practical applications.
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FIGURE 6. Reconstruction for ∂Db with k = 1, λ = 5 + sin3 t and 1% noise.

The third example considered here is a bean parameterized by

(4.3) ∂Db =
1 + 0.8 cos(t) + 0.2 sin(2t)

1 + 0.7 cos(t)
(cos t, sin t) , 0 ≤ t ≤ 2π.

The numerical results for λ = 5 + sin3 t with 1% random noise data
are shown in Figure 6, where the choice of the involved parameters
is rc = 0.02, ro = 0.2, m = 2 and k = 1. The reconstruction for
Method A with αψ = 10−12 and αχ = αζ = 10−7 is shown in Figure
6 (a). The reconstruction for Method B is shown in Figure 6 (b) with
αψ = 10−12 and αζ = 10−10, and in Figure 6 (c) we choose αψ = 10−10

and αζ = 6× 10−6 for Method C.
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FIGURE 7. Reconstruction for ∂Dk with k = 1, λ = 5 + sin3 t and 1% noise.

The fourth example involves the reconstruction of a kite parameter-
ized by

∂Dk = (cos t+ 0.65 cos(2t)− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π.

The numerical results for λ = 5 + sin3 t with 1% random noise data
are shown in Figure 7, where the choice of the involved parameters is
rc = 0.1, ro = 0.4, m = 4 and k = 1. In Figure 7 (a) the parameter is
chosen as αψ = 10−8 and αχ = αζ = 10−10. In Figure 7 (b), we choose
αψ = 10−16 and αζ = 10−7, and we choose αψ = 10−10 and αζ = 10−8

in Figure 7 (c).

From the present numerical examples, we can summarize that the pro-
posed reconstruction approaches are effective, and we can obtain a good
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approximation with only a few iterations. From Figures 4 (a) 4 (b) we
also note that the reconstruction deteriorates when the noise level in-
creases. In addition, from the present numerical examples, we observe
that Method B appears to perform somewhat worse than Methods A
and C.
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